# HG changeset patch
# User iuc
# Date 1489501377 14400
# Node ID 71ed55a3515a983f83a0fe555cd2bf1d1b78e014
# Parent  ebadf9ee2d08ccbf2429bd98562dc804b8f69944
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/rseqc commit 37fb1988971807c6a072e1afd98eeea02329ee83
diff -r ebadf9ee2d08 -r 71ed55a3515a .hgignore
--- a/.hgignore	Thu Jul 18 11:01:08 2013 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4 +0,0 @@
-# use glob syntax
-syntax: regexp
-
-^test-data/.*
\ No newline at end of file
diff -r ebadf9ee2d08 -r 71ed55a3515a FPKM_count.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FPKM_count.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,132 @@
+
+    calculates raw read count, FPM, and FPKM for each gene
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+
+    
+        
+        
+        
+        
+        
+        
+            
+            
+            
+        
+    
+
+    
+        
+    
+
+    
+        
+            
+            
+            
+        
+    
+
+    
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a README.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,23 @@
+== RSeQC Galaxy Wrapper ==
+
+This is a Galaxy wrapper for the RSeQC RNA-Seq QC package.
+
+** Installation **
+
+Installation from a tool shed provides the necessary tool dependencies, R, numpy, and RSeQC.
+
+Otherwise, make sure that R and the RSeQC scripts are in the path and run under the Galaxy environment.
+Move the xml files to a subdirectory of your tools directory and add lines in tool_conf.xml to point to them.
+Restart the Galaxy server.
+
+Requires Python 2.7
+
+** Attribution **
+
+The RSeQC package and associated documentation can be found at: http://rseqc.sourceforge.net/
+
+The galaxy wrapper code was written by
+    Nilesh Kavthekar, School of Engineering and Applied Sciences, University of Pennsylvania, Class of 2016
+Modified by
+    Lance Parsons, Lewis-Sigler Institute for Integrative Genomics, Princeton University,
+    Bjorn Gruning, University of Freiburg, bjoern.gruening@gmail.com
diff -r ebadf9ee2d08 -r 71ed55a3515a RNA_fragment_size.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/RNA_fragment_size.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,76 @@
+
+    
+     calculates the fragment size for each gene/transcript
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+     '${output}'
+        ]]>
+    
+
+    
+        
+        
+        
+        
+    
+
+    
+        
+    
+
+    
+        
+            
+            
+            
+        
+    
+
+    
+
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a RPKM_count.xml
--- a/RPKM_count.xml	Thu Jul 18 11:01:08 2013 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,110 +0,0 @@
-
-	calculates raw count and RPKM values for transcript at exon, intron, and mRNA level
-	
-		samtools
-		rseqc
-	
-	 samtoolshelper.py RPKM_count.py -i $input -o output -r $refgene
-
-		#if $nx
-			-x
-		#end if
-		
-		#if str($strand_type.strand_specific) == "pair"
-			-d
-			#if str($strand_type.pair_type) == "sd"
-				'1++,1--,2+-,2-+'
-			#else
-				'1+-,1-+,2++,2--'
-			#end if
-		#end if
-
-		#if str($strand_type.strand_specific) == "single"
-			-d
-			#if str($strand_type.single_type) == "s"
-				'++,--'
-			#else
-				'+-,-+'
-			#end if
-		#end if
-
-		#if $skiphits
-			-u
-		#end if
-
-		#if $onlyexonic
-			-e
-		#end if
-
-	
-	
-		
-		
-		
-			
-				
-				
-				
-			
-			
-				
-					
-					
-				
-			
-			
-				
-					
-					
-				
-			
-			
-		
-		
-		
-	
-	
-		
-	
-	
-		
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
-
------
-
-About RSeQC
-+++++++++++
-
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
-
-The RSeQC package is licensed under the GNU GPL v3 license.
-
-Inputs
-++++++++++++++
-
-Input BAM/SAM file
-	Alignment file in BAM/SAM format.
-
-Reference gene model
-	Gene model in BED format.
-
-Strand sequencing type (default=none)
-	See Infer Experiment tool if uncertain.
-
-Options
-++++++++++++++
-
-Skip Multiple Hit Reads
-	Use Multiple hit reads or use only uniquely mapped reads.
-
-Only use exonic reads 
-	Renders program only used exonic (UTR exons and CDS exons) reads, otherwise use all reads.
-	
-	
-
diff -r ebadf9ee2d08 -r 71ed55a3515a RPKM_saturation.xml
--- a/RPKM_saturation.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/RPKM_saturation.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,108 +1,130 @@
-
-	calculates raw count and RPKM values for transcript at exon, intron, and mRNA level
-	
-		R
-		rseqc
-	
-	 RPKM_saturation.py -i $input -o output -r $refgene
+
+    calculates raw count and RPKM values for transcript at exon, intron, and mRNA level
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
 
-		-l $percentileFloor -u $percentileCeiling -s $percentileStep -c $rpkmCutoff
+    
+        
+        
+        
+        
+        
+        
+        
+        
+        
+    
 
-	
-	
-		
-		
-		
-			
-				
-				
-				
-			
-			
-				
-					
-					
-				
-			
-			
-				
-					
-					
-				
-			
-			
-		
-		
-		
-		
-		
-	
-	
-		
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+    
+        
+        
+        
+        
+    
 
------
+    
+        
+            
+            
+            
+            
+            
+            
+            
+        
+    
 
-About RSeQC
-+++++++++++
+    
+.. image:: $PATH_TO_IMAGES/saturation_eg.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+@ABOUT@
+
+]]>
+    
+
+    
+
 
diff -r ebadf9ee2d08 -r 71ed55a3515a bam2wig.xml
--- a/bam2wig.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/bam2wig.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,124 +1,130 @@
-
-	 
-		converts all types of RNA-seq data from .bam to .wig 
-	
-	
-		R
-		samtools
-		rseqc
-	
-	 
-		samtoolshelper.py /home/nilesh/RSeQC-2.3.3/scripts/bam2wig.py -i $input -s $chromsize -o outfile
+
+    
+        converts all types of RNA-seq data from .bam to .wig
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
-	
-		
-		
-		
-		
-			
-			
-			
-				
-			
-			
-		
-		
-			
-				
-				
-				
-			
-			
-				
-					
-					
-				
-			
-			
-				
-					
-					
-				
-			
-			
-		
-	
-	 
-		
-			strand_type['strand_specific'] == 'none'
-		
-		
-			strand_type['strand_specific'] != 'none'
-		
-		
-			strand_type['strand_specific'] != 'none'
-		
-	
-	
-		
-			
-			
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+        @MULTIHITS@
+        ]]>
+    
+    
+        
+        
+        
+        
+            
+                
+                
+            
+            
+                
+            
+            
+        
+        
+    
+
+    
+        
+            strand_type['strand_specific'] == 'none'
+        
+        
+            strand_type['strand_specific'] != 'none'
+        
+        
+            strand_type['strand_specific'] != 'none'
+        
+    
 
------
+    
+        
+            
+            
+            
+        
+        
+            
+            
+            
+            
+            
+        
+        
+            
+            
+            
+            
+            
+            
+        
+    
 
-About RSeQC
-+++++++++++
+    
-
\ No newline at end of file
+.. _UCSC: http://genome.ucsc.edu/index.html
+.. _IGB: http://bioviz.org/igb/
+.. _IGV: http://software.broadinstitute.org/software/igv/
+.. _BAM: http://genome.ucsc.edu/goldenPath/help/bam.html
+.. _wiggle: http://genome.ucsc.edu/goldenPath/help/wiggle.html
+.. _bigwig: http://genome.ucsc.edu/FAQ/FAQformat.html#format6.1
+]]>
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a bam_stat.xml
--- a/bam_stat.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/bam_stat.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,46 +1,58 @@
-
-	
-		reads mapping statistics for a provided BAM or SAM file.
-	
-	
-		rseqc
-	s
-	
-		bam_stat.py -i $input -q $mapqual &> $output
-	
-	
-		
-		
-	
-	
-		
-	
-	
-		
-			
-			
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+    
+        reads mapping statistics for a provided BAM or SAM file.
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
 
------
+     '${output}'
+        ]]>
+    
+
+    
+        
+        
+    
 
-About RSeQC
+    
+        
+    
+
+    
+        
+            
+            
+        
+    
+
+    `_,
+which quality the probability that a read is misplaced (Do NOT confused with
+sequence quality, sequence quality measures the probability that a base-calling
+was wrong) .
 
 Inputs
 ++++++++++++++
 
 Input BAM/SAM file
-	Alignment file in BAM/SAM format.
+    Alignment file in BAM/SAM format.
 
