Mercurial > repos > peter-waltman > ucsc_cluster_tools2
view cluster.tools/select.k.from.consensus.cluster.R @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children | a58527c632b7 |
line wrap: on
line source
#!/usr/bin/env Rscript # Consensus Clustering Script by Peter Waltman # June 1, 2012 # License under Creative Commons Attribution 3.0 Unported (CC BY 3.0) # ##usage, options and doc goes here argspec <- c("select.k.from.consensus.clust4er.R takes a clustering from ConsensusClusterPlus and clinical survival data and determines the right k to use. Usage: select.k.from.consensus.cluster.R -r <results_file> Optional: -o output.png # default is stdout -c change.min -m metric (must be either: rel.change, angle, silhouette (must specify data matrix) survival (must specify survival data; uses minimal cummulative log-rank p-value) -d data ## for calculating silhouette plots (plotted, but not used unless specified) -s survival.data.fname (plotted, but not used unless specified) -e survival.comp (can be either all, one or both - see the mode param for gen.survival.curves for explanation) -z survival analysis script to be called (defaults to galaxy.gen.survival.curves.R) \n\n") args <- commandArgs(TRUE) if ( length( args ) == 1 && args =="--help") { write( argspec, stderr() ) q(); } lib.load.quiet <- function( package ) { package <- as.character(substitute(package)) suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) } lib.load.quiet(getopt) lib.load.quiet( amap ) lib.load.quiet( cluster ) spec <- matrix( c( "results.file", "r", 1, "character", "change.min", "c", 2, "double", "metric", "m", 2, "character", "survival.data", "s", 2, "character", "survival.comp", "e", 2, "character", "survival.script", "z", 2, "character", "output.format", "f", 2, "character", "cluster.class.out", "o", 2, "character", "output.report.dir", "p", 2, "character", "output.report.html", "h", 2, "character" ), nc=4, byrow=T ) opt <- getopt( spec=spec ) ## default params for non-required params if ( is.null( opt$output.report.dir ) ) { opt$output.report.dir <- "report" } if ( is.null( opt$output.report.html ) ) { opt$output.report.html <- "report/index.html" } if ( is.null( opt$change.min ) ) { opt$change.min <- 0.075 } if ( is.null( opt$metric ) ) { opt$metric <- "difference" } ## alternate is angle } if ( is.null( opt$survival.comp ) ) { opt$survival.comp <- "all" } ## alternate is one or both } if ( is.null( opt$survival.script ) ) { opt$survival.script <- "galaxy.gen.survival.curves.R" } ## alternate is one or both } if ( is.null( opt$cluster.class.out) ) { opt$cluster.class.out <- "select.cls.rda" } if ( !file.exists( opt$output.report.dir ) ){ dir.create(opt$output.report.dir) } if ( ! opt$metric %in% c( "difference", "angle", "silhouette", "survival" ) ) { stop( "invalid metric specified ", opt$metric, "\n" ) } opt$change.min <- as.numeric( opt$change.min ) if ( abs( opt$change.min ) > 1 ) { stop( "invalid angle specified:", opt$change.min, "Please specify angle in rangel [-1,0]\n" ) } if ( opt$metric=="angle" && opt$change.min > 0 ) { opt$change.min <- -opt$change.min cat( "Using", opt$change.min, "for minimum angle\n" ) } if ( opt$metric == "survival" && ( is.null( opt$survival.data ) || (! file.exists( opt$survival.data ) ) ) ) { stop( "Must provide valid survival file in order to use survival as metric\n" ) } ## From the ConsensusClusterPlust package - modified by phw CDF <- function( ml, breaks=1000, plot.it=TRUE ){ if ( class(ml[[1]])=="matrix" && ( names( ml[1] ) =="2" ) ) { ml <- c( c(0), ml ) } ##plot CDF distribution if ( plot.it ) { plot( c(0), xlim=c(0,1), ylim=c(0,1), col="white", bg="white", xlab="consensus