Mercurial > repos > peter-waltman > ucsc_cluster_tools2
comparison cluster.tools/new.ccplus.R @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:0decf3fd54bc |
---|---|
1 ##!/usr/bin/env Rscript | |
2 ## Consensus Clustering Script by Peter Waltman | |
3 ## May 31, 2011 | |
4 ## License under Creative Commons Attribution 3.0 Unported (CC BY 3.0) | |
5 ## | |
6 #usage, options and doc goes here | |
7 argspec <- c("consensus.clustering.R takes a clustering from ConsensusClusterPlus and clinical survival data | |
8 and generates a KM-plot, along with the log-rank p-values | |
9 | |
10 Usage: | |
11 consensus.clustering.R -d <data.file> | |
12 Optional: | |
13 -o <output.name> | |
14 -a <cluster.alg> ## must be either 'hc' or 'km' | |
15 -m <distance.metric> ## must be one supported by ConsensusClusterPlus | |
16 -k <max.k> | |
17 -r <reps> | |
18 -f <filter> ## filter, o/w no filtering | |
19 | |
20 \n\n") | |
21 args <- commandArgs(TRUE) | |
22 if ( length( args ) == 1 && args =="--help") { | |
23 write(argspec, stderr()) | |
24 q(); | |
25 } | |
26 | |
27 require(getopt) | |
28 ##require(ConsensusClusterPlus) | |
29 ## if any of the faster clustering methods are available on this system, load them | |
30 require( amap ) | |
31 require( cluster ) | |
32 if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) { | |
33 if ( 'flashClust' %in% installed.packages() ) { | |
34 require( flashClust ) | |
35 } else { | |
36 if ( 'fastcluster' %in% installed.packages() ) { | |
37 require( fastcluster ) | |
38 } | |
39 } | |
40 } | |
41 | |
42 ################### | |
43 ## code borrowed/updated from ConsensusClusterPlus | |
44 ################### | |
45 | |
46 ConsensusClusterPlus <- function( d=NULL, | |
47 maxK = 3, | |
48 reps=10, | |
49 pItem=0.8, | |
50 pFeature=1, | |
51 clusterAlg="hc", | |
52 title="untitled_consensus_cluster", | |
53 innerLinkage="average", | |
54 finalLinkage="average", | |
55 distance=ifelse( inherits(d,"dist"), attr( d, "method" ), "euclidean" ), | |
56 ml=NULL, | |
57 tmyPal=NULL, | |
58 seed=NULL, | |
59 plot=NULL, | |
60 writeTable=FALSE, | |
61 weightsItem=NULL, | |
62 weightsFeature=NULL, | |
63 verbose=F ) { | |
64 ##description: runs consensus subsamples | |
65 | |
66 | |
67 if(is.null(seed)==TRUE){ | |
68 seed=timeSeed = as.numeric(Sys.time()) | |
69 } | |
70 set.seed(seed) | |
71 | |
72 if(is.null(ml)==TRUE){ | |
73 | |
74 if ( inherits( distance, "dist" ) ) { | |
75 stop( "If you want to pass in a pre-calculated distance object, pass it in as the data, rather than the distance parameter\n" ) | |
76 } | |
77 | |
78 if ( ! class( d ) %in% c( "dist", "matrix", "ExpressionSet" ) ) { | |
79 stop("d must be a matrix, distance object or ExpressionSet (eset object)") | |
80 } | |
81 | |
82 if ( inherits( d, "dist" ) ) { | |
83 ## if d is a distance matrix, fix a few things so that they don't cause problems with the analysis | |
84 ## Note, assumption is that if d is a distance matrix, the user doesn't want to sample over the row features | |
85 if ( is.null( attr( d, "method" ) ) ) { | |
86 attr( d, "method" ) <- distance <- "unknown - user-specified" | |
87 } | |
88 if ( is.null( distance ) || ( distance != attr( d, "method" ) ) ) { | |
89 distance <- attr( d, "method" ) | |
90 } | |
91 | |
92 if ( ( ! is.null( pFeature ) ) && ( pFeature < 1 ) ) { | |
93 if ( verbose ) warning( "Cannot use the pFeatures parameter when specifying a distance matrix as the data object\n" ) | |
94 pFeature <- 1 | |
95 } | |
96 if ( ! is.null( weightsFeature ) ) { | |
97 if ( verbose ) warning( "Cannot use the weightsFeature parameter when specifying a distance matrix as the data object\n" ) | |
98 weightsFeature <- NULL | |
99 } | |
100 if ( clusterAlg == "km" ) { | |