 Minimum mapping quality
-	Minimum mapping quality for an alignment to be called “uniquely mapped” (default=30)
+    Minimum mapping quality for an alignment to be called "uniquely mapped" (default=30)
 
 Output
 ++++++++++++++
@@ -50,6 +62,10 @@
 - Uniquely mapped Reads = {Reads map to '+'} + {Reads map to '-'}
 - Uniquely mapped Reads = {Splice reads} + {Non-splice reads}
 
+@ABOUT@
 
-	
-
\ No newline at end of file
+]]>
+    
+
+    
+
diff -r ebadf9ee2d08 -r 71ed55a3515a clipping_profile.xml
--- a/clipping_profile.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/clipping_profile.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,54 +1,85 @@
-
-	
-	 estimates clipping profile of RNA-seq reads from BAM or SAM file
-	
-	
-		R
-		rseqc
-	
-	
-		clipping_profile.py -i $input -o output
-	
-	
-		
-	
-	
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+    
+     estimates clipping profile of RNA-seq reads from BAM or SAM file
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+
+    
+        
+        
+        
+        
+    
 
------
+    
+        
+        
+        
+    
 
-About RSeQC
-+++++++++++
+    
+        
+            
+            
+            
+        
+        
+            
+            
+            
+            
+            
+        
+    
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+    
-
\ No newline at end of file
+]]>
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a deletion_profile.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/deletion_profile.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,87 @@
+
+    
+     calculates the distributions of deleted nucleotides across reads
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+
+    
+        
+        
+        
+        
+        
+    
+
+    
+        
+        
+        
+    
+
+    
+        
+            
+            
+            
+            
+            
+            
+        
+    
+
+    
+
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a geneBody_coverage.xml
--- a/geneBody_coverage.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/geneBody_coverage.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,63 +1,126 @@
-
-	
-		Read coverage over gene body.
-	
-	
-		R
-		rseqc
-	
-	
-		geneBody_coverage.py -i $input -r $refgene -o output
-	
-	
-		
-		
-	
-	
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+  
+    Read coverage over gene body.
+  
+
+  
+    rseqc_macros.xml
+  
+
+    
+
+  
+
+  
+
+  > 'input_list.txt' &&
+    #end for
+    geneBody_coverage.py -i 'input_list.txt' -r '${refgene}' --minimum_length ${minimum_length} -o output
+    ]]>
+  
+
+  
+    
+    
+    
+    
+  
 
------
-
-About RSeQC
-+++++++++++
+  
+    
+    
+      len(inputs) >= 3
+    
+    
+    
+  
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+  
+  
+    
+      
+      
+      
+      
+      
+      
+    
+    
+      
+      
+      
+      
+      
+      
+      
+    
 
-The RSeQC package is licensed under the GNU GPL v3 license.
+  
+
+  `_
+
+.. image:: $PATH_TO_IMAGES/geneBody_workflow.png
+:width: 800 px
+:scale: 80 %
+
+
+## Inputs
 
 Input BAM/SAM file
-	Alignment file in BAM/SAM format.
+    Alignment file in BAM/SAM format.
 
 Reference gene model
-	Gene Model in BED format.
+    Gene Model in BED format.
 
+Minimum mRNA length
+    Minimum mRNA length (bp). mRNA that are shorter than this value will be skipped (default is 100).
+
+    ## Outputs
 
-Outputs
-++++++++++++++
+Text
+    Table that includes the data used to generate the plots
 
-Read coverage over gene body. This module is used to check if reads coverage is uniform and if there is any 5’/3’ bias. This module scales all transcripts to 100 nt and calculates the number of reads covering each nucleotide position. Finally, it generates a plot illustrating the coverage profile along the gene body. NOTE: this module requires lots of memory for large BAM files, because it load the entire BAM file into memory. We add another script "geneBody_coverage2.py" into v2.3.1 which takes bigwig (instead of BAM) as input. It only use 200M RAM, but users need to convert BAM into WIG, and then WIG into BigWig.
+R Script
+    R script file that reads the data and generates the plot
+
+PDF
+    The final plot, in PDF format
 
-Example output:
-	.. image:: http://dldcc-web.brc.bcm.edu/lilab/liguow/RSeQC/figure/geneBody_coverage.png
-
+Example plots:
+.. image:: $PATH_TO_IMAGES/Aug_26.geneBodyCoverage.curves.png
+:height: 600 px
+:width: 600 px
+:scale: 80 %
 
+.. image:: $PATH_TO_IMAGES/Aug_26.geneBodyCoverage.heatMap.png
+:height: 600 px
+:width: 600 px
+:scale: 80 %
 
-	
-
\ No newline at end of file
+@ABOUT@
+
+    ]]>
+  
+
+  
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a geneBody_coverage2.xml
--- a/geneBody_coverage2.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/geneBody_coverage2.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,43 +1,61 @@
-
-	
-		Read coverage over gene body.
-	
-	
-		R
-		rseqc
-	
-	
-		geneBody_coverage2.py -i $input -r $refgene -o output
-	
-	
-		
-		
-	
-	
-		
-		
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+    
+        Read coverage over gene body
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+
+    
+        
+        
+    
 
------
+    
+        
+        
+        
+    
 
-About RSeQC
-+++++++++++
+    
+        
+            
+            
+            
+            
+            
+            
+        
+    
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+    
+    
 
-	
-
\ No newline at end of file
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a infer_experiment.xml
--- a/infer_experiment.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/infer_experiment.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,124 +1,141 @@
-
-	speculates how RNA-seq were configured
-	
-		rseqc
-	
-	 infer_experiment.py -i $input -r $refgene 
-	
-		#if $sample_size.boolean
-			-s $sample_size.size
-		#end if
-	
-		> $output
-	
-	
-		
-		
-		
-			
-			
-				
-			
-		
-	
-	
-		
-	
-	
-		
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+    speculates how RNA-seq were configured
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+     '${output}'
+            ]]>
+    
 
------
+    
+        
+        
+        
+        
+    
+
+    
+        
+    
 
-About RSeQC
-+++++++++++
+    
+        
+            
+            
+            
+        
+    
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+    
-
\ No newline at end of file
+
+@ABOUT@
+
+]]>
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a inner_distance.xml
--- a/inner_distance.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/inner_distance.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,105 +1,113 @@
-
-	calculate the inner distance (or insert size) between two paired RNA reads
-	
-		R
-		rseqc
-	
-	 inner_distance.py -i $input -o output -r $refgene
+
+    calculate the inner distance (or insert size) between two paired RNA reads
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
 
-		#if $bounds.hasLowerBound
-			-l $bounds.lowerBound
-		#end if
+    
+    
 
-		#if $bounds2.hasUpperBound
-			-u $bounds2.upperBound
-		#end if
+    
+        
+        
+        
+        
+        
+        
+        
+        
+    
 
-		#if $steps.step
-			-s $steps.stepSize
-		#end if
-	
-	
-		
-		
-		
-			
-			
-				
-			
-		
-		
-			
-			
-				
-			
-		
-		
-			
-			
-				
-			
-		
-	
-	
-		
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+    
+        
+        
+        
+        
+    
 
------
+    
+        
+            
+            
+            
+            
+            
+            
+            
+        
+    
 
-About RSeQC
-+++++++++++
+    > Read2_end due to spliced mapping of read1)
-- third column indicates how paired reads were mapped: PE_within_same_exon, PE_within_diff_exon,PE_reads_overlap
+    - first column is read ID
+    -second column is inner distance. Could be negative value if PE reads were overlapped or mapping error (e.g. Read1_start < Read2_start, while Read1_end >> Read2_end due to spliced mapping of read1)
+    - third column indicates how paired reads were mapped: PE_within_same_exon, PE_within_diff_exon,PE_reads_overlap
 2. output..inner_distance_freq.txt:
-- inner distance starts
-- inner distance ends
-- number of read pairs
-- note the first 2 columns are left side half open interval
+    - inner distance starts
+    - inner distance ends
+    - number of read pairs
+    - note the first 2 columns are left side half open interval
 3. output.inner_distance_plot.r: R script to generate histogram
 4. output.inner_distance_plot.pdf: histogram plot
 
-.. image:: http://dldcc-web.brc.bcm.edu/lilab/liguow/RSeQC/figure/inner_distance.png
+.. image:: $PATH_TO_IMAGES/inner_distance.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+@ABOUT@
 
-	
+]]>
+    
+
+    
+
 
diff -r ebadf9ee2d08 -r 71ed55a3515a insertion_profile.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/insertion_profile.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,88 @@
+
+    
+     calculates the distribution of inserted nucleotides across reads
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+
+    
+        
+        
+        
+        
+    
+
+    
+        
+        
+        
+    
+
+    
+        
+            
+            
+            
+            
+            
+        
+    
+
+    
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a junction_annotation.xml
--- a/junction_annotation.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/junction_annotation.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,83 +1,107 @@
-
-	compares detected splice junctions to reference gene model
-	
-		R
-		rseqc
-	
-	 junction_annotation.py -i $input -o output -r $refgene
+
+    compares detected splice junctions to reference gene model
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
 
-		#if $intron.hasIntron
-			-m $intron.min_Intron
-		#end if
+    
+    
+
+    
+        
+        
+        
+        
+        
+    
 
-	
-	
-		
-		
-		
-			
-			
-				
-			
-		
-	
-	
-		
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+    
+        
+        
+        
+        
+    
 
------
+    
+        
+            
+            
+            
+            
+            
+            
+            
+        
+    
 
-About RSeQC
-+++++++++++
+    = 100 splicing events.
+* splice junction: multiple splicing events spanning the same intron can be consolidated into one splicing junction.
+
+All detected junctions can be grouped to 3 exclusive categories:
 
-The RSeQC package is licensed under the GNU GPL v3 license.
+1. Annotated: The junction is part of the gene model. Both splice sites, 5' splice site
+   (5'SS) and 3'splice site (3'SS) can be annotated by reference gene model.
+2. complete_novel: Complete new junction. Neither of the two splice sites cannot be annotated by gene model
+3. partial_novel: One of the splice site (5'SS or 3'SS) is new, while the other splice site is annotated (known)
 
 Inputs
 ++++++++++++++
 
 Input BAM/SAM file
-	Alignment file in BAM/SAM format.
+    Alignment file in BAM/SAM format.
 
 Reference gene model
-	Gene model in BED format.
+    Gene model in BED format.
 
 Minimum intron length (default=50)
-	Minimum intron length (bp).
+    Minimum intron length (bp).
 
