comparison cluster.tools/cluster.2.centroid.R @ 0:0decf3fd54bc draft

Uploaded
author peter-waltman
date Thu, 28 Feb 2013 01:45:39 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:0decf3fd54bc
1 #!/usr/bin/env Rscript
2 argspec <- c("tab.2.cdt.R converts a data matrix to cdt format
3
4 Usage:
5
6 Optional:
7
8 \n\n")
9 args <- commandArgs(TRUE)
10 if ( length( args ) == 1 && args =="--help") {
11 write(argspec, stderr())
12 q();
13 }
14
15 lib.load.quiet <- function( package ) {
16 package <- as.character(substitute(package))
17 suppressPackageStartupMessages( do.call( "library", list( package=package ) ) )
18 }
19
20 lib.load.quiet( getopt )
21 lib.load.quiet( amap )
22
23 if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) {
24 if ( 'flashClust' %in% installed.packages() ) {
25 lib.load.quiet( flashClust )
26 } else {
27 if ( 'fastcluster' %in% installed.packages() ) {
28 lib.load.quiet( fastcluster )
29 }
30 }
31 }
32
33 spec <- matrix( c( "dataset", "d", 1, "character",
34 "gen.new.dgram", "g", 2, "character",
35 "output.fname", "o", 2, "character"
36 ),
37 nc=4,
38 byrow=TRUE
39 )
40
41
42 opt <- getopt( spec=spec )
43 if ( is.null( opt$output.report.dir ) ) {
44 opt$output.report.dir <- "report"
45
46 if (! file.exists( opt$output.report.dir ) ) {
47 dir.create( opt$output.report.dir )
48 } else {
49 if ( ! file.info( 'report' )$isdir ) {
50 opt$output.report.dir <- 'heatmap.report'
51 dir.create( opt$output.report.dir )
52 }
53 }
54 }
55 if ( is.null( opt$output.fname ) ) { opt$output.fname <- file.path( opt$output.report.dir, paste( "data.RData", sep="." ) ) }
56 if ( is.null( opt$gen.new.dgram ) ) {
57 opt$gen.new.dgram <- FALSE
58 } else {
59 if ( ! opt$gen.new.dgram %in% c( "no", "yes" ) ) {
60 stop( "invalid input to gen.new.dgram param", opt$gen.new.dgram, "\n" )
61 }
62 ## set to TRUE/FALSE
63 opt$gen.new.dgram <- ( opt$gen.new.dgram == "yes" )
64 }
65
66
67 load( opt$dataset ) ## should load the cl, treecl.res (or partcl.res) and data
68
69 if ( ! exists( 'data' ) ) stop( "No data object in the rdata file provided for", opt$output.format, "format!!\n" )
70 if ( inherits( data, "dist" ) ) stop( "data provided is a distance matrix - not a data matrix. Can't generate TreeView or Tab-delimited files w/distance matrices!\n" )
71
72 ## the rest of this is for the remaining output formats
73 ## pre-set the cluster results for rows & cols to NULL
74 direction <- NULL
75 if ( exists( 'treecl.res' ) ) {
76 cl.res <- treecl.res
77 if ( is.null( treecl.res$dist.method ) ) treecl.res$dist.method <- 'euclidean' # just set it to some stub so that the ctc fn's don't complain
78 } else {
79 if ( exists( 'partcl.res' ) ) {
80 cl.res <- partcl.res
81 }
82 else {
83 stop( 'could not find a valid cluster result to use for primary direction\n' )
84 }
85 }
86
87 if ( all( names( cl ) %in% rownames( data ) ) ) {
88 direction <- "rows"
89 } else if ( all( names( cl ) %in% colnames( data ) ) ) {
90 direction <- "cols"
91 data <- t( data )
92 } else {
93 stop( "Specified cluster result does not come from this data set\n" )
94 }
95
96
97 centroids <- NULL
98 cl <- sort( cl )
99 if ( inherits( cl.res, "kmeans" ) ) {
100 ## already comes pre-calculated for us!!
101 centroids <- cl.res$centers
102 } else {
103 data <- data[ names( cl ), ]
104 cl.list <- unique( cl )
105 cl.list <- lapply( cl.list, function(i) cl[ cl %in% i ] )
106 centroids <- sapply( cl.list,
107 function(x) {
108 return( apply( data[ names(x), , drop=F ], 2, mean, na.rm=T ) )
109 }
110 )
111 centroids <- t( centroids ) ## get them back to the same number of columns that data has now
112 }
113
114 data <- centroids
115 rownames( data ) <- sapply( 1:max( cl ), function(i) sprintf( "cluster-%02d", i ) )
116
117 if ( opt$gen.new.dgram ) {
118 distance <- 'euclidean'
119 if ( inherits( cl.res, 'hclust' ) ) {
120 distance <- cl.res$dist.method
121 }
122 amap.distance <- c( "euclidean", "maximum", "manhattan", "canberra", "binary",
123 "pearson", "abspearson", "correlation", "abscorrelation", "spearman", "kendall" )
124 names( amap.distance ) <- c( "euclidean", "maximum", "manhattan", "canberra", "binary",
125 "cosine", "abscosine", "pearson", "abspearson", "spearman", "kendall" )
126
127 if ( ! distance %in% names( amap.distance ) ) stop("unsupported distance.")
128 dist.mat <- Dist( data, method=as.character( amap.distance[ distance ] ) )
129 treecl.res <- hclust( dist.mat )
130 cl <- cutree( treecl.res, nrow(data) )
131 }
132
133 if ( direction == "cols" ) {
134 data <- t( data )
135 }
136
137 save( file=opt$output.fname, treecl.res, cl, data )