101 if ( verbose ) warning( "You are asking CCPLUS to use K-means to cluster a distance matrix (rather than the data itself) - this may produce unintended results. We suggest using PAM if you want to use alternate distance metrics/objects\n" ) | |
102 ##d <- as.matrix( d ) #this is now done w/in ccRun | |
103 } | |
104 } else { | |
105 if ( is.null( distance ) ) { | |
106 ## we should never get here, but just in case | |
107 distance <- "pearson" | |
108 } | |
109 } | |
110 | |
111 if ( ( clusterAlg == "km" ) && inherits( distance, "character" ) && ( distance != "euclidean" ) ) { | |
112 warning( "WARNING: kmeans can only use the euclidean distance metric. If you would like to use an alternate metric, we suggest using PAM or HC clustering instead. This parameter combinationwill use k-means, but will NOT use the specified distance metric\n" ) | |
113 distance <- 'euclidean' | |
114 } | |
115 | |
116 | |
117 if ( inherits( d,"ExpressionSet" ) ) { | |
118 d <- exprs(d) | |
119 } | |
120 | |
121 ml <- ccRun( d=d, | |
122 maxK=maxK, | |
123 repCount=reps, | |
124 diss=inherits(d,"dist"), | |
125 pItem=pItem, | |
126 pFeature=pFeature, | |
127 innerLinkage=innerLinkage, | |
128 clusterAlg=clusterAlg, | |
129 weightsFeature=weightsFeature, | |
130 weightsItem=weightsItem, | |
131 distance=distance, | |
132 verbose=verbose) | |
133 } | |
134 res=list(); | |
135 | |
136 ##make results directory | |
137 if((is.null(plot)==FALSE | writeTable) & !file.exists(paste(title,sep=""))){ | |
138 dir.create(paste(title,sep="")) | |
139 } | |
140 | |
141 ##write log file | |
142 log <- matrix( ncol=2, | |
143 byrow=T, | |
144 c("title",title, | |
145 "maxK",maxK, | |
146 "input matrix rows",ifelse ( inherits( d, "matrix" ), nrow(d), "dist-mat" ), | |
147 "input matric columns",ifelse ( inherits( d, "matrix" ), ncol(d), ncol( as.matrix(d) ) ), | |
148 "number of bootstraps",reps, | |
149 "item subsampling proportion",pItem, | |
150 "feature subsampling proportion",ifelse( is.null(pFeature), 1, pFeature ), | |
151 "cluster algorithm",clusterAlg, | |
152 "inner linkage type",innerLinkage, | |
153 "final linkage type",finalLinkage, | |
154 "correlation method",distance, | |
155 "plot",if(is.null(plot)) NA else plot, | |
156 "seed",if(is.null(seed)) NA else seed)) | |
157 colnames(log) = c("option","value") | |
158 if(writeTable){ | |
159 write.csv(file=paste(title,"/",title,".log.csv",sep=""), log,row.names=F) | |
160 } | |
161 if(is.null(plot)){ | |
162 ##nothing | |
163 }else if(plot=="png"){ | |
164 png(paste(title,"/","consensus%03d.png",sep="")) | |
165 }else if (plot=="pdf"){ | |
166 pdf(onefile=TRUE, paste(title,"/","consensus.pdf",sep="")) | |
167 }else if (plot=="ps"){ | |
168 postscript(onefile=TRUE, paste(title,"/","consensus.ps",sep="")) | |
169 } | |
170 | |
171 colorList=list() | |
172 colorM = rbind() #matrix of colors. | |
173 | |
174 #18 colors for marking different clusters | |
175 thisPal <- c("#A6CEE3","#1F78B4","#B2DF8A","#33A02C","#FB9A99","#E31A1C","#FDBF6F","#FF7F00","#CAB2D6","#6A3D9A","#FFFF99","#B15928", | |
176 "#bd18ea", #magenta | |
177 "#2ef4ca", #aqua | |
178 "#f4cced", #pink, | |
179 "#f4cc03", #lightorange | |
180 "#05188a", #navy, | |
181 "#e5a25a", #light brown | |
182 "#06f106", #bright green | |
183 "#85848f", #med gray | |
184 "#000000", #black | |
185 "#076f25", #dark green | |
186 "#93cd7f",#lime green | |
187 "#4d0776", #dark purple | |
188 "#ffffff" #white | |
189 ) | |
190 | |
191 ##plot scale | |
192 colBreaks=NA | |
193 if(is.null(tmyPal)==TRUE){ | |
194 colBreaks=10 | |
195 tmyPal = myPal(colBreaks) | |
196 }else{ | |
197 colBreaks=length(tmyPal) | |
198 } | |
199 sc = cbind(seq(0,1,by=1/( colBreaks) )); rownames(sc) = sc[,1] | |
200 sc = cbind(sc,sc) | |
201 heatmap(sc, Colv=NA, Rowv=NA, symm=FALSE, scale='none', col=tmyPal, na.rm=TRUE,labRow=rownames(sc),labCol=F,main="consensus matrix legend") | |
202 | |
203 for (tk in 2:maxK){ | |
204 if(verbose){ | |