 
 Output
 ++++++++++++++
 
 1. output.junc.anno.junction.xls:
-- chrom ID
-- start position of junction (coordinate is 0 based)
-- end position of junction (coordinate is 1 based)
-- number of splice events supporting this junction
-- 'annotated', 'complete_novel' or 'partial_novel'.
+    - chrom ID
+    - start position of junction (coordinate is 0 based)
+    - end position of junction (coordinate is 1 based)
+    - number of splice events supporting this junction
+    - 'annotated', 'complete_novel' or 'partial_novel'.
 2. output.anno.junction_plot.r: R script to generate pie chart
 3. output.splice_junction.pdf: plot of splice junctions
 4. output.splice_events.pdf: plot of splice events
-.. image:: http://dldcc-web.brc.bcm.edu/lilab/liguow/RSeQC/figure/junction.png
 
-
+.. image:: $PATH_TO_IMAGES/junction.png
+   :height: 400 px
+   :width: 850 px
+   :scale: 80 %
 
+@ABOUT@
 
-	
+]]>
+    
+
+    
+
 
diff -r ebadf9ee2d08 -r 71ed55a3515a junction_saturation.xml
--- a/junction_saturation.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/junction_saturation.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,71 +1,110 @@
-
-	detects splice junctions from each subset and compares them to reference gene model
-	
-		R
-		rseqc
-	
-	 junction_saturation.py -i $input -o output -r $refgene -m $intronSize -v $minSplice
+
+    detects splice junctions from each subset and compares them to reference gene model
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
 
-		#if $percentiles.specifyPercentiles
-			-l $percentiles.lowBound -u $percentiles.upBound -s $percentiles.percentileStep
-		#end if
+    
+    
 
-	
-	
-		
-		
-		
-		
-		
-			
-			
-				
-				
-				
-			
-		
-	
-	
-		
-		
-	
-	
-		
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+    
+        
+        
+        
+        
+        
+        
+            
+                
+                
+            
+            
+                
+                    
+                
+                
+                    
+                
+                
+                    
+                
+            
+            
+        
+        
+    
 
------
+    
+        
+        
+    
 
-About RSeQC
-+++++++++++
+    
+        
+            
+            
+            
+            
+            
+        
+    
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+    
-
\ No newline at end of file
+]]>
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a mismatch_profile.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mismatch_profile.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,89 @@
+
+    
+     calculates the distribution of mismatches across reads
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+
+    
+        
+        
+        
+        
+        
+    
+
+    
+        
+        
+        
+    
+
+    
+        
+            
+            
+            
+            
+            
+            
+        
+    
+
+    
+
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a read_GC.xml
--- a/read_GC.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/read_GC.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,53 +1,74 @@
-
-	determines GC% and read count
-	
-		R
-		rseqc
-	
-	 read_GC.py -i $input -o output
-	
-	
-		
-	
-	
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-		
-	
-	
-		.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+    determines GC% and read count
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
 
------
+    
+        
+        
+        
+    
+
+    
+        
+        
+        
+    
 
-About RSeQC
-+++++++++++
+    
+        
+            
+            
+            
+            
+            
+        
+    
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+    
+]]>
+    
+
+    
+
 
diff -r ebadf9ee2d08 -r 71ed55a3515a read_NVC.xml
--- a/read_NVC.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/read_NVC.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,52 +1,69 @@
-
-	to check the nucleotide composition bias
-	
-		R
-		rseqc
-	
-	 read_NVC.py -i $input -o output
+
+    to check the nucleotide composition bias
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
 
-		#if $nx
-			-x
-		#end if
-	
-	
-		
-		
-	
-	
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+    
+        
+        
+        
+        
+    
+
+    
+        
+        
+        
+    
 
------
+    
+        
+            
+            
+            
+            
+            
+        
+    
 
-About RSeQC
+    
+]]>
+    
+
+    
+
 
diff -r ebadf9ee2d08 -r 71ed55a3515a read_distribution.xml
--- a/read_distribution.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/read_distribution.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,69 +1,96 @@
-
-	calculates how mapped reads were distributed over genome feature
-	
-		rseqc
-	
-	 read_distribution.py -i $input -r $refgene > $output
-	
-	
-		
-		
-	
-	
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+    calculates how mapped reads were distributed over genome feature
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+     '${output}'
+        ]]>
+    
+
+    
+        
+        
+    
+
+    
+        
+    
 
------
+    
+        
+            
+            
+            
+        
+    
+
+     UTR exons > Introns > Intergenic regions, for example, if a read was mapped to
+both CDS exon and intron, it will be assigned to CDS exons.
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+* "Total Reads": This does NOT include those QC fail,duplicate and non-primary hit reads
+* "Total Tags": reads spliced once will be counted as 2 tags, reads spliced twice will be counted as 3 tags, etc. And because of this, "Total Tags" >= "Total Reads"
+* "Total Assigned Tags": number of tags that can be unambiguously assigned the 10 groups (see below table).
+* Tags assigned to "TSS_up_1kb" were also assigned to "TSS_up_5kb" and "TSS_up_10kb", tags assigned to "TSS_up_5kb" were also assigned to "TSS_up_10kb". Therefore, "Total Assigned Tags" = CDS_Exons + 5'UTR_Exons + 3'UTR_Exons + Introns + TSS_up_10kb + TES_down_10kb.
+* When assign tags to genome features, each tag is represented by its middle point.
 
-The RSeQC package is licensed under the GNU GPL v3 license.
+RSeQC cannot assign those reads that:
+
+* hit to intergenic regions that beyond region starting from TSS upstream 10Kb to TES downstream 10Kb.
+* hit to regions covered by both 5'UTR and 3' UTR. This is possible when two head-to-tail transcripts are overlapped in UTR regions.
+* hit to regions covered by both TSS upstream 10Kb and TES downstream 10Kb.
+
 
 Inputs
 ++++++++++++++
 
 Input BAM/SAM file
-	Alignment file in BAM/SAM format.
+    Alignment file in BAM/SAM format.
 
 Reference gene model
-	Gene model in BED format.
+    Gene model in BED format.
 
 Sample Output
 ++++++++++++++
 
-::
-
-	Total Read: 44,826,454 ::
-
-	Total Tags: 50,023,249 ::
-
-	Total Assigned Tags: 36,057,402 ::
+Output:
 
-	Group	Total_bases	Tag_count	Tags/Kb
-	CDS_Exons	33302033	20022538	601.24
-	5'UTR_Exons	21717577	4414913	203.29
-	3'UTR_Exons	15347845	3641689	237.28
-	Introns	1132597354	6312099	5.57
-	TSS_up_1kb	17957047	215220	11.99
-	TSS_up_5kb	81621382	392192	4.81
-	TSS_up_10kb	149730983	769210	5.14
-	TES_down_1kb	18298543	266157	14.55
-	TES_down_5kb	78900674	730072	9.25
-	TES_down_10kb	140361190	896953	6.39
+===============     ============        ===========         ===========
+Group               Total_bases         Tag_count           Tags/Kb
+===============     ============        ===========         ===========
+CDS_Exons           33302033            20002271            600.63
+5'UTR_Exons         21717577            4408991             203.01
+3'UTR_Exons         15347845            3643326             237.38
+Introns             1132597354          6325392             5.58
+TSS_up_1kb          17957047            215331              11.99
+TSS_up_5kb          81621382            392296              4.81
+TSS_up_10kb         149730983           769231              5.14
+TES_down_1kb        18298543            266161              14.55
+TES_down_5kb        78900674            729997              9.25
+TES_down_10kb       140361190           896882              6.39
+===============     ============        ===========         ===========
 
-Note:
-- "Total Reads": This does NOT include those QC fail,duplicate and non-primary hit reads
-- "Total Tags": reads spliced once will be counted as 2 tags, reads spliced twice will be counted as 3 tags, etc. And because of this, "Total Fragments" >= "Total Reads"
-- "Total Assigned Tags": number of tags that can be unambiguously assigned the 10 groups (above table).
-- Tags assigned to "TSS_up_1kb" were also assigned to "TSS_up_5kb" and "TSS_up_10kb", tags assigned to "TSS_up_5kb" were also assigned to "TSS_up_10kb". Therefore, "Total Assigned Tags" = CDS_Exons + 5'UTR_Exons + 3'UTR_Exons + Introns + TSS_up_10kb + TES_down_10kb.
-- When assigning tags to genome features, each tag is represented by its middle point.
-- RSeQC cannot assign those reads that: 1) hit to intergenic regions that beyond region starting from TSS upstream 10Kb to TES downstream 10Kb. 2) hit to regions covered by both 5'UTR and 3' UTR. This is possible when two head-to-tail transcripts are overlapped in UTR regions. 3) hit to regions covered by both TSS upstream 10Kb and TES downstream 10Kb.
+@ABOUT@
 
+]]>
+    
 
-	
+    
+
 
diff -r ebadf9ee2d08 -r 71ed55a3515a read_duplication.xml
--- a/read_duplication.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/read_duplication.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,50 +1,63 @@
-
-	determines reads duplication rate with sequence-based and mapping-based strategies
-	
-		R
-		rseqc
-	
-	 read_duplication.py -i $input -o output -u $upLimit
-	
-	
-		
-		
-	
-	
-		
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+    determines reads duplication rate with sequence-based and mapping-based strategies
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+
+    
+        
+        
+        
+        
+    
 