index", ylab="CDF", main="consensus CDF", las=2 ) } k=length(ml) this_colors <- rainbow(k-1) areaK <- c() for (i in 2:length( ml ) ) { v <- ml[[i]] v <- v[ lower.tri(v) ] #empirical CDF distribution. default number of breaks is 100 h = hist(v, plot=FALSE, breaks=seq(0,1,by=1/breaks)) h$counts = cumsum(h$counts)/sum(h$counts) #calculate area under CDF curve, by histogram method. thisArea=0 for (bi in 1:(length(h$breaks)-1)){ thisArea = thisArea + h$counts[bi]*(h$breaks[bi+1]-h$breaks[bi]) #increment by height by width } areaK = c(areaK,thisArea) if ( plot.it ) lines(h$mids,h$counts,col=this_colors[i-1],lwd=2,type='l') } if ( plot.it ) legend(0.8,0.5,legend=paste(rep("",k-1),seq(2,k,by=1),sep=""),fill=this_colors) #Calc area under CDF change. deltaK=areaK[1] #initial auc at k=2 for(i in 2:(length(areaK))){ #proportional increase relative to prior K. deltaK = c(deltaK,( areaK[i] - areaK[i-1])/areaK[i-1]) } return ( list( areaK=areaK, deltaK=deltaK ) ) } load( opt$results.file ) if ( opt$metric == "silhouette" ) { if ( ! exists( 'data' ) && ( class( data ) != "matrix" ) ) { stop( "Must provide valid data matrix in order to use silhouette as metric\n" ) } } cons.matrices <- lapply( results[ 2:length(results) ], '[[', 'consensusMatrix' ) cls <- lapply( results[ 2:length(results) ], function( res ) return( res$consensusClass[ res$consensusTree$order ] ) ) ##'[[', 'consensusClass' ) names( cons.matrices ) <- names( cls ) <- 2:length( results ) png.fname <- file.path( opt$output.report.dir, "consensus.sel.criteria.CDF.png") plot.dev <- png( png.fname, width=11, height=8.5, units='in', res=72 ) ## this will calculate the CDF, plus plot them rel.delta <- CDF( cons.matrices, breaks=1000, plot.it=TRUE )$deltaK dev.off() names( rel.delta ) <- seq( from=2, by=1, length=length( rel.delta ) ) vector.of.metric.changes <- rel.delta main.txt <- ", per Size K" ylab.txt <- "" main.txt <- paste( "Relative Change in Area", main.txt, sep="" ) ylab.txt <- paste( "relative change in area under CDF curve", ylab.txt, sep="" ) png.fname <- file.path( opt$output.report.dir, "consensus.sel.criteria.diff.png") plot.dev <- png( png.fname, width=11, height=8.5, units='in', res=72 ) plot( as.numeric( names( vector.of.metric.changes ) ), vector.of.metric.changes, main=main.txt, ylab=ylab.txt, xlab="Cluster size (K)", type='b' ) dev.off() k.select <- vector.of.metric.changes[ vector.of.metric.changes < opt$change.min ] if ( length( k.select ) > 1 ) { k.select <- k.select[1] } else { if ( length( k.select ) == 0 ) { k.select <- vector.of.metric.changes[ length( vector.of.metric.changes ) ] } else { ## do nothing } } k.select <- as.numeric( names( k.select ) ) ## find the search range k.search.range <- (k.select-2):(k.select+2) k.search.range <- k.search.range[ k.search.range %in% as.numeric( names( vector.of.metric.changes ) ) ] k.search.range <- vector.of.metric.changes[ as.character( k.search.range ) ] k.search.range <- k.search.range[ k.search.range < 0.25 ] k.search.range <- k.search.range[ k.search.range > 0.025 ] k.search.range <- names( k.search.range ) if ( exists("data") ) { ## what direction is the clustering in? rows or cols? elts <- unique( names( results[[2]]$consensusClass ) ) if ( all( elts %in% colnames( data ) ) ) { ## sample clusters data.dist <- dist( t( data ) ) cls <- lapply( cls, function( x ) return( x[ colnames( data ) ] ) ) } else if ( all( elts %in% rownames( data ) ) ) { data.dist <- dist( data ) cls <- lapply( cls, function( x ) return( x[ rownames( data ) ] ) ) } else { stop( "incompatible cluster results and data matrix\n" ) } sils <- lapply( cls, silhouette, dist=data.dist ) sils <- sapply( sils, function(x) { return( summary( x )$avg.width ) } ) png.fname <- file.path( opt$output.report.dir, "consensus.sel.silhouette.png") plot.dev <- png( png.fname, width=11, height=8.5, units='in', res=72 ) plot( as.numeric( names( sils ) ), sils, main="Average Silhouette Widths, per Cluster Size K", ylab="average silhouette width (correlation distance)", xlab="Cluster size (K)", type='b' ) dev.off() ## if the metric is silhouette, use that (but only over the k's that are on the rel-change "elbow" if ( opt$metric == "silhouette" ) { names( sils ) <- names( cls ) sils <- sils[ k.search.range ] k.select <- as.numeric( names( sils[ sils == max( sils, na.rm=T ) ] ) ) } } if ( ! is.null( opt$survival.data ) ) { if ( ! file.exists( opt$survival.data ) ) { stop( 'specified clinical/survival file can not be found:', opt$survival.data, "\n" ) } if ( opt$metric == "survival" ) { pvals <- numeric() for ( cl in cls ) { cons.class.file <- tempfile( "tmp.class.rdata" ) save( file=cons.class.file, cl ) cmd.string <- opt$survival.script ## get the consensusClass file that's associated with the k.select cmd.string <- paste( cmd.string, "-C", cons.class.file ) cmd.string <- paste( cmd.string, "-S", opt$survival.data ) cmd.string <- paste( cmd.string, "-M", opt$survival.comp ) cmd.string <- paste( cmd.string, "-P" ) pvals <- c( pvals, as.numeric( system( cmd.string, intern=T ) ) ) } names( pvals ) <- names( cls ) png.fname <- file.path( opt$output.report.dir, "consensus.sel.criteria.survival.png" ) plot.dev <- png( png.fname, width=11, height=8.5, units='in', res=72 ) plot( as.numeric( names( pvals ) ), -log( pvals ), main="Average Log-rank p-values (-log), per Cluster Size K", ylab="Average log-rank p-values (-log)", xlab="Cluster size (K)", type='b' ) dev.off() pvals <- pvals[ k.search.range ] k.select <- as.numeric( names( pvals[ pvals == min( pvals, na.rm=T ) ] ) ) } cmd.string <- opt$survival.script ## get the consensusClass file that's associated with the k.select cl <- cls[[ as.character( k.select ) ]] cl <- cbind( names( cl ), as.integer(cl) ) colnames( cl ) <- c( "ID", "class" ) write.table( cl, opt$cluster.class.out, sep="\t", row.names=FALSE, quote=FALSE ) cmd.string <- paste( cmd.string, "-c", opt$cluster.class.out ) cmd.string <- paste( cmd.string, "-s", opt$survival.data ) cmd.string <- paste( cmd.string, "-m", opt$survival.comp ) survival.out.file <- paste( opt$output.report.dir, "survival.png", sep="/" ) cmd.string <- paste( cmd.string, "-o", survival.out.file ) output <- system( cmd.string, intern=T ) cat( output, sep="\n" ) } else { ## get the consensusClass file that's associated with the k.select cl <- cls[[ as.character( k.select ) ]] cl <- cbind( names( cl ), as.integer(cl) ) colnames( cl ) <- c( "ID", "class" ) write.table( cl, opt$cluster.class.out, sep="\t", row.names=FALSE, quote=FALSE ) } treecl.res <- results[[ k.select ]]$consensusTree ## cl should already exist, but re-create it just in case cl <- cls[[ as.character( k.select ) ]] select.result <- results[[ k.select ]] ## over-write the tabular version of the opt$cluster.class.out with an RData file save( file=opt$cluster.class.out, treecl.res, cl, select.result, data ) report_str = paste( "k selected by consensus clustering and user-specified metric, ", opt$metric, ", is ", k.select, "\n", sep="" ) pngs = list.files(path=opt$output.report.dir, patt="png") html.out <- paste( "<html>", report_str, paste( paste( paste( "<div><img src=\'", pngs, sep="" ), "\'/></div>", sep="" ), collapse=""), "</html>" ) cat( html.out, file=opt$output.report.html )