205 message(paste("consensus ",tk)) | |
206 } | |
207 fm = ml[[tk]] | |
208 hc=hclust( as.dist( 1 - fm ), method=finalLinkage); | |
209 message("clustered") | |
210 ct = cutree(hc,tk) | |
211 names(ct) = colnames(d) | |
212 c = fm | |
213 ##colnames(c) = colnames(d) | |
214 ##rownames(c) = colnames(d) | |
215 | |
216 colorList = setClusterColors(res[[tk-1]][[3]],ct,thisPal,colorList) | |
217 | |
218 pc = c | |
219 pc=pc[hc$order,] #***pc is matrix for plotting, same as c but is row-ordered and has names and extra row of zeros. | |
220 pc = rbind(pc,0) | |
221 | |
222 heatmap(pc, Colv=as.dendrogram(hc), Rowv=NA, symm=FALSE, scale='none', col=tmyPal, na.rm=TRUE,labRow=F,labCol=F,mar=c(5,5),main=paste("consensus matrix k=",tk,sep="") , ColSideCol=colorList[[1]]) | |
223 legend("topright",legend=unique(ct),fill=unique(colorList[[1]]),horiz=FALSE ) | |
224 | |
225 res[[tk]] = list(consensusMatrix=c,consensusTree=hc,consensusClass=ct,ml=ml[[tk]],clrs=colorList) | |
226 colorM = rbind(colorM,colorList[[1]]) | |
227 } | |
228 CDF(ml) | |
229 clusterTrackingPlot(colorM[,res[[length(res)]]$consensusTree$order]) | |
230 if(is.null(plot)==FALSE){ | |
231 dev.off(); | |
232 } | |
233 res[[1]] = colorM | |
234 if(writeTable){ | |
235 for(i in 2:length(res)){ | |
236 write.csv(file=paste(title,"/",title,".k=",i,".consensusMatrix.csv",sep=""), res[[i]]$consensusMatrix) | |
237 write.table(file=paste(title,"/",title,".k=",i,".consensusClass.csv",sep=""), res[[i]]$consensusClass,col.names = F,sep=",") | |
238 } | |
239 } | |
240 return(res) | |
241 } | |
242 | |
243 | |
244 calcICL = function(res,title="untitled_consensus_cluster",plot=NULL,writeTable=FALSE){ | |
245 #calculates and plots cluster consensus and item consensus | |
246 cc=rbind() | |
247 cci = rbind() | |
248 sumRes=list() | |
249 colorsArr=c() | |
250 | |
251 #make results directory | |
252 if((is.null(plot)==FALSE | writeTable) & !file.exists(paste(title,sep=""))){ | |
253 dir.create(paste(title,sep="")) | |
254 } | |
255 if(is.null(plot)){ | |
256 #to screen | |
257 }else if(plot=="pdf"){ | |
258 pdf(onefile=TRUE, paste(title,"/","icl.pdf",sep="")) | |
259 }else if(plot=="ps"){ | |
260 postscript(onefile=TRUE, paste(title,"/","icl.ps",sep="")) | |
261 }else if (plot=="png"){ | |
262 png(paste(title,"/","icl%03d.png",sep="")) | |
263 } | |
264 | |
265 par(mfrow=c(3,1),mar=c(4,3,2,0)) | |
266 | |
267 for (k in 2:length(res)){ #each k | |
268 eiCols = c(); | |
269 o = res[[k]] | |
270 m = o$consensusMatrix | |
271 m = triangle(m,mode=2) | |
272 for (ci in sort(unique(o$consensusClass))){ #each cluster in k | |
273 items = which(o$consensusClass==ci) | |
274 nk = length(items) | |
275 mk = sum( m[items,items], na.rm=T)/((nk*(nk-1))/2) | |
276 cc=rbind(cc,c(k,ci,mk)) #cluster-consensus | |
277 | |
278 for (ei in rev(res[[2]]$consensusTree$order) ){ | |
279 denom = if (ei %in% items) { nk - 1} else { nk } | |
280 mei = sum( c(m[ei,items],m[items,ei]), na.rm=T)/denom # mean item consensus to a cluster. | |
281 cci = rbind(cci,c(k,ci,ei,mei)) #cluster, cluster index, item index, item-consensus | |
282 } | |
283 eiCols = c(eiCols, rep(ci,length(o$consensusClass)) ) | |
284 } | |
285 | |
286 cck = cci[which(cci[,1]==k),] #only plot the new k data. | |
287 | |
288 #group by item, order by cluster i | |
289 w=lapply(split(cck,cck[,3]), function(x) { y=matrix(unlist(x),ncol=4); y[order(y[,2]),4] }) | |
290 q = matrix(as.numeric(unlist(w)),ncol=length(w),byrow=F) | |
291 q = q[,res[[2]]$consensusTree$order] #order by leave order of k=2 | |
292 #q is a matrix of k rows and sample columns, values are item consensus of sample to the cluster. | |
293 | |
294 thisColors = unique(cbind(res[[k]]$consensusClass,res[[k]]$clrs[[1]])) | |
295 thisColors=thisColors[order(as.numeric(thisColors[,1])),2] | |
296 colorsArr=c(colorsArr,thisColors) | |