------
+    
+        
+        
+        
+        
+    
 
-About RSeQC
-+++++++++++
+    
+        
+            
+            
+            
+            
+            
+            
+        
+    
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+    
+]]>
+    
+
+    
+
 
diff -r ebadf9ee2d08 -r 71ed55a3515a read_hexamer.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/read_hexamer.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,137 @@
+
+    
+        calculates hexamer (6mer) frequency for reads, genomes, and mRNA sequences
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+     "${safename}" &&
+            #else:
+                ln -sf '${input}' "${safename}" &&
+            #end if
+        #end for
+        read_hexamer.py -i '${ ','.join( [ $name for $name in $input_list ] ) }'
+        #if $refgenome:
+            -r '${refgenome}'
+        #end if
+        #if $refgene:
+            -g '${refgene}'
+        #end if
+        > '${output}'
+        ]]>
+    
+
+    
+        
+        
+        
+    
+
+    
+        
+    
+
+    
+        
+            
+            
+        
+        
+            
+            
+        
+        
+            
+            
+        
+        
+            
+            
+        
+        
+    
+
+    
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a read_quality.xml
--- a/read_quality.xml	Thu Jul 18 11:01:08 2013 -0500
+++ b/read_quality.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -1,58 +1,92 @@
-
-	determines Phred quality score
-	
-		R
-		rseqc
-	
-	 read_quality.py -i $input -o output -r $reduce
-	
-	
-		
-		
-	
-	
-		
-		
-		
-	
-	
-		
-			
-			
-			
-			
-		
-	
-	
-.. image:: https://code.google.com/p/rseqc/logo?cct=1336721062
+
+    determines Phred quality score
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+
+    
+        
+        
+        
+        
+    
 
------
+    
+        
+        
+        
+    
 
-About RSeQC
-+++++++++++
+    
+        
+            
+            
+            
+            
+            
+        
+    
 
-The RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. “Basic modules” quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while “RNA-seq specific modules” investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+    
+@ABOUT@
+
+]]>
+    
+
+    
+
 
