comparison cluster.tools/ipl.feature.selection.R @ 0:0decf3fd54bc draft

Uploaded
author peter-waltman
date Thu, 28 Feb 2013 01:45:39 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:0decf3fd54bc
1 #!/usr/bin/env Rscript
2 ## IPL selection script by Peter Waltman
3 ## August 21, 2011
4 ## License under Creative Commons Attribution 3.0 Unported (CC BY 3.0)
5 ##
6 #usage, options and doc goes here
7 argspec <- c("ipl.feature.selection.R takes a set of results from Paradigm, and filters for features that are
8 active, inactive or modulated above a given IPL threshold over a sufficient percentage of samples.
9
10 Usage:
11 ipl.feature.selection.R -d <data.file>
12 Optional:
13 -o <output.name>
14 -g <genes-only> ## to set if only returning genes (default is all features)
15 -f <filter.type> ## filter.type must be either 'modulated', 'active'or 'inactive' (default is modulated)
16 -t <threshold> ## the threshold to use for the filter (default is 0.25)
17 -p <perc.pass> ## the percentage of samples that must pass the filter (default is 0.33)
18 -v <verbose> ## to set verbose on
19
20 \n\n")
21 args <- commandArgs(TRUE)
22 if ( length( args ) == 1 && args =="--help") {
23 write(argspec, stderr())
24 q();
25 }
26
27 lib.load.quiet <- function( package ) {
28 package <- as.character(substitute(package))
29 suppressPackageStartupMessages( do.call( "library", list( package=package ) ) )
30 }
31 lib.load.quiet(getopt)
32
33 spec <- matrix( c( "data.fname", "d", 1, "character",
34 "output.name", "o", 2, "character",
35 "genes.only", "g", 0, "logical",
36 "filter.type", "f", 2, "character", ## must be either 'active', 'inactive' or 'modulated'
37 "threshold", "t", 2, "numeric",
38 "empirical.fname", "e", 2, "character",
39 "perc.pass", "p", 2, "numeric",
40 "verbose", "v", 0, "logical", ## to set verbose on
41 "help", "h", 0, "logical"
42 ),
43 nc=4,
44 byrow=TRUE
45 )
46
47 opt <- getopt( spec=spec )
48 #set some reasonable defaults for the options that are needed,
49 #but were not specified.
50 if ( is.null(opt$verbose ) ) { opt$verbose = FALSE }
51 if ( is.null(opt$genes.only ) ) {
52 opt$genes.only <- FALSE
53 }
54
55 if ( is.null(opt$filter.type ) ) { opt$filter.type = 'modulated' }
56 if ( is.null( opt$threshold ) ) { opt$threshold=0.25 }
57 if ( is.null( opt$perc.pass ) ) { opt$perc.pass=1/3 }
58 if ( opt$perc.pass < 0 ) {
59 stop( "please specify a positive number for the percentage of samples that pass the filter (if applicable)" )
60 }
61 ## now set filter.type, threshold & perc.pass if an empirical result has been passed in
62 if ( ! is.null( opt$empirical.fname ) ) {
63
64 if ( ! file.exists( opt$empirical.fname ) ) stop( "can't file empirical result file:", opt$empirical.fname, "\n" )
65 ## assume this is an RData file
66 emp.fname.contents <- load( opt$empirical.fname )
67 if ( ! "opt.thresh" %in% emp.fname.contents ) stop( "no optimal threshold value found in RData file passed in\n" )
68 opt$threshold <- opt.thresh
69
70 if ( ! "filter.type" %in% emp.fname.contents ) stop( "no filter type value found in RData file passed in\n" )
71 opt$filter.type <- filter.type
72
73 if ( ! "perc.pass" %in% emp.fname.contents ) stop( "no percentage passing value found in RData file passed in\n" )
74 opt$perc.pass <- perc.pass
75 }
76 if ( ! opt$filter.type %in% c( 'active', 'inactive', 'modulated' ) ) stop( 'invalid filter.type specified:', opt$filter.type, "\n" )
77 if ( is.null( opt$output.name ) ) {
78 opt$output.name <- file.path( getwd(),
79 paste( opt$filter.type, basename( opt$data.fname ), sep="." ) )
80 }
81
82
83
84 data <- as.matrix( read.delim( opt$data.fname, header=T, row.names=1 , check.names=FALSE ) )
85 if ( opt$genes.only ) {
86 genes <- rownames( data )
87 genes <- genes[ ! grepl( "abstract|complex|family", genes ) ]
88 data <- data[ genes, ]
89 }
90
91
92 count.samps.threshold <- function( data,
93 threshold,
94 comparator ## must be one of lte, lt, gt, gte
95 ) {
96 filter.vect <- rep( TRUE, nrow( data ) ) ## set an initial val
97 if ( comparator == "lt" ) {
98 return( apply( data,
99 1,
100 function(x) sum( x < threshold, na.rm=T ) ) )
101 }
102 if ( comparator == "lte" ) {
103 return( apply( data,
104 1,
105 function(x) sum( x <= threshold, na.rm=T ) ) )
106 }
107 if ( comparator == "gte" ) {
108 return( apply( data,
109 1,
110 function(x) sum( x >= threshold, na.rm=T ) ) )
111 }
112 if ( comparator == "gt" ) {
113 return( apply( data,
114 1,
115 function(x) sum( x > threshold, na.rm=T ) ) )
116 }
117 if ( comparator == "bothe" ) {
118 return( apply( data,
119 1,
120 function(x) sum( abs(x) >= threshold, na.rm=T ) ) )
121 }
122 if ( comparator == "both" ) {
123 return( apply( data,
124 1,
125 function(x) sum( abs(x) > threshold, na.rm=T ) ) )
126 }
127 }
128
129
130
131
132 if ( opt$filter.type=="active" ) {
133 ## this is an implementation of the activity filter that was used in the original PARADIGM paper
134 filter.vect <- count.samps.threshold( data, opt$threshold, "gt" )
135 } else {
136 if ( opt$filter.type=="inactive" ) {
137 filter.vect <- count.samps.threshold( data, -opt$threshold, "lt" )
138 } else {
139 if ( opt$filter.type=="modulated" ) {
140 filter.vect <- count.samps.threshold( data, opt$threshold, "both" )
141 } else {
142 stop( "invalid filter.type specified: ", opt$filter.type )
143 }
144 }
145 }
146
147 if ( opt$perc.pass <1 ) {
148 filter.vect <- filter.vect > floor( ncol( data ) * opt$perc.pass )
149 } else {
150 filter.vect <- filter.vect >= opt$perc.pass
151 }
152 data <- data[ filter.vect, ]
153
154 write.table( data, opt$output.name, sep="\t", row.names=TRUE, col.names=NA, quote=FALSE )
155