297 sumRes[[k]] = rankedBarPlot(q,thisColors,cc=res[[k]]$consensusClass[res[[2]]$consensusTree$order],paste("k=",k,sep="") ) | |
298 } | |
299 | |
300 ys=cs=lab=c() | |
301 lastk=cc[1,1] | |
302 for(i in 1:length(colorsArr)){ | |
303 if(lastk != cc[i,1]){ | |
304 ys=c(ys,0,0) | |
305 cs=c(cs,NA,NA) | |
306 lastk=cc[i,1] | |
307 lab=c(lab,NA,NA) | |
308 } | |
309 ys=c(ys,cc[i,3]) | |
310 cs=c(cs,colorsArr[i]) | |
311 lab=c(lab,cc[i,1]) | |
312 } | |
313 names(ys) = lab | |
314 par(mfrow=c(3,1),mar=c(4,3,2,0)) | |
315 barplot(ys,col=cs,border=cs,main="cluster-consensus",ylim=c(0,1),las=1) | |
316 if(is.null(plot)==FALSE){ | |
317 dev.off() | |
318 } | |
319 colnames(cc) = c("k","cluster","clusterConsensus") | |
320 colnames(cci) = c("k","cluster","item","itemConsensus") | |
321 cci[,"item"] = names(res[[2]]$consensusClass)[ cci[,"item"] ] | |
322 #type cci | |
323 cci = data.frame( k=as.numeric(cci[,"k"]), cluster=as.numeric(cci[,"cluster"]), item=cci[,"item"], itemConsensus=as.numeric(cci[,"itemConsensus"])) | |
324 | |
325 #write to file. | |
326 if(writeTable){ | |
327 write.csv(file=paste(title,"/",title,".summary.cluster.consensus.csv",sep=""),row.names=F, cc) | |
328 write.csv(file=paste(title,"/",title,".summary.item.consensus.csv",sep=""), row.names=F, cc) | |
329 } | |
330 return(list(clusterConsensus=cc,itemConsensus=cci)) | |
331 } | |
332 | |
333 | |
334 ccRun <- function( d=d, | |
335 maxK=NULL, | |
336 repCount=NULL, | |
337 diss=inherits( d, "dist" ), | |
338 pItem=NULL, | |
339 pFeature=NULL, | |
340 innerLinkage=NULL, | |
341 distance=ifelse( inherits(d,"dist"), attr( d, "method" ), "euclidean" ), | |
342 clusterAlg=NULL, | |
343 weightsItem=NULL, | |
344 weightsFeature=NULL, | |
345 verbose=NULL) { | |
346 m = vector(mode='list', repCount) | |
347 ml = vector(mode="list",maxK) | |
348 n <- ifelse( diss, ncol( as.matrix(d) ), ncol(d) ) | |
349 mCount = mConsist = matrix(c(0),ncol=n,nrow=n) | |
350 ml[[1]] = c(0); | |
351 | |
352 if (is.null( distance ) ) distance <- 'euclidean' ## necessary if d is a dist object and attr( d, "method" ) == NULLa | |
353 | |
354 require( amap ) | |
355 ## we're going to use the amap Dist function, but they misname their correlation | |
356 ## functions, so re-name them correctly | |
357 amap.distance <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", | |
358 "pearson", "abspearson", "correlation", "abscorrelation", "spearman", "kendall" ) | |
359 names( amap.distance ) <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", | |
360 "cosine", "abscosine", "pearson", "abspearson", "spearman", "kendall" ) | |
361 main.dist.obj <- NULL | |
362 ##browser() | |
363 if ( diss ){ | |
364 main.dist.obj <- d | |
365 | |
366 ## reset the pFeature & weightsFeature params if they've been set (irrelevant if d is a dist matrix) | |
367 if ( ( !is.null(pFeature) ) && | |
368 ( pFeature < 1 ) ) { | |
369 if (verbose) warning( "user-supplied data is a distance matrix; ignoring user-specified pFeature parameter\n" ) | |
370 pFeature <- 1 # set it to 1 to avoid problems with sampleCols | |
371 } | |
372 if ( ! is.null( weightsFeature ) ) { | |
373 if (verbose) warning( "user-supplied data is a distance matrix; ignoring user-specified weightsFeature parameter\n" ) | |
374 weightsFeature <- NULL # set it to NULL to avoid problems with sampleCols | |
375 } | |
376 } else { ## d is a data matrix | |
377 ## we're not sampling over the features | |
378 if ( ( clusterAlg != "km" ) && | |
379 ( is.null( pFeature ) || | |
380 ( ( pFeature == 1 ) && is.null( weightsFeature ) ) ) ) { | |
381 ## only generate a main.dist.object IFF 1) d is a matrix, 2) we're not sampling the features, and 3) the algorithm isn't 'km' | |
382 if ( inherits( distance, "character" ) ) { | |
383 if ( ! distance %in% names( amap.distance ) ) stop("unsupported distance.") | |