diff -r ebadf9ee2d08 -r 71ed55a3515a rseqc_macros.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/rseqc_macros.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,155 @@
+
+
+    2.6.4
+
+    
+        
+            rseqc
+        
+    
+
+    
+        
+            
+            
+        
+    
+
+    
+    
+        
+    
+
+    
+        
+    
+
+    
+        
+    
+
+    
+        
+    
+
+    
+        
+    
+
+    
+        
+    
+
+    
+        
+    
+
+    
+        
+    
+
+    
+        
+            
+            
+        
+    
+
+    
+        
+            
+                
+                
+                
+            
+            
+                
+                    
+                    
+                
+            
+            
+                
+                    
+                    
+                
+            
+            
+        
+    
+
+    
+        
+            
+                
+                
+            
+            
+                
+            
+            
+        
+    
+
+    
+        
+    
+
+
+    
+
+    
+        
+    
+
+    
+        
+    
+
+    
+        
+            rscript_output
+        
+    
+
+    
+    
+
+    
+
+    
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively
+evaluate high throughput sequence data especially RNA-seq data. "Basic modules"
+quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC
+bias, while "RNA-seq specific modules" investigate sequencing saturation status
+of both splicing junction detection and expression estimation, mapped reads
+clipping profile, mapped reads distribution, coverage uniformity over gene
+body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: $PATH_TO_IMAGES/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+
+
+    
+
+    
+        
+            10.1093/bioinformatics/bts356
+        
+    
+
diff -r ebadf9ee2d08 -r 71ed55a3515a samtoolshelper.py
--- a/samtoolshelper.py	Thu Jul 18 11:01:08 2013 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,20 +0,0 @@
-import sys
-import subprocess as sp
-import os
-
-# Creates the sorted and indexed bam/bai files that are requried for both bam2wig and RSEQC_count
-def samtools_sorted(bam):
-	sortedbam = bam + ".sorted"
-	indexedbam = ".".join([sortedbam,"bam.bai"])
-	sp.call(['samtools', 'sort', '-m 1000000000', bam, sortedbam])
-	sortedbam = sortedbam + '.bam'
-	sp.call(['samtools', 'index', sortedbam, indexedbam])
-	return sortedbam
-
-def main(args):
-	args[2] = samtools_sorted(args[2])
-	sp.call(args)
-
-
-if __name__ == "__main__":
-	main(sys.argv[1:])
\ No newline at end of file
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/36mer.qual.heatmap.png
Binary file static/images/36mer.qual.heatmap.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/36mer.qual.plot.png
Binary file static/images/36mer.qual.plot.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/Aug_26.geneBodyCoverage.curves.png
Binary file static/images/Aug_26.geneBodyCoverage.curves.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/Aug_26.geneBodyCoverage.heatMap.png
Binary file static/images/Aug_26.geneBodyCoverage.heatMap.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/NVC_plot.png
Binary file static/images/NVC_plot.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/RelativeError.png
Binary file static/images/RelativeError.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/clipping_good.png
Binary file static/images/clipping_good.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/duplicate.png
Binary file static/images/duplicate.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/geneBody_coverage.png
Binary file static/images/geneBody_coverage.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/geneBody_workflow.png
Binary file static/images/geneBody_workflow.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/inner_distance.png
Binary file static/images/inner_distance.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/junction.png
Binary file static/images/junction.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/junction_saturation.png
Binary file static/images/junction_saturation.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/logo.png
Binary file static/images/logo.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/mismatch_profile.png
Binary file static/images/mismatch_profile.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/out.deletion_profile.png
Binary file static/images/out.deletion_profile.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/out.insertion_profile.R1.png
Binary file static/images/out.insertion_profile.R1.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/out.insertion_profile.R2.png
Binary file static/images/out.insertion_profile.R2.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/read_gc.png
Binary file static/images/read_gc.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/saturation.png
Binary file static/images/saturation.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a static/images/saturation_eg.png
Binary file static/images/saturation_eg.png has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/hg19.HouseKeepingGenes_30.bed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/hg19.HouseKeepingGenes_30.bed	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,30 @@
+chr1	100652477	100715409	NM_001918	0	-	100661810	100715376	0	11	9501,72,192,78,167,217,122,182,76,124,84,	0,19308,19523,23772,27895,29061,31704,43811,48514,53839,62848,
+chr1	175913961	176176380	NM_022457	0	-	175914288	176176114	0	20	345,45,161,125,118,117,82,109,144,136,115,58,77,60,69,120,77,98,60,673,	0,2369,42117,43462,44536,82746,98360,98884,101355,136326,140950,171798,190184,191662,204180,218043,218989,231084,239807,261746,
+chr1	150980972	151008189	NM_021222	0	+	150981108	151006710	0	8	175,93,203,185,159,95,159,1908,	0,9315,9970,16114,17018,18736,20289,25309,
+chr1	6281252	6296044	NM_012405	0	-	6285139	6295971	0	5	4070,218,170,89,268,	0,10709,12281,13693,14524,
+chr1	20959947	20978004	NM_032409	0	+	20960041	20977184	0	8	481,288,101,183,164,128,237,1078,	0,4387,6437,11035,12105,15050,15540,16979,
+chr1	32479294	32509482	NM_006559	0	+	32479596	32508225	0	9	684,125,117,147,134,202,68,59,1355,	0,16604,17830,19494,23216,24141,24858,25821,28833,
+chr1	27248212	27273362	NM_006600	0	+	27248339	27272672	0	9	208,78,204,66,117,195,84,119,742,	0,2367,19735,20031,20938,21149,23668,23846,24408,
+chr1	31404352	31538564	NM_014676	0	-	31406057	31532413	0	22	1837,193,122,126,138,129,130,268,237,297,144,139,152,102,94,271,167,179,109,69,374,102,	0,5137,9645,10492,13840,18627,20728,22208,33168,34476,35661,36848,43145,48556,49806,60884,63548,74347,75488,97290,127698,134110,
+chr1	36690016	36770957	NM_005119	0	+	36748164	36769618	0	12	90,103,168,903,705,173,112,85,188,199,144,1561,	0,34966,58117,61952,64644,66958,68182,69435,72167,76470,77137,79380,
+chr1	46092975	46152302	NM_021639	0	-	46093927	46124759	0	13	1105,103,125,159,141,194,73,287,130,115,1042,45,219,	0,2272,3178,6185,6792,12906,15123,27239,27886,31724,32880,58272,59108,
+chr1	44870959	45117396	NM_018150	0	+	44877769	45116447	0	15	243,742,133,46,102,43,44,133,97,87,56,79,109,75,1021,	0,6693,208877,217454,221009,227055,230257,230742,239410,239707,239933,240122,244373,244595,245416,
+chr1	54519273	54565416	NM_153035	0	+	54520095	54562146	0	5	158,144,142,194,3459,	0,780,15155,34996,42684,
+chr1	50906934	51425936	NM_007051	0	-	50907111	51425483	0	19	261,216,78,81,89,137,155,82,64,127,96,87,106,92,92,206,47,69,498,	0,34201,49325,50458,94106,98329,125814,141355,142389,143422,154858,214179,264523,297600,303421,346737,360368,416666,518504,
+chr1	77554666	77685132	NM_005482	0	-	77558058	77685087	0	11	3509,85,173,111,118,97,112,136,92,54,138,	0,33293,65467,72313,72612,74864,77737,80278,117658,121454,130328,
+chr1	94352589	94375012	NM_002061	0	-	94354545	94374719	0	7	2126,115,203,60,85,66,419,	0,7580,9584,10805,14551,17489,22004,
+chr1	112162404	112259317	NM_002884	0	+	112233982	112251857	0	8	152,84,69,57,141,144,116,4265,	0,71551,75558,77658,83553,84560,89366,92648,
+chr1	118472371	118503049	NM_006784	0	+	118475942	118502070	0	27	34,203,210,119,79,96,114,102,98,108,231,94,102,86,136,57,101,112,135,51,66,93,48,44,129,94,1135,	0,3539,4724,7020,8731,9728,11078,11375,12001,12688,13647,16337,18656,20002,20246,21085,22227,22548,22779,23197,23727,24258,24831,25566,27319,29161,29543,
+chr1	156219014	156252620	NM_015327	0	-	156220377	156252471	0	22	1447,139,75,91,160,60,159,176,76,176,600,138,209,69,126,79,90,90,157,124,99,223,	0,1634,2179,3190,3695,4225,9781,11227,12109,14171,16557,17317,18246,18891,19066,23096,24137,25373,27861,28701,29712,33383,
+chr1	180257351	180472022	NM_032360	0	-	180257497	180471401	0	8	301,31,90,106,83,97,65,843,	0,26475,109299,125149,141963,204052,207244,213828,
+chr1	183441505	183523328	NM_173156	0	+	183441755	183521066	0	22	279,32,118,133,172,72,151,136,163,157,71,61,120,427,145,383,372,81,160,171,146,2376,	0,40466,43503,45317,54225,55585,56521,57027,60793,61305,64774,66009,68613,69705,71982,72559,73595,76837,77393,78380,78674,79447,
+chr1	220141941	220220000	NM_004446	0	-	220142147	220219730	0	32	357,65,79,161,174,198,156,102,80,73,210,52,263,234,360,118,113,208,137,111,60,85,234,172,193,127,95,140,157,100,85,316,	0,458,3469,4638,9946,10818,11485,12156,12778,14172,14589,15606,18542,19990,28383,32538,36648,37506,38602,42346,49849,50395,51388,53747,55664,56532,61786,63787,64902,66314,71585,77743,
+chr1	229577043	229644088	NM_018230	0	-	229577650	229643996	0	26	744,89,65,81,119,136,159,134,252,100,123,225,95,164,92,158,148,148,71,156,171,135,108,104,119,274,	0,3617,7829,9228,11228,16864,19314,22246,23327,24123,25337,29283,34341,36300,42757,45074,46169,48658,54198,54595,56839,58387,59459,60702,64743,66771,
+chr1	1309109	1310818	NM_017900	0	-	1309180	1310136	0	4	173,446,86,285,	0,270,975,1424,
+chr1	9908333	9970316	NM_020248	0	-	9910775	9932122	0	6	2501,91,120,85,34,164,	0,22911,23693,29629,35429,61819,
+chr1	10093040	10241296	NM_006048	0	+	10093728	10240014	0	27	712,187,136,88,145,229,142,101,115,84,57,117,99,114,199,139,100,128,99,236,127,145,135,192,175,147,1344,	0,39045,62478,68125,69965,72533,84476,86530,88979,93811,96409,97517,97732,99386,102005,104084,111957,113980,116201,118343,125373,128159,135153,138155,145661,146433,146912,
