Mercurial > repos > peter-waltman > ucsc_cluster_tools2
comparison cluster.tools/cluster.2.centroid.R @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:0decf3fd54bc |
---|---|
1 #!/usr/bin/env Rscript | |
2 argspec <- c("tab.2.cdt.R converts a data matrix to cdt format | |
3 | |
4 Usage: | |
5 | |
6 Optional: | |
7 | |
8 \n\n") | |
9 args <- commandArgs(TRUE) | |
10 if ( length( args ) == 1 && args =="--help") { | |
11 write(argspec, stderr()) | |
12 q(); | |
13 } | |
14 | |
15 lib.load.quiet <- function( package ) { | |
16 package <- as.character(substitute(package)) | |
17 suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) | |
18 } | |
19 | |
20 lib.load.quiet( getopt ) | |
21 lib.load.quiet( amap ) | |
22 | |
23 if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) { | |
24 if ( 'flashClust' %in% installed.packages() ) { | |
25 lib.load.quiet( flashClust ) | |
26 } else { | |
27 if ( 'fastcluster' %in% installed.packages() ) { | |
28 lib.load.quiet( fastcluster ) | |
29 } | |
30 } | |
31 } | |
32 | |
33 spec <- matrix( c( "dataset", "d", 1, "character", | |
34 "gen.new.dgram", "g", 2, "character", | |
35 "output.fname", "o", 2, "character" | |
36 ), | |
37 nc=4, | |
38 byrow=TRUE | |
39 ) | |
40 | |
41 | |
42 opt <- getopt( spec=spec ) | |
43 if ( is.null( opt$output.report.dir ) ) { | |
44 opt$output.report.dir <- "report" | |
45 | |
46 if (! file.exists( opt$output.report.dir ) ) { | |
47 dir.create( opt$output.report.dir ) | |
48 } else { | |
49 if ( ! file.info( 'report' )$isdir ) { | |
50 opt$output.report.dir <- 'heatmap.report' | |
51 dir.create( opt$output.report.dir ) | |
52 } | |
53 } | |
54 } | |
55 if ( is.null( opt$output.fname ) ) { opt$output.fname <- file.path( opt$output.report.dir, paste( "data.RData", sep="." ) ) } | |
56 if ( is.null( opt$gen.new.dgram ) ) { | |
57 opt$gen.new.dgram <- FALSE | |
58 } else { | |
59 if ( ! opt$gen.new.dgram %in% c( "no", "yes" ) ) { | |
60 stop( "invalid input to gen.new.dgram param", opt$gen.new.dgram, "\n" ) | |
61 } | |
62 ## set to TRUE/FALSE | |
63 opt$gen.new.dgram <- ( opt$gen.new.dgram == "yes" ) | |
64 } | |
65 | |
66 | |
67 load( opt$dataset ) ## should load the cl, treecl.res (or partcl.res) and data | |
68 | |
69 if ( ! exists( 'data' ) ) stop( "No data object in the rdata file provided for", opt$output.format, "format!!\n" ) | |
70 if ( inherits( data, "dist" ) ) stop( "data provided is a distance matrix - not a data matrix. Can't generate TreeView or Tab-delimited files w/distance matrices!\n" ) | |
71 | |
72 ## the rest of this is for the remaining output formats | |
73 ## pre-set the cluster results for rows & cols to NULL | |
74 direction <- NULL | |
75 if ( exists( 'treecl.res' ) ) { | |
76 cl.res <- treecl.res | |
77 if ( is.null( treecl.res$dist.method ) ) treecl.res$dist.method <- 'euclidean' # just set it to some stub so that the ctc fn's don't complain | |
78 } else { | |
79 if ( exists( 'partcl.res' ) ) { | |
80 cl.res <- partcl.res | |
81 } | |
82 else { | |
83 stop( 'could not find a valid cluster result to use for primary direction\n' ) | |
84 } | |
85 } | |
86 | |
87 if ( all( names( cl ) %in% rownames( data ) ) ) { | |
88 direction <- "rows" | |
89 } else if ( all( names( cl ) %in% colnames( data ) ) ) { | |
90 direction <- "cols" | |
91 data <- t( data ) | |
92 } else { | |
93 stop( "Specified cluster result does not come from this data set\n" ) | |
94 } | |
95 | |
96 | |
97 centroids <- NULL | |
98 cl <- sort( cl ) | |
99 if ( inherits( cl.res, "kmeans" ) ) { | |
100 ## already comes pre-calculated for us!! | |
101 centroids <- cl.res$centers | |
102 } else { | |
103 data <- data[ names( cl ), ] | |
104 cl.list <- unique( cl ) | |
105 cl.list <- lapply( cl.list, function(i) cl[ cl %in% i ] ) | |
106 centroids <- sapply( cl.list, | |
107 function(x) { | |
108 return( apply( data[ names(x), , drop=F ], 2, mean, na.rm=T ) ) | |
109 } | |
110 ) | |
111 centroids <- t( centroids ) ## get them back to the same number of columns that data has now | |
112 } | |
113 | |
114 data <- centroids | |
115 rownames( data ) <- sapply( 1:max( cl ), function(i) sprintf( "cluster-%02d", i ) ) | |
116 | |
117 if ( opt$gen.new.dgram ) { | |
118 distance <- 'euclidean' | |
119 if ( inherits( cl.res, 'hclust' ) ) { | |
120 distance <- cl.res$dist.method | |
121 } | |
122 amap.distance <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", | |
123 "pearson", "abspearson", "correlation", "abscorrelation", "spearman", "kendall" ) | |
124 names( amap.distance ) <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", | |
125 "cosine", "abscosine", "pearson", "abspearson", "spearman", "kendall" ) | |
126 | |
127 if ( ! distance %in% names( amap.distance ) ) stop("unsupported distance.") | |
128 dist.mat <- Dist( data, method=as.character( amap.distance[ distance ] ) ) | |
129 treecl.res <- hclust( dist.mat ) | |
130 cl <- cutree( treecl.res, nrow(data) ) | |
131 } | |
132 | |
133 if ( direction == "cols" ) { | |
134 data <- t( data ) | |
135 } | |
136 | |
137 save( file=opt$output.fname, treecl.res, cl, data ) |