384 | |
385 main.dist.obj <- Dist( t(d), method=as.character( amap.distance[ distance ] ) ) | |
386 ## now fix dumb amap naming convention for distance metrics | |
387 attr( main.dist.obj, "method" ) <- as.character( amap.distance[ distance ] ) | |
388 } else stop("unsupported distance specified.") | |
389 } else { | |
390 ## pFeature < 1 or a weightsFeature != NULL | |
391 ## since d is a data matrix, the user wants to sample over the gene features, so main.dist.obj is left as NULL | |
392 } | |
393 } | |
394 | |
395 | |
396 for (i in 1:repCount){ | |
397 ##browser() | |
398 if(verbose){ | |
399 message(paste("random subsample",i)); | |
400 } | |
401 ## take expression matrix sample, samples and genes | |
402 sample_x = sampleCols( d, pItem, pFeature, weightsItem, weightsFeature ) | |
403 | |
404 this_dist = NA | |
405 if ( ! is.null( main.dist.obj ) ) { | |
406 boot.cols <- sample_x$subcols | |
407 this_dist <- as.matrix( main.dist.obj )[ boot.cols, boot.cols ] | |
408 if ( clusterAlg != "km" ) { | |
409 ## if this isn't kmeans, then convert to a distance object | |
410 this_dist <- as.dist( this_dist ) | |
411 attr( this_dist, "method" ) <- attr( main.dist.obj, "method" ) | |
412 } | |
413 } else { | |
414 ## if main.dist.obj is NULL, then d is a data matrix, and either: | |
415 ## 1) clusterAlg is 'km' | |
416 ## 2) pFeatures < 1 or weightsFeatures have been specified, or | |
417 ## 3) both | |
418 ## so we can't use a main distance object and for every iteration, we will have to re-calculate either | |
419 ## 1) the distance matrix (because we're also sampling the features as well), or | |
420 ## 2) the submat (if using km) | |
421 | |
422 if ( clusterAlg != "km" ) { | |
423 if ( ! distance %in% names( amap.distance ) ) stop("unsupported distance.") | |
424 ## good, we have a supported distance type | |
425 this_dist <- Dist( t( sample_x$submat ), method=as.character( amap.distance[ distance ] ) ) | |
426 ## now fix dumb amap naming convention for distance metrics | |
427 attr( this_dist, "method" ) <- as.character( amap.distance[ distance ] ) | |
428 } else { | |
429 ##browser() | |
430 ##clusterAlg == "km" | |
431 ## if we're not sampling the features, then grab the colslice | |
432 if ( is.null( pFeature ) || | |
433 ( ( pFeature == 1 ) && is.null( weightsFeature ) ) ) { | |
434 this_dist <- d[, sample_x$subcols ] | |
435 } else { | |
436 if ( is.na( sample_x$submat ) ) { | |
437 save( "ccrun.submat.eq.na.dbg.rda" ) | |
438 stop( "Houston, we have a problem. sample_x$submat is NA in ccRun when it should be specified - saving state\n" ) | |
439 } | |
440 | |
441 this_dist <- sample_x$submat | |
442 } | |
443 } | |
444 } | |
445 | |
446 ## cluster samples for HC. | |
447 this_cluster=NA | |
448 if(clusterAlg=="hc"){ | |
449 this_cluster = hclust( this_dist, method=innerLinkage) | |
450 } | |
451 ##browser() | |
452 ##mCount is possible number of times that two sample occur in same random sample, independent of k | |
453 ##mCount stores number of times a sample pair was sampled together. | |
454 mCount <- connectivityMatrix( rep( 1,length(sample_x[[3]])), | |
455 mCount, | |
456 sample_x[[3]] ) | |
457 | |
458 ##use samples for each k | |
459 for (k in 2:maxK){ | |
460 if(verbose){ | |
461 message(paste(" k =",k)) | |
462 } | |
463 if (i==1){ | |
464 ml[[k]] = mConsist #initialize | |
465 } | |
466 this_assignment=NA | |
467 if(clusterAlg=="hc"){ | |
468 ##prune to k for hc | |
469 this_assignment = cutree(this_cluster,k) | |
470 ##browser() | |
471 }else if(clusterAlg=="km"){ | |
472 ##this_dist should now be a matrix corresponding to the result from sampleCols | |
473 this_assignment <- kmeans( t( this_dist ), | |
474 k, | |
475 iter.max = 10, | |
476 nstart = 1, | |
477 algorithm = c("Hartigan-Wong") )$cluster | |
478 }else if ( clusterAlg == "pam" ) { | |