+chr1	11126675	11159938	NM_002685	0	-	11126774	11159888	0	24	130,77,62,172,74,85,96,107,79,51,112,51,149,157,191,144,111,76,115,166,105,124,137,161,	0,1389,2026,2940,4281,5468,7612,10223,10746,10982,13092,13880,14145,14463,16069,20829,21181,21504,23935,24395,24874,29139,31401,33102,
+chr1	10535002	10690815	NM_004565	0	+	10535023	10690044	0	9	57,48,85,129,86,103,98,92,1228,	0,20328,61267,124292,143386,148073,149394,152326,154585,
+chr1	16576558	16678948	NM_018994	0	-	16577164	16641913	0	10	1722,117,57,97,111,154,135,117,267,199,	0,2224,3032,3571,5647,6542,44719,55739,65105,102191,
+chr1	16174358	16266950	NM_015001	0	+	16174562	16265922	0	15	287,321,477,161,201,152,126,114,114,101,8176,483,195,159,1160,	0,24952,28338,61457,63237,68264,71062,71540,73006,74385,80227,89299,89948,90854,91432,
+chr1	17866329	18024370	NM_018125	0	+	17907090	18023875	0	29	116,80,186,34,92,84,176,117,109,107,78,180,117,93,174,146,15,182,116,128,101,122,87,224,155,149,175,123,1028,	0,40718,47625,48611,62292,63673,67967,73223,76259,79504,82029,83161,84552,86121,87495,92486,94713,95000,98053,98727,100367,108719,114801,116044,116719,124612,147738,155323,157013,
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/hg19.chrom.sizes
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/hg19.chrom.sizes	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,93 @@
+chr1	249250621
+chr2	243199373
+chr3	198022430
+chr4	191154276
+chr5	180915260
+chr6	171115067
+chr7	159138663
+chrX	155270560
+chr8	146364022
+chr9	141213431
+chr10	135534747
+chr11	135006516
+chr12	133851895
+chr13	115169878
+chr14	107349540
+chr15	102531392
+chr16	90354753
+chr17	81195210
+chr18	78077248
+chr20	63025520
+chrY	59373566
+chr19	59128983
+chr22	51304566
+chr21	48129895
+chr6_ssto_hap7	4928567
+chr6_mcf_hap5	4833398
+chr6_cox_hap2	4795371
+chr6_mann_hap4	4683263
+chr6_apd_hap1	4622290
+chr6_qbl_hap6	4611984
+chr6_dbb_hap3	4610396
+chr17_ctg5_hap1	1680828
+chr4_ctg9_hap1	590426
+chr1_gl000192_random	547496
+chrUn_gl000225	211173
+chr4_gl000194_random	191469
+chr4_gl000193_random	189789
+chr9_gl000200_random	187035
+chrUn_gl000222	186861
+chrUn_gl000212	186858
+chr7_gl000195_random	182896
+chrUn_gl000223	180455
+chrUn_gl000224	179693
+chrUn_gl000219	179198
+chr17_gl000205_random	174588
+chrUn_gl000215	172545
+chrUn_gl000216	172294
+chrUn_gl000217	172149
+chr9_gl000199_random	169874
+chrUn_gl000211	166566
+chrUn_gl000213	164239
+chrUn_gl000220	161802
+chrUn_gl000218	161147
+chr19_gl000209_random	159169
+chrUn_gl000221	155397
+chrUn_gl000214	137718
+chrUn_gl000228	129120
+chrUn_gl000227	128374
+chr1_gl000191_random	106433
+chr19_gl000208_random	92689
+chr9_gl000198_random	90085
+chr17_gl000204_random	81310
+chrUn_gl000233	45941
+chrUn_gl000237	45867
+chrUn_gl000230	43691
+chrUn_gl000242	43523
+chrUn_gl000243	43341
+chrUn_gl000241	42152
+chrUn_gl000236	41934
+chrUn_gl000240	41933
+chr17_gl000206_random	41001
+chrUn_gl000232	40652
+chrUn_gl000234	40531
+chr11_gl000202_random	40103
+chrUn_gl000238	39939
+chrUn_gl000244	39929
+chrUn_gl000248	39786
+chr8_gl000196_random	38914
+chrUn_gl000249	38502
+chrUn_gl000246	38154
+chr17_gl000203_random	37498
+chr8_gl000197_random	37175
+chrUn_gl000245	36651
+chrUn_gl000247	36422
+chr9_gl000201_random	36148
+chrUn_gl000235	34474
+chrUn_gl000239	33824
+chr21_gl000210_random	27682
+chrUn_gl000231	27386
+chrUn_gl000229	19913
+chrM	16571
+chrUn_gl000226	15008
+chr18_gl000207_random	4262
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/hg19_RefSeq_chr1_1-100000.bed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/hg19_RefSeq_chr1_1-100000.bed	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,7 @@
+chr1	11873	14409	NR_046018	0	+	14409	14409	0	3	354,109,1189,	0,739,1347,
+chr1	14361	29370	NR_024540	0	-	29370	29370	0	11	468,69,152,159,198,136,137,147,99,154,50,	0,608,1434,2245,2496,2871,3244,3553,3906,10376,14959,
+chr1	17368	17436	NR_106918	0	-	17436	17436	0	1	68,	0,
+chr1	17368	17436	NR_107062	0	-	17436	17436	0	1	68,	0,
+chr1	34610	36081	NR_026818	0	-	36081	36081	0	3	564,205,361,	0,666,1110,
+chr1	34610	36081	NR_026820	0	-	36081	36081	0	3	564,205,361,	0,666,1110,
+chr1	69090	70008	NM_001005484	0	+	69090	70008	0	1	918,	0,
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.DupRate_plot.pdf
Binary file test-data/output.DupRate_plot.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.DupRate_plot.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.DupRate_plot.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,14 @@
+pdf('output.DupRate_plot.pdf')
+par(mar=c(5,4,4,5),las=0)
+seq_occ=c(1)
+seq_uniqRead=c(40)
+pos_occ=c(1)
+pos_uniqRead=c(40)
+plot(pos_occ,log10(pos_uniqRead),ylab='Number of Reads (log10)',xlab='Occurrence of read',pch=4,cex=0.8,col='blue',xlim=c(1,500),yaxt='n')
+points(seq_occ,log10(seq_uniqRead),pch=20,cex=0.8,col='red')
+ym=floor(max(log10(pos_uniqRead)))
+legend(300,ym,legend=c('Sequence-based','Mapping-based'),col=c('blue','red'),pch=c(4,20))
+axis(side=2,at=0:ym,labels=0:ym)
+axis(side=4,at=c(log10(pos_uniqRead[1]),log10(pos_uniqRead[2]),log10(pos_uniqRead[3]),log10(pos_uniqRead[4])), labels=c(round(pos_uniqRead[1]*100/sum(pos_uniqRead*pos_occ)),round(pos_uniqRead[2]*100/sum(pos_uniqRead*pos_occ)),round(pos_uniqRead[3]*100/sum(pos_uniqRead*pos_occ)),round(pos_uniqRead[4]*100/sum(pos_uniqRead*pos_occ))))
+mtext(4, text = "Reads %", line = 2)
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.FPKM.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.FPKM.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,8 @@
+#chrom	st	end	accession	mRNA_size	gene_strand	Frag_count	FPM	FPKM
+chr1	11873	14409	NR_046018	1652.0	+	1.0	50000.0	30266.3438257
+chr1	14361	29370	NR_024540	1769.0	-	2.0	100000.0	56529.1124929
+chr1	17368	17436	NR_106918	68.0	-	0.0	0.0	0.0
+chr1	17368	17436	NR_107062	68.0	-	0.0	0.0	0.0
+chr1	34610	36081	NR_026818	1130.0	-	0.0	0.0	0.0
+chr1	34610	36081	NR_026820	1130.0	-	0.0	0.0	0.0
+chr1	69090	70008	NM_001005484	918.0	+	0.0	0.0	0.0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.GC.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.GC.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,19 @@
+GC%	read_count
+60.78	3
+41.18	3
+47.06	5
+56.86	7
+29.41	1
+27.45	2
+37.25	2
+78.43	1
+58.82	1
+50.98	3
+49.02	2
+62.75	1
+68.63	1
+54.90	1
+52.94	3
+35.29	1
+43.14	2
+39.22	1
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.GC_plot.pdf
Binary file test-data/output.GC_plot.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.GC_plot.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.GC_plot.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,4 @@
+pdf("output.GC_plot.pdf")
+gc=rep(c(60.78,41.18,47.06,56.86,29.41,27.45,37.25,78.43,58.82,50.98,49.02,62.75,68.63,54.90,52.94,35.29,43.14,39.22),times=c(3,3,5,7,1,2,2,1,1,3,2,1,1,1,3,1,2,1))
+hist(gc,probability=T,breaks=100,xlab="GC content (%)",ylab="Density of Reads",border="blue",main="")
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.NVC.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.NVC.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,52 @@
+Position	A	C	G	T	N	X
+0	5	7	18	10	0	0	
+1	6	7	15	8	4	0	
+2	5	9	18	5	3	0	
+3	11	9	14	4	2	0	
+4	5	9	12	14	0	0	
+5	4	11	19	6	0	0	
+6	11	7	12	10	0	0	
+7	9	8	12	9	2	0	
+8	12	9	11	8	0	0	
+9	8	9	8	10	5	0	
+10	9	8	9	14	0	0	
+11	9	6	11	14	0	0	
+12	14	8	12	6	0	0	
+13	10	6	9	15	0	0	
+14	9	9	7	15	0	0	
+15	10	10	9	9	2	0	
+16	8	4	6	14	8	0	
+17	9	9	10	9	3	0	
+18	7	5	11	12	5	0	
+19	12	8	4	10	6	0	
+20	10	6	9	15	0	0	
+21	9	9	15	7	0	0	
+22	14	6	11	9	0	0	
+23	13	11	11	5	0	0	
+24	12	8	7	10	3	0	
+25	9	13	4	8	6	0	
+26	11	16	7	6	0	0	
+27	11	8	13	8	0	0	
+28	13	6	9	12	0	0	
+29	9	9	12	10	0	0	
+30	8	6	15	11	0	0	
+31	7	9	11	13	0	0	
+32	7	8	14	11	0	0	
+33	11	11	10	8	0	0	
+34	6	12	13	9	0	0	
+35	8	17	11	4	0	0	
+36	9	8	7	16	0	0	
+37	11	9	12	8	0	0	
+38	8	9	10	13	0	0	
+39	8	12	11	9	0	0	
+40	12	9	10	9	0	0	
+41	9	13	11	7	0	0	
+42	10	12	9	9	0	0	
+43	7	13	11	9	0	0	
+44	10	12	6	12	0	0	
+45	10	10	9	11	0	0	
+46	7	10	10	13	0	0	
+47	9	9	12	10	0	0	
+48	10	6	14	10	0	0	
+49	8	10	13	9	0	0	
+50	7	8	9	16	0	0	
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.NVC_plot.pdf
Binary file test-data/output.NVC_plot.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.NVC_plot.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.NVC_plot.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,17 @@
+position=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)
+A_count=c(5,6,5,11,5,4,11,9,12,8,9,9,14,10,9,10,8,9,7,12,10,9,14,13,12,9,11,11,13,9,8,7,7,11,6,8,9,11,8,8,12,9,10,7,10,10,7,9,10,8,7)
+C_count=c(7,7,9,9,9,11,7,8,9,9,8,6,8,6,9,10,4,9,5,8,6,9,6,11,8,13,16,8,6,9,6,9,8,11,12,17,8,9,9,12,9,13,12,13,12,10,10,9,6,10,8)
+G_count=c(18,15,18,14,12,19,12,12,11,8,9,11,12,9,7,9,6,10,11,4,9,15,11,11,7,4,7,13,9,12,15,11,14,10,13,11,7,12,10,11,10,11,9,11,6,9,10,12,14,13,9)
+T_count=c(10,8,5,4,14,6,10,9,8,10,14,14,6,15,15,9,14,9,12,10,15,7,9,5,10,8,6,8,12,10,11,13,11,8,9,4,16,8,13,9,9,7,9,9,12,11,13,10,10,9,16)
+N_count=c(0,4,3,2,0,0,0,2,0,5,0,0,0,0,0,2,8,3,5,6,0,0,0,0,3,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
+X_count=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
+total= A_count + C_count + G_count + T_count
+ym=max(A_count/total,C_count/total,G_count/total,T_count/total) + 0.05
+yn=min(A_count/total,C_count/total,G_count/total,T_count/total)
+pdf("output.NVC_plot.pdf")
+plot(position,A_count/total,type="o",pch=20,ylim=c(yn,ym),col="dark green",xlab="Position of Read",ylab="Nucleotide Frequency")
+lines(position,T_count/total,type="o",pch=20,col="red")
+lines(position,G_count/total,type="o",pch=20,col="blue")
+lines(position,C_count/total,type="o",pch=20,col="cyan")
+legend(41,ym,legend=c("A","T","G","C"),col=c("dark green","red","blue","cyan"),lwd=2,pch=20,text.col=c("dark green","red","blue","cyan"))
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.RNA_fragment_size.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.RNA_fragment_size.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,8 @@
+chrom	tx_start	tx_end	symbol	frag_count	frag_mean	frag_median	frag_std
+chr1	11873	14409	NR_046018	1	0	0	0
+chr1	14361	29370	NR_024540	14	66.5	51.0	41.1195990809
+chr1	17368	17436	NR_106918	0	0	0	0
+chr1	17368	17436	NR_107062	0	0	0	0
+chr1	34610	36081	NR_026818	0	0	0	0
+chr1	34610	36081	NR_026820	0	0	0	0
+chr1	69090	70008	NM_001005484	0	0	0	0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.bamstats.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.bamstats.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,22 @@
