Mercurial > repos > peter-waltman > ucsc_cluster_tools2
view cluster.tools/determine.IPL.threshold.R @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript ##usage, options and doc goes here argspec <- c("determine.IPL.threshold.R takes an IPL result, and determines a statistically sound threshold to use Usage: determine.IPL.threshold.R -d <IPL_data_file> Optional: -o output.rdata ## rdata output file (contains variables used for calculation, for those who want to review them -f filter type # must be either modulated, active, or inactive -p percent of samples passing (must be value on [0,1] \n\n") args <- commandArgs(TRUE) if ( length( args ) == 1 && args =="--help") { write( argspec, stderr() ) q(); } lib.load.quiet <- function( package ) { package <- as.character(substitute(package)) suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) } lib.load.quiet(getopt) spec <- matrix( c( "data.fname", "d", 1, "character", "output.rdata", "o", 2, "character", "filter.type", "f", 2, "character", "perc.pass", "p", 2, "numeric", "selection.criteria", "s", 2, "character", "output.report.dir", "r", 2, "character", "output.report.html", "h", 2, "character" ), nc=4, byrow=T ) opt <- getopt( spec=spec ) ## default params for non-required params if ( is.null( opt$filter.type ) ) { opt$filter.type <- 'modulated' } if ( is.null( opt$perc.pass ) ) { opt$perc.pass <- 1/3 } if ( is.null( opt$selection.criteria ) ) { opt$selection.criteria <- 'max_diffs' } if ( is.null( opt$output.report.dir ) ) { opt$output.report.dir <- "report" } if ( is.null( opt$output.report.html ) ) { opt$output.report.html <- "report/index.html" } if ( is.null( opt$output.rdata ) ) { opt$output.rdata <- "output.rdata" } if ( opt$perc.pass < 0 ) { stop( "please specify a positive number for the percentage of samples that pass the filter (if applicable)" ) } if (!file.exists(opt$output.report.dir)){ dir.create(opt$output.report.dir) } data <- as.matrix( read.delim( opt$data.fname, row.names=1, check.names=FALSE ) ) genes <- rownames( data ) genes <- genes[ !grepl( "abstract|family|complex", genes ) ] data <- data[ genes, ] nulls.mat <- grepl( "na_", colnames( data ) ) reals <- ! nulls.mat nulls.mat <- data[ , nulls.mat ] reals.mat <- data[, reals ] if ( ncol( nulls.mat ) == 0 ) stop( "no nulls were in the file provided!\n" ) if ( ncol( reals.mat ) == 0 ) stop( "no reals were in the file provided!\n" ) if ( opt$filter.type == 'modulated' ) { reals.mat <- abs( reals.mat ) nulls.mat <- abs( nulls.mat ) } else { if ( opt$filter.type == "inactive" ) { reals.mat <- -reals.mat nulls.mat <- -nulls.mat } } ## we only look at the larger 50% of the possible IPL values ## as possible thresholds to use (since the lower 50% are almost ## always uninformative) thresholds <- unique( quantile( reals.mat, seq( 0.5, 1, by=0.001 ) ) ) thresholds <- c( thresholds, quantile( nulls.mat, seq( 0.5, 1, by=0.001 ) ) ) thresholds <- unique( sort( thresholds ) ) get.num.filtered.feats <- function( mat, threshold, perc.samples.passing=1/3 ) { feat.vect <- apply( mat, 1, function(x) { tmp <- sum( x > threshold ) if ( perc.samples.passing >=1 ) { return( tmp >= perc.samples.passing ) } else { return( tmp > floor( perc.samples.passing * length(x) ) ) } } ) return( sum( feat.vect ) ) } real.feats <- null.feats <- length( genes ) chisq.pvals <- binom.pvals <- numeric() for ( i in 1:length( thresholds ) ) { nul.feats.this.thresh <- get.num.filtered.feats( mat=nulls.mat, threshold=thresholds[i], perc.samples.passing=opt$perc.pass ) ## limit the maximum threshold to one where there are at least 75 valid points ## because if there are fewer nulls than that, it heavily skews the probability if ( nul.feats.this.thresh < 50 ) break null.feats[ i ] <- nul.feats.this.thresh real.feats[ i ] <- get.num.filtered.feats( mat=reals.mat, threshold=thresholds[i], perc.samples.passing=opt$perc.pass ) ## only calculate if there are more real features than nulls, otherwise, give a p-value of 1 if ( null.feats[i] < real.feats[i] ) { p <- null.feats[i]/nrow( nulls.mat ) sd <- ( nrow( nulls.mat ) * p * (1-p ) )^0.5 ## binomial test p <- -pnorm( q=real.feats[i], mean=null.feats[i], sd=sd, log.p=TRUE, lower.tail=FALSE ) ##chisq test chi <- ( real.feats[i] - null.feats[i] )^2 chi <- chi/(null.feats[i])^2 chi <- -pchisq( chi, 1, log.p=TRUE, lower=FALSE ) } else { p <- chi <- 0 ## 0 == -log(1) } binom.pvals <- c( binom.pvals, p ) chisq.pvals <- c( chisq.pvals, chi ) if ( length( chisq.pvals ) != i ) { stop( "lengths differ\n" ) } } ##names( binom.pvals ) <- names( chisq.pvals ) <- thresholds diffs <- real.feats - null.feats if ( opt$selection.criteria == "max_diffs" ) { max.diff <- max( diffs ) opt.thresh <- which( diffs %in% max.diff ) } else if ( opt$selection.criteria == "binomial" ) { max.bin <- max( binom.pvals ) opt.thresh <- which( binom.pvals %in% max.bin ) } else if ( opt$selection.criteria == "chisq" ) { max.chi <- max( chisq.pvals ) opt.thresh <- which( chisq.pvals %in% max.chi ) } opt.thresh <- mean( c( thresholds[ opt.thresh ], thresholds[ (opt.thresh-1) ] ) ) opt.thresh <- signif( opt.thresh, 4 ) ##corrected.binom.pvals <- binom.pvals + log( length(thresholds) ) ##binom.pvals <- binom.pvals - log( length(thresholds) ) ##corrected.chisq.pvals <- chisq.pvals + log( length(thresholds) ) ##chisq.pvals <- chisq.pvals - log( length(thresholds) ) eval.thresh <- thresholds[ 1:length( real.feats ) ] ##plot.new(); screens <- split.screen( c( 4,1 ) ) ##postscript( "threshold.comparison.ps", paper='letter', horizontal=F ) ##png.fname <- file.path( opt$output.report.dir, "IPL.threshold.determination.png") ##plot.dev <- png( png.fname, ## width=11, ## height=8.5, ## units='in', ## res=72 ) ##par( mar=rep(0,4) ) ##screens <- split.screen( c( 4,1 ) ) png.fname <- file.path( opt$output.report.dir, "01.num.feats.IPL.threshold.determination.png") plot.dev <- png( png.fname, width=11, height=8.5, units='in', res=72 ) par( mar=c(2.25,3,1.5,0.5) ) plot( eval.thresh, null.feats, type='l', lwd=2, col='blue', cex.axis=0.75 ) lines( eval.thresh, real.feats, type='l', lwd=2, col='black', cex.axis=0.75 ) abline( v=opt.thresh ) legend( "topright", c( "Real", "Null" ), lwd=2, col=c('black', 'blue' ) ) mtext( "Number of Genes Passing Threshold", font=2 ) mtext( "IPL Threshold", 1, font=2, line=1.5 ) mtext( "Number of Genes", 2, font=2, line=1.8 ) dev.off() png.fname <- file.path( opt$output.report.dir, "02.diffs.IPL.threshold.determination.png") plot.dev <- png( png.fname, width=11, height=8.5, units='in', res=72 ) ##screen( screen()+1 ) par( mar=c(2.25,3,1.5,0.5) ) plot( eval.thresh, diffs, type='l', lwd=2, col='black', cex.axis=0.75 ) abline( v=opt.thresh ) mtext( "Difference between number of Real & Null genes passing Threshold", font=2 ) mtext( "IPL Threshold", 1, font=2, line=1.5 ) mtext( "Number of Genes", 2, font=2, line=1.8 ) dev.off() png.fname <- file.path( opt$output.report.dir, "03.chisq.IPL.threshold.determination.png") plot.dev <- png( png.fname, width=11, height=8.5, units='in', res=72 ) ##screen( screen()+1 ) par( mar=c(2.25,3,1.5,0.5) ) plot( eval.thresh, chisq.pvals, type='l', lwd=2, col='red', cex.axis=0.75 ) abline( v=opt.thresh ) mtext( "Chi-sq p-values", font=2 ) mtext( "IPL Threshold", 1, font=2, line=1.5 ) mtext( "-Log p-value", 2, font=2, line=1.8 ) dev.off() png.fname <- file.path( opt$output.report.dir, "04.binom.IPL.threshold.determination.png") plot.dev <- png( png.fname, width=11, height=8.5, units='in', res=72 ) ##screen( screen()+1 ) par( mar=c(2.25,3,1.5,0.5) ) plot( eval.thresh, binom.pvals, type='l', lwd=2, col='green', cex.axis=0.75 ) abline( v=opt.thresh ) mtext( "Binomial p-values", font=2 ) mtext( "IPL Threshold", 1, font=2, line=1.5 ) mtext( "-Log p-value", 2, font=2, line=1.8 ) dev.off() ##close.screen( all=T ); dev.off() report_str = paste( "The threshold to use for consensus clustering filtering is ", opt.thresh, "\n", sep="" ) pngs = list.files(path=opt$output.report.dir, patt="png") html.out <- paste( "<html>", report_str, paste( paste( paste( "<div><img src=\'", pngs, sep="" ), "\'/></div>", sep="" ), collapse=""), "</html>" ) cat( html.out, file=opt$output.report.html ) filter.type <- opt$filter.type perc.pass <- opt$perc.pass save( file=opt$output.rdata, thresholds, diffs, binom.pvals, chisq.pvals, real.feats, null.feats, data, filter.type, perc.pass, opt.thresh )