479 require( cluster ) | |
480 this_assignment <- pam( x=this_dist, | |
481 k, | |
482 diss=TRUE, | |
483 metric=distance, | |
484 cluster.only=TRUE ) | |
485 } else{ | |
486 ##optional cluterArg Hook. | |
487 this_assignment <- get(clusterAlg)(this_dist, k) | |
488 } | |
489 ##add to tally | |
490 ml[[k]] <- connectivityMatrix( this_assignment, | |
491 ml[[k]], | |
492 sample_x[[3]] ) | |
493 } | |
494 } | |
495 | |
496 | |
497 ##consensus fraction | |
498 res = vector(mode="list",maxK) | |
499 for (k in 2:maxK){ | |
500 ##fill in other half of matrix for tally and count. | |
501 tmp = triangle(ml[[k]],mode=3) | |
502 tmpCount = triangle(mCount,mode=3) | |
503 res[[k]] = tmp / tmpCount | |
504 res[[k]][which(tmpCount==0)] = 0 | |
505 } | |
506 message("end fraction") | |
507 return(res) | |
508 } | |
509 | |
510 | |
511 connectivityMatrix <- function( clusterAssignments, m, sampleKey){ | |
512 ##input: named vector of cluster assignments, matrix to add connectivities | |
513 ##output: connectivity matrix | |
514 names( clusterAssignments ) <- sampleKey | |
515 cls <- lapply( unique( clusterAssignments ), function(i) as.numeric( names( clusterAssignments[ clusterAssignments %in% i ] ) ) ) | |
516 | |
517 for ( i in 1:length( cls ) ) { | |
518 nelts <- 1:ncol( m ) | |
519 cl <- as.numeric( nelts %in% cls[[i]] ) ## produces a binary vector | |
520 updt <- outer( cl, cl ) | |
521 m <- m + updt | |
522 } | |
523 return(m) | |
524 } | |
525 | |
526 ## returns a list with the sample columns, as well as the sub-matrix & sample features (if necessary) | |
527 ## if no sampling over the features is performed, the submatrix & sample features are returned as NAs | |
528 ## to reduce memory overhead | |
529 sampleCols <- function( d, | |
530 pSamp=NULL, | |
531 pRow=NULL, | |
532 weightsItem=NULL, | |
533 weightsFeature=NULL ){ | |
534 space <- ifelse( inherits( d, "dist" ), ncol( as.matrix(d) ), ncol(d) ) | |
535 sampleN <- floor(space*pSamp) | |
536 sampCols <- sort( sample(space, sampleN, replace = FALSE, prob = weightsItem) ) | |
537 | |
538 this_sample <- sampRows <- NA | |
539 if ( inherits( d, "matrix" ) ) { | |
540 if ( (! is.null( pRow ) ) && | |
541 ( (pRow < 1 ) || (! is.null( weightsFeature ) ) ) ) { | |
542 ## only sample the rows and generate a sub-matrix if we're sampling over the row/gene/features | |
543 space = nrow(d) | |
544 sampleN = floor(space*pRow) | |
545 sampRows = sort( sample(space, sampleN, replace = FALSE, prob = weightsFeature) ) | |
546 this_sample <- d[sampRows,sampCols] | |
547 dimnames(this_sample) <- NULL | |
548 } else { | |
549 ## do nothing | |
550 } | |
551 } | |
552 return( list( submat=this_sample, | |
553 subrows=sampRows, | |
554 subcols=sampCols ) ) | |
555 } | |
556 | |
557 CDF=function(ml,breaks=100){ | |
558 #plot CDF distribution | |
559 plot(c(0),xlim=c(0,1),ylim=c(0,1),col="white",bg="white",xlab="consensus index",ylab="CDF",main="consensus CDF", las=2) | |
560 k=length(ml) | |
561 this_colors = rainbow(k-1) | |
562 areaK = c() | |
563 for (i in 2:length(ml)){ | |
564 v=triangle(ml[[i]],mode=1) | |
565 | |
566 #empirical CDF distribution. default number of breaks is 100 | |
567 h = hist(v, plot=FALSE, breaks=seq(0,1,by=1/breaks)) | |
568 h$counts = cumsum(h$counts)/sum(h$counts) | |
569 | |
570 #calculate area under CDF curve, by histogram method. | |
571 thisArea=0 | |
572 for (bi in 1:(length(h$breaks)-1)){ | |
573 thisArea = thisArea + h$counts[bi]*(h$breaks[bi+1]-h$breaks[bi]) #increment by height by width | |
574 bi = bi + 1 | |
575 } | |
576 areaK = c(areaK,thisArea) | |
577 lines(h$mids,h$counts,col=this_colors[i-1],lwd=2,type='l') | |
578 } | |
579 legend(0.8,0.5,legend=paste(rep("",k-1),seq(2,k,by=1),sep=""),fill=this_colors) | |
580 | |
581 #plot area under CDF change. | |
582 deltaK=areaK[1] #initial auc at k=2 | |