+
+#==================================================
+#All numbers are READ count
+#==================================================
+
+Total records:                          40
+
+QC failed:                              0
+Optical/PCR duplicate:                  0
+Non primary hits                        0
+Unmapped reads:                         0
+mapq < mapq_cut (non-unique):           0
+
+mapq >= mapq_cut (unique):              40
+Read-1:                                 20
+Read-2:                                 20
+Reads map to '+':                       20
+Reads map to '-':                       20
+Non-splice reads:                       36
+Splice reads:                           4
+Reads mapped in proper pairs:           39
+Proper-paired reads map to different chrom:0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.clipping_profile.pdf
Binary file test-data/output.clipping_profile.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.clipping_profile.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.clipping_profile.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,6 @@
+pdf("output.clipping_profile.pdf")
+read_pos=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)
+clip_count=c(16.0,12.0,11.0,8.0,7.0,6.0,1.0,1.0,1.0,1.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.0,1.0,1.0,2.0,3.0,4.0,4.0)
+nonclip_count= 40 - clip_count
+plot(read_pos, nonclip_count*100/(clip_count+nonclip_count),col="blue",main="clipping profile",xlab="Position of read",ylab="Non-clipped %",type="b")
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.clipping_profile.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.clipping_profile.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,52 @@
+Position	Clipped_nt	Non_clipped_nt
+0	16.0	24.0
+1	12.0	28.0
+2	11.0	29.0
+3	8.0	32.0
+4	7.0	33.0
+5	6.0	34.0
+6	1.0	39.0
+7	1.0	39.0
+8	1.0	39.0
+9	1.0	39.0
+10	0	40.0
+11	0	40.0
+12	0	40.0
+13	0	40.0
+14	0	40.0
+15	0	40.0
+16	0	40.0
+17	0	40.0
+18	0	40.0
+19	0	40.0
+20	0	40.0
+21	0	40.0
+22	0	40.0
+23	0	40.0
+24	0	40.0
+25	0	40.0
+26	0	40.0
+27	0	40.0
+28	0	40.0
+29	0	40.0
+30	0	40.0
+31	0	40.0
+32	0	40.0
+33	0	40.0
+34	0	40.0
+35	0	40.0
+36	0	40.0
+37	0	40.0
+38	0	40.0
+39	0	40.0
+40	0	40.0
+41	0	40.0
+42	0	40.0
+43	0	40.0
+44	1.0	39.0
+45	1.0	39.0
+46	1.0	39.0
+47	2.0	38.0
+48	3.0	37.0
+49	4.0	36.0
+50	4.0	36.0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.deletion_profile.pdf
Binary file test-data/output.deletion_profile.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.deletion_profile.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.deletion_profile.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,5 @@
+pdf("output.deletion_profile.pdf")
+pos=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)
+value=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
+plot(pos,value,type='b', col='blue',xlab="Read position (5'->3')", ylab='Deletion count')
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.deletion_profile.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.deletion_profile.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,102 @@
+read_position	deletion_count
+0	0
+1	0
+2	0
+3	0
+4	0
+5	0
+6	0
+7	0
+8	0
+9	0
+10	0
+11	0
+12	0
+13	0
+14	0
+15	0
+16	0
+17	0
+18	0
+19	0
+20	0
+21	0
+22	0
+23	0
+24	0
+25	0
+26	0
+27	0
+28	0
+29	0
+30	0
+31	0
+32	0
+33	0
+34	0
+35	0
+36	0
+37	0
+38	0
+39	0
+40	0
+41	0
+42	0
+43	0
+44	0
+45	0
+46	0
+47	0
+48	0
+49	0
+50	0
+51	0
+52	0
+53	0
+54	0
+55	0
+56	0
+57	0
+58	0
+59	0
+60	0
+61	0
+62	0
+63	0
+64	0
+65	0
+66	0
+67	0
+68	0
+69	0
+70	0
+71	0
+72	0
+73	0
+74	0
+75	0
+76	0
+77	0
+78	0
+79	0
+80	0
+81	0
+82	0
+83	0
+84	0
+85	0
+86	0
+87	0
+88	0
+89	0
+90	0
+91	0
+92	0
+93	0
+94	0
+95	0
+96	0
+97	0
+98	0
+99	0
+100	0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.geneBodyCoverage.curves.pdf
Binary file test-data/output.geneBodyCoverage.curves.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.geneBodyCoverage.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.geneBodyCoverage.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,8 @@
+pairend_strandspecific_51mer_hg19_chr1_1_100000_bam <- c(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
+
+
+pdf("output.geneBodyCoverage.curves.pdf")
+x=1:100
+icolor = colorRampPalette(c("#7fc97f","#beaed4","#fdc086","#ffff99","#386cb0","#f0027f"))(1)
+plot(x,pairend_strandspecific_51mer_hg19_chr1_1_100000_bam,type='l',xlab="Gene body percentile (5'->3')", ylab="Coverage",lwd=0.8,col=icolor[1])
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.geneBodyCoverage.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.geneBodyCoverage.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,2 @@
+Percentile	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
+pairend_strandspecific_51mer_hg19_chr1_1_100000_bam	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.geneBodyCoverage2.curves.pdf
Binary file test-data/output.geneBodyCoverage2.curves.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.geneBodyCoverage2.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.geneBodyCoverage2.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,5 @@
+pdf('output.geneBodyCoverage.pdf')
+x=1:100
+y=c(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
+plot(x,y/7,xlab="percentile of gene body (5'->3')",ylab='average wigsum',type='s')
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.geneBodyCoverage2.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.geneBodyCoverage2.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,101 @@
+percentile	count
+0	0.0
+1	0.0
+2	0.0
+3	0.0
+4	0.0
+5	0.0
+6	0.0
+7	0.0
+8	0.0
+9	0.0
+10	0.0
+11	0.0
+12	0.0
+13	0.0
+14	0.0
+15	0.0
+16	0.0
+17	0.0
+18	0.0
+19	0.0
+20	0.0
+21	0.0
+22	0.0
+23	0.0
+24	0.0
+25	1.0
+26	0.0
+27	0.0
+28	1.0
+29	0.0
+30	0.0
+31	0.0
+32	0.0
+33	0.0
+34	0.0
+35	0.0
+36	0.0
+37	0.0
+38	1.0
+39	1.0
+40	1.0
+41	0.0
+42	0.0
+43	1.0
+44	1.0
+45	1.0
+46	0.0
+47	0.0
+48	0.0
+49	0.0
+50	0.0
+51	0.0
+52	0.0
+53	0.0
+54	0.0
+55	0.0
+56	0.0
+57	0.0
+58	0.0
+59	0.0
+60	0.0
+61	0.0
+62	0.0
+63	0.0
+64	0.0
+65	0.0
+66	0.0
+67	0.0
+68	0.0
+69	0.0
+70	0.0
+71	0.0
+72	0.0
+73	0.0
+74	0.0
+75	0.0
+76	0.0
+77	0.0
+78	0.0
+79	1.0
+80	1.0
+81	1.0
+82	0.0
+83	1.0
+84	1.0
+85	1.0
+86	0.0
+87	0.0
+88	0.0
+89	0.0
+90	0.0
+91	0.0
+92	0.0
+93	0.0
+94	0.0
+95	0.0
+96	0.0
+97	0.0
+98	0.0
+99	0.0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.infer_experiment.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.infer_experiment.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,6 @@
+
+
+This is PairEnd Data
+Fraction of reads failed to determine: 0.0000
+Fraction of reads explained by "1++,1--,2+-,2-+": 1.0000
+Fraction of reads explained by "1+-,1-+,2++,2--": 0.0000
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.inner_distance.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.inner_distance.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,20 @@
+seq.11990047	235	sameTranscript=No,dist=genomic
+seq.14614493	31	sameTranscript=Yes,sameExon=Yes,dist=mRNA
+seq.24018133	2	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.10608403	158	sameTranscript=Yes,sameExon=No,dist=mRNA
+seq.10820209	146	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.1537155	33	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.25274725	17	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.26326595	211	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.28833653	55	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.25049090	61	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.23476912	69	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.28059536	225	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.13270875	200	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.2214586	132	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.31061198	-31	readPairOverlap
+seq.13539256	208	sameTranscript=No,dist=genomic
+seq.13835843	-7	sameTranscript=No,dist=genomic
+seq.5556605	88	sameTranscript=No,dist=genomic
+seq.20367385	17	sameTranscript=No,dist=genomic
+seq.17373919	146394	sameTranscript=No,dist=genomic
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.inner_distance_freq.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.inner_distance_freq.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,100 @@
+-250	-245	0
+-245	-240	0
+-240	-235	0
+-235	-230	0
+-230	-225	0
+-225	-220	0
+-220	-215	0
+-215	-210	0
+-210	-205	0
+-205	-200	0
+-200	-195	0
+-195	-190	0
+-190	-185	0
+-185	-180	0
+-180	-175	0
+-175	-170	0
+-170	-165	0
+-165	-160	0
+-160	-155	0
+-155	-150	0
+-150	-145	0
+-145	-140	0
+-140	-135	0
+-135	-130	0
+-130	-125	0
+-125	-120	0
+-120	-115	0
+-115	-110	0
+-110	-105	0
+-105	-100	0
+-100	-95	0
+-95	-90	0
+-90	-85	0
+-85	-80	0
+-80	-75	0
+-75	-70	0
+-70	-65	0
+-65	-60	0
+-60	-55	0
+-55	-50	0
+-50	-45	0
+-45	-40	0
+-40	-35	0
+-35	-30	1
+-30	-25	0
+-25	-20	0
+-20	-15	0
+-15	-10	0
+-10	-5	1
+-5	0	0
+0	5	1
+5	10	0
+10	15	0
+15	20	2
+20	25	0
+25	30	0
+30	35	2
+35	40	0
+40	45	0
+45	50	0
+50	55	1
+55	60	0
+60	65	1
+65	70	1
+70	75	0
+75	80	0
+80	85	0
+85	90	1
+90	95	0
+95	100	0
+100	105	0
+105	110	0
+110	115	0
+115	120	0
+120	125	0
+125	130	0
+130	135	1
+135	140	0
+140	145	0
+145	150	1
+150	155	0
+155	160	1
+160	165	0
+165	170	0
+170	175	0
+175	180	0
+180	185	0
+185	190	0
+190	195	0
+195	200	1
+200	205	0
+205	210	1
+210	215	1
+215	220	0
+220	225	1
+225	230	0
+230	235	1
+235	240	0
+240	245	0
+245	250	0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.inner_distance_plot.pdf
Binary file test-data/output.inner_distance_plot.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.inner_distance_plot.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.inner_distance_plot.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,11 @@
+out_file = 'output'
+pdf('output.inner_distance_plot.pdf')
+fragsize=rep(c(-248,-243,-238,-233,-228,-223,-218,-213,-208,-203,-198,-193,-188,-183,-178,-173,-168,-163,-158,-153,-148,-143,-138,-133,-128,-123,-118,-113,-108,-103,-98,-93,-88,-83,-78,-73,-68,-63,-58,-53,-48,-43,-38,-33,-28,-23,-18,-13,-8,-3,2,7,12,17,22,27,32,37,42,47,52,57,62,67,72,77,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247),times=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,2,0,0,2,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,0,0,0))
