Mercurial > repos > peter-waltman > ucsc_cluster_tools2
view cluster.tools/order.by.cl.R @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript argspec <- c("tab.2.cdt.R converts a data matrix to cdt format Usage: tab.2.cdt.R -d <data.file> Optional: -o <output_file> \n\n") args <- commandArgs(TRUE) if ( length( args ) == 1 && args =="--help") { write(argspec, stderr()) q(); } lib.load.quiet <- function( package ) { package <- as.character(substitute(package)) suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) } lib.load.quiet(getopt) lib.load.quiet( gplots ) if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) { if ( 'flashClust' %in% installed.packages() ) { lib.load.quiet( flashClust ) } else { if ( 'fastcluster' %in% installed.packages() ) { lib.load.quiet( fastcluster ) } } } spec <- matrix( c( "data.fname", "d", 1, "character", "class.select", "c", 1, "character", "genes.only", "g", 0, "logical", "within.cl.srt", "w", 0, "logical", "output.fname", "o", 2, "character" ), nc=4, byrow=TRUE ) opt <- getopt( spec=spec ) if ( is.null( opt$output.fname ) ) opt$output.fname <- sub( "tab$|csv$", "cdt", opt$data.fname ) if ( is.null( opt$genes.only ) ) opt$genes.only <- FALSE if ( is.null( opt$within.cl.srt ) ) opt$within.cl.srt <- FALSE data <- as.matrix( read.delim( opt$data.fname, row.names=1, check.names=FALSE ) ) if ( opt$genes.only ) { feats <- rownames( data ) gene.feats <- feats[ ! grepl( "complex|abstract|family", feats ) ] data <- data[ gene.feats, ] } cls <- as.matrix( read.delim( opt$class.select, row.names=1 ) ) cls <- cls[ order( cls[,1] ), , drop=FALSE ] row.cluster <- FALSE ## we assume this is a row-wise cluster if any rows are in the columns if ( any( rownames( cls ) %in% rownames( data ) ) ) { row.cluster <- TRUE data <- t( data ) } if ( ! all( rownames( cls ) %in% colnames( data ) ) ) { ovp <- rownames( cls ) ovp <- ovp[ ovp %in% colnames( data ) ] if ( length( ovp ) > 0 ) { cls <- cls[ ovp, ] } else { stop( "no samples in cluster are found in data file\n" ) } } if ( opt$within.cl.srt ) { cls.orig <- cls cls.vect <- cls[,1] cls <- sort( unique( as.numeric( cls.vect ) ) ) cls <- unlist( lapply( cls, function(i) { elts <- names( cls.vect[ cls.vect %in% i ] ) sub.mat <- data[, elts ] browser() sub.dist <- dist( t( sub.mat ) ) return( elts[ hclust( sub.dist )$order ] ) } ) ) cls <- cls.orig[ cls, , drop=FALSE ] } ## re-order and update column names data <- data[, rownames(cls) ] colnames( data ) <- paste( rownames(cls), paste( "cl", sprintf( "%02d", cls[,1] ), sep=""), sep="-" ) ## now re-transpose if ( row.cluster ) { data <- t( data ) } write.table( data, opt$output.fname, sep="\t", col.names=NA, quote=FALSE )