583 for(i in 2:(length(areaK))){ | |
584 #proportional increase relative to prior K. | |
585 deltaK = c(deltaK,( areaK[i] - areaK[i-1])/areaK[i-1]) | |
586 } | |
587 plot(1+(1:length(deltaK)),y=deltaK,xlab="k",ylab="relative change in area under CDF curve",main="Delta area",type="b") | |
588 } | |
589 | |
590 | |
591 myPal = function(n=10){ | |
592 #returns n colors | |
593 seq = rev(seq(0,255,by=255/(n))) | |
594 palRGB = cbind(seq,seq,255) | |
595 rgb(palRGB,maxColorValue=255) | |
596 } | |
597 | |
598 setClusterColors = function(past_ct,ct,colorU,colorList){ | |
599 #description: sets common color of clusters between different K | |
600 newColors = c() | |
601 if(length(colorList)==0){ | |
602 #k==2 | |
603 newColors = colorU[ct] | |
604 colori=2 | |
605 }else{ | |
606 newColors = rep(NULL,length(ct)) | |
607 colori = colorList[[2]] | |
608 mo=table(past_ct,ct) | |
609 m=mo/apply(mo,1,sum) | |
610 for(tci in 1:ncol(m)){ # for each cluster | |
611 maxC = max(m[,tci]) | |
612 pci = which(m[,tci] == maxC) | |
613 if( sum(m[,tci]==maxC)==1 & max(m[pci,])==maxC & sum(m[pci,]==maxC)==1 ) { | |
614 #if new column maximum is unique, same cell is row maximum and is also unique | |
615 ##Note: the greatest of the prior clusters' members are the greatest in a current cluster's members. | |
616 newColors[which(ct==tci)] = unique(colorList[[1]][which(past_ct==pci)]) # one value | |
617 }else{ #add new color. | |
618 colori=colori+1 | |
619 newColors[which(ct==tci)] = colorU[colori] | |
620 } | |
621 } | |
622 } | |
623 return(list(newColors,colori,unique(newColors) )) | |
624 } | |
625 | |
626 clusterTrackingPlot = function(m){ | |
627 #description: plots cluster tracking plot | |
628 #input: m - matrix where rows are k, columns are samples, and values are cluster assignments. | |
629 plot(NULL,xlim=c(-0.1,1),ylim=c(0,1),axes=FALSE,xlab="samples",ylab="k",main="tracking plot") | |
630 for(i in 1:nrow(m)){ | |
631 rect( xleft=seq(0,1-1/ncol(m),by=1/ncol(m)), ybottom=rep(1-i/nrow(m),ncol(m)) , xright=seq(1/ncol(m),1,by=1/ncol(m)), ytop=rep(1-(i-1)/nrow(m),ncol(m)), col=m[i,],border=NA) | |
632 } | |
633 #hatch lines to indicate samples | |
634 xl = seq(0,1-1/ncol(m),by=1/ncol(m)) | |
635 segments( xl, rep(-0.1,ncol(m)) , xl, rep(0,ncol(m)), col="black") #** alt white and black color? | |
636 ypos = seq(1,0,by=-1/nrow(m))-1/(2*nrow(m)) | |
637 text(x=-0.1,y=ypos[-length(ypos)],labels=seq(2,nrow(m)+1,by=1)) | |
638 } | |
639 | |
640 triangle = function(m,mode=1){ | |
641 #mode=1 for CDF, vector of lower triangle. | |
642 #mode==3 for full matrix. | |
643 #mode==2 for calcICL; nonredundant half matrix coun | |
644 #mode!=1 for summary | |
645 n=dim(m)[1] | |
646 nm = matrix(0,ncol=n,nrow=n) | |
647 fm = m | |
648 | |
649 | |
650 nm[upper.tri(nm)] = m[upper.tri(m)] #only upper half | |
651 | |
652 fm = t(nm)+nm | |
653 diag(fm) = diag(m) | |
654 | |
655 nm=fm | |
656 nm[upper.tri(nm)] = NA | |
657 diag(nm) = NA | |
658 vm = m[lower.tri(nm)] | |
659 | |
660 if(mode==1){ | |
661 return(vm) #vector | |
662 }else if(mode==3){ | |
663 return(fm) #return full matrix | |
664 }else if(mode == 2){ | |
665 return(nm) #returns lower triangle and no diagonal. no double counts. | |
666 } | |
667 | |
668 } | |
669 | |
670 | |
671 rankedBarPlot=function(d,myc,cc,title){ | |
672 colors = rbind() #each row is a barplot series | |
673 byRank = cbind() | |
674 | |
675 spaceh = 0.1 #space between bars | |
676 for(i in 1:ncol(d)){ | |
677 byRank = cbind(byRank,sort(d[,i],na.last=F)) | |
678 colors = rbind(colors,order(d[,i],na.last=F)) | |
679 } | |
680 maxH = max(c(1.5,apply(byRank,2,sum)),na.rm=T) #maximum height of graph | |
681 | |
682 #barplot largest to smallest so that smallest is in front. | |
683 barp = barplot( apply(byRank,2,sum) , col=myc[colors[,1]] ,space=spaceh,ylim=c(0,maxH),main=paste("item-consensus", title),border=NA,las=1 ) | |
684 for(i in 2:nrow(byRank)){ | |
685 barplot( apply(matrix(byRank[i:nrow(byRank),],ncol=ncol(byRank)) ,2,sum), space=spaceh,col=myc[colors[,i]],ylim=c(0,maxH), add=T,border=NA,las=1 ) | |
686 } | |
687 xr=seq(spaceh,ncol(d)+ncol(d)*spaceh,(ncol(d)+ncol(d)*spaceh)/ncol(d) ) | |
688 #class labels as asterisks | |
689 text("*",x=xr+0.5,y=maxH,col=myc[cc],cex=1.4) #rect(xr,1.4,xr+1,1.5,col=myc[cc] ) | |
690 } | |
691 | |
692 | |
693 | |
694 ###################################################################3333 | |
695 ## RESTART MY SCRIPTS HERE | |
696 ##save.image( '/home/waltman/work.local/tmp/new.ccplus.R.dbg' ) | |
697 stop( "phw forced stop\n") | |
698 spec <- matrix( c( "data.fname", "d", 1, "character", | |
699 "direction", "n", 2, "character", | |
700 "output.name", "o", 2, "character", | |
701 "cluster.alg", "a", 2, "character", ## must be either 'hc' or 'km' | |
702 "distance.metric", "m", 2, "character", ## must be one supported by ConsensusClusterPlus | |
703 "max.k", "k", 2, "integer", | |
704 "reps", "r", 2, "integer", | |
705 "innerLinkage", "i", 1, "character", | |
706 "finalLinkage", "f", 1, "character", | |
707 "out.report.dir", "p", 2, "character", | |
708 "out.report.html", "h", 2, "character" | |
709 ), | |
710 nc=4, | |
711 byrow=TRUE | |
712 ) | |
713 | |
714 opt <- getopt( spec=spec ) | |
715 | |
716 ## default params for non-required params | |
717 if ( is.null( opt$direction ) ) { opt$direction <- "cols" } | |
718 if ( is.null( opt$cluster.alg ) ) { opt$cluster.alg <- "pam" } | |
719 if ( is.null( opt$output.name ) ) { opt$output.name <- "consensus.cluster.result" } | |
720 if ( is.null( opt$distance.metric ) ) { opt$distance.metric <- "cosine" } | |
721 if ( is.null( opt$max.k ) ) { opt$max.k <- 10 } | |
722 if ( is.null( opt$reps ) ) { opt$reps <- 1000 } | |
723 if ( is.null( opt$innerLinkage ) ) { opt$innerLinkage <- "average" } | |
724 if ( is.null( opt$finalLinkage ) ) { opt$finalLinkage <- "average" } | |
725 | |
726 if ( is.null( opt$out.report.dir ) ) { opt$out.report.dir <- "report" } | |
727 if ( is.null( opt$out.report.html ) ) { opt$out.report.html <- file.path( "report", "index.html" ) } | |
728 | |
729 ## validate params here (make sure set to valid values) | |
730 if ( !opt$cluster.alg %in% c( "hc", "km", "pam" ) ) { | |
731 stop( "invalid clustering algorithm specified", cluster.alg ) | |
732 } | |
733 | |
734 | |
735 data <- as.matrix( read.delim( opt$data.fname, header=T, row.names=1 , check.names=FALSE ) ) | |
736 ## transpose the matrix if we want to cluster the rows (genes) | |
737 if ( opt$direction == "rows" ) { | |
738 data <- t( data ) | |
739 } | |
740 | |
741 | |
742 title <- paste( opt$cluster.alg, opt$output.name, sep="." ) | |
743 ##source( '~/bin/galaxy-dist/tools/ucsc.cancer.tools/cluster.tools/new.ccplus.R' ) | |
744 results <- ConsensusClusterPlus( data, | |
745 maxK=opt$max.k, | |
746 reps=opt$reps, | |
747 pItem=0.8, | |
748 ##pFeature=NULL, | |
749 pFeature=0.5, | |
750 title=opt$out.report.dir, | |
751 clusterAlg=opt$cluster.alg, | |
752 distance=opt$distance.metric, | |
753 innerLinkage=opt$innerLinkage, | |
754 finalLinkage=opt$finalLinkage, | |
755 plot='pdf', | |
756 writeTable=FALSE, | |
757 seed=100, | |
758 weightsFeature=abs( rnorm( nrow( orig.data ) ) ), | |
759 ##verbose=FALSE ) | |
760 verbose=TRUE ) | |
761 | |
762 pngs = list.files(path=opt$out.report.dir, patt="png") | |
763 html.out <- paste( "<html>", | |
764 paste( paste( "<div><img src=\'", pngs, sep="" ), "\'/></div>", sep="" ), | |
765 "</html>" ) | |
766 cat( html.out, file=opt$out.report.html ) | |
767 | |
768 | |
769 ## re-transpose the matrix back if we've clustered the rows (genes) | |
770 if ( opt$direction == "rows" ) { | |
771 data <- t( data ) | |
772 } | |
773 save( file=opt$output.name, data, results) |