+frag_sd = sd(fragsize)
+frag_mean = mean(fragsize)
+frag_median = median(fragsize)
+write(x=c("Name","Mean","Median","sd"), sep="	", file=stdout(),ncolumns=4)
+write(c(out_file,frag_mean,frag_median,frag_sd),sep="	", file=stdout(),ncolumns=4)
+hist(fragsize,probability=T,breaks=100,xlab="mRNA insert size (bp)",main=paste(c("Mean=",frag_mean,";","SD=",frag_sd),collapse=""),border="blue")
+lines(density(fragsize,bw=10),col='red')
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.insertion_profile.pdf
Binary file test-data/output.insertion_profile.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.insertion_profile.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.insertion_profile.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,6 @@
+pdf("output.insertion_profile.pdf")
+read_pos=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)
+insert_count=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
+noninsert_count= 40 - insert_count
+plot(read_pos, insert_count*100/(insert_count+noninsert_count),col="blue",main="Insertion profile",xlab="Position of read",ylab="Insertion %",type="b")
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.insertion_profile.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.insertion_profile.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,52 @@
+Position	Insert_nt	Non_insert_nt
+0	0	40.0
+1	0	40.0
+2	0	40.0
+3	0	40.0
+4	0	40.0
+5	0	40.0
+6	0	40.0
+7	0	40.0
+8	0	40.0
+9	0	40.0
+10	0	40.0
+11	0	40.0
+12	0	40.0
+13	0	40.0
+14	0	40.0
+15	0	40.0
+16	0	40.0
+17	0	40.0
+18	0	40.0
+19	0	40.0
+20	0	40.0
+21	0	40.0
+22	0	40.0
+23	0	40.0
+24	0	40.0
+25	0	40.0
+26	0	40.0
+27	0	40.0
+28	0	40.0
+29	0	40.0
+30	0	40.0
+31	0	40.0
+32	0	40.0
+33	0	40.0
+34	0	40.0
+35	0	40.0
+36	0	40.0
+37	0	40.0
+38	0	40.0
+39	0	40.0
+40	0	40.0
+41	0	40.0
+42	0	40.0
+43	0	40.0
+44	0	40.0
+45	0	40.0
+46	0	40.0
+47	0	40.0
+48	0	40.0
+49	0	40.0
+50	0	40.0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.junction.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.junction.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,4 @@
+chrom	intron_st(0-based)	intron_end(1-based)	read_count	annotation
+chr1	17055	17232	1	annotated
+chr1	21768	22000	1	complete_novel
+chr1	12697	13220	1	partial_novel
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.junctionSaturation_plot.pdf
Binary file test-data/output.junctionSaturation_plot.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.junctionSaturation_plot.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.junctionSaturation_plot.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,12 @@
+pdf('output.junctionSaturation_plot.pdf')
+x=c(5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100)
+y=c(0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
+z=c(0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,3)
+w=c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2)
+m=max(0,0,0)
+n=min(0,0,0)
+plot(x,z/1000,xlab='percent of total reads',ylab='Number of splicing junctions (x1000)',type='o',col='blue',ylim=c(n,m))
+points(x,y/1000,type='o',col='red')
+points(x,w/1000,type='o',col='green')
+legend(5,0, legend=c("All junctions","known junctions", "novel junctions"),col=c("blue","red","green"),lwd=1,pch=1)
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.junction_plot.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.junction_plot.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,8 @@
+pdf("output.splice_events.pdf")
+events=c(25.0,25.0,25.0)
+pie(events,col=c(2,3,4),init.angle=30,angle=c(60,120,150),density=c(70,70,70),main="splicing events",labels=c("partial_novel 25%","complete_novel 25%","known 25%"))
+dev.off()
+pdf("output.splice_junction.pdf")
+junction=c(33.3333333333,33.3333333333,33.3333333333)
+pie(junction,col=c(2,3,4),init.angle=30,angle=c(60,120,150),density=c(70,70,70),main="splicing junctions",labels=c("partial_novel 33%","complete_novel 33%","known 33%"))
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.mismatch_profile.pdf
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.mismatch_profile.r
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.mismatch_profile.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.mismatch_profile.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,1 @@
+Total reads used: 0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.pos.DupRate.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.pos.DupRate.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,2 @@
+Occurrence	UniqReadNumber
+1	40
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.qual.boxplot.pdf
Binary file test-data/output.qual.boxplot.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.qual.heatmap.pdf
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.qual.heatmap.pdf	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,62 @@
+pdf('output.qual.boxplot.pdf')
+p0<-rep(c(33,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(119,2,3,2,5,6,8,6,2,3,11,16,6,26,11,13,25,39,7,40,33,33,58,51,116,87,55,256,54,323,263,140,812,654,1119)/1000)
+p1<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(105,2,2,2,4,8,6,21,3,1,1,8,13,13,16,16,14,29,32,18,50,30,57,66,73,97,105,60,253,57,330,270,142,801,630,1069)/1000)
+p2<-rep(c(33,35,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(109,1,1,3,2,7,11,14,13,2,4,3,8,14,21,27,17,14,26,39,11,37,28,74,64,55,86,106,62,234,56,326,269,147,787,645,1081)/1000)
+p3<-rep(c(33,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(108,1,6,4,2,9,12,7,3,3,9,14,13,24,20,8,24,46,14,43,28,59,67,75,88,107,51,285,56,293,239,139,802,660,1084)/1000)
+p4<-rep(c(33,35,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(97,1,1,3,9,8,11,5,4,2,4,10,16,19,24,7,8,35,43,19,49,29,51,67,51,93,107,43,306,65,345,223,123,789,661,1075)/1000)
+p5<-rep(c(33,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(96,3,2,5,11,6,8,2,7,2,12,17,15,16,12,11,25,31,12,32,36,59,70,69,74,99,56,277,59,343,249,111,845,650,1081)/1000)
+p6<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(86,2,4,2,6,12,8,10,1,7,7,9,11,14,26,14,9,14,53,17,34,41,55,71,76,76,117,62,238,62,339,229,155,798,607,1131)/1000)
+p7<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(76,1,4,4,6,11,9,13,5,5,6,6,17,19,20,17,8,19,45,15,30,33,60,68,58,76,99,59,291,54,349,251,129,818,602,1120)/1000)
+p8<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(74,1,2,3,1,5,6,6,7,7,2,4,11,11,16,24,13,9,24,48,19,33,39,63,67,68,78,104,66,284,62,329,240,147,749,649,1132)/1000)
+p9<-rep(c(33,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(98,1,2,2,6,11,19,10,5,3,8,18,19,24,14,5,18,53,21,41,39,56,79,64,70,93,57,291,42,334,259,143,795,616,1087)/1000)
+p10<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(71,3,3,4,3,5,6,7,2,3,5,13,14,6,17,21,12,27,40,16,34,39,46,64,78,103,103,63,279,37,314,239,118,805,674,1129)/1000)
+p11<-rep(c(33,34,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(76,1,4,3,3,7,10,11,8,5,6,3,12,13,18,21,16,18,21,46,21,32,41,77,56,77,103,105,54,269,40,320,247,144,796,621,1098)/1000)
+p12<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(87,3,2,1,7,12,8,6,5,13,8,11,9,16,23,13,14,22,40,21,53,48,51,59,77,84,126,75,282,48,306,254,151,808,586,1074)/1000)
+p13<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(76,5,1,3,6,3,7,8,4,3,10,12,14,13,23,12,19,25,43,17,52,42,63,57,92,91,114,61,281,45,342,256,132,812,586,1073)/1000)
+p14<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(81,1,5,4,4,10,11,9,3,5,5,6,18,21,29,26,14,27,51,17,54,47,51,65,84,84,118,66,291,46,316,244,149,782,579,1080)/1000)
+p15<-rep(c(33,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(87,1,2,5,2,10,17,12,9,7,2,10,10,12,20,18,21,27,50,17,50,54,42,82,57,84,103,54,285,41,342,265,115,822,582,1085)/1000)
+p16<-rep(c(33,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(118,4,3,7,7,11,10,5,6,8,11,18,19,30,34,13,34,47,14,62,49,55,83,82,96,101,51,283,45,346,249,152,843,521,985)/1000)
+p17<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(73,2,5,6,7,9,11,7,5,4,11,19,13,15,33,18,17,42,57,25,46,65,67,94,68,93,117,67,279,53,306,295,132,844,504,993)/1000)
+p18<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(72,1,2,3,5,4,16,13,14,2,8,2,18,19,27,37,27,18,29,57,21,47,57,62,87,81,89,111,57,293,49,319,270,142,858,495,990)/1000)
+p19<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(78,1,1,5,3,3,13,10,13,5,7,5,14,15,24,30,23,23,24,57,19,72,49,70,70,72,91,124,60,298,52,347,270,147,841,486,980)/1000)
+p20<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(71,4,5,3,10,9,10,12,5,9,6,23,14,19,33,27,21,34,60,16,47,57,55,82,84,109,117,44,305,45,335,265,146,856,510,954)/1000)
+p21<-rep(c(33,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(80,5,4,5,4,6,10,7,4,11,14,19,18,32,25,29,32,75,19,58,56,66,81,79,102,133,52,332,44,306,260,152,879,486,917)/1000)
+p22<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(80,2,5,2,11,11,13,4,4,5,8,12,15,21,34,27,18,44,58,26,72,62,72,90,84,97,137,51,324,54,332,254,143,857,492,881)/1000)
+p23<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(78,3,4,1,9,9,3,8,9,9,5,12,20,19,37,30,23,38,69,29,64,51,71,95,92,99,133,52,320,51,340,275,152,868,467,856)/1000)
+p24<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(73,1,2,3,6,14,19,7,3,3,10,24,15,26,38,27,15,34,71,17,62,72,75,86,84,108,128,65,304,41,356,239,139,864,494,876)/1000)
+p25<-rep(c(33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(100,1,1,6,3,6,14,19,11,9,7,11,5,8,25,21,35,16,18,39,61,19,65,42,62,91,83,80,105,38,318,50,372,289,135,847,504,884)/1000)
+p26<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(72,1,1,4,2,12,10,17,11,5,3,3,21,25,29,34,34,19,38,55,20,55,59,82,96,99,106,133,45,299,71,339,265,157,822,474,882)/1000)
+p27<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(73,1,2,5,3,17,16,6,5,7,11,7,16,14,30,31,16,45,71,29,50,62,72,78,77,107,132,62,273,47,366,277,161,892,462,877)/1000)
+p28<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(91,3,2,2,7,10,6,9,9,6,11,15,17,19,33,20,10,30,54,20,68,48,73,84,72,114,131,60,321,60,356,270,159,874,496,840)/1000)
+p29<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(92,1,5,5,4,6,8,7,10,4,7,7,16,26,24,33,20,22,36,49,15,53,65,71,79,80,112,127,63,320,49,359,292,141,837,455,900)/1000)
+p30<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(105,1,2,5,4,2,15,8,13,8,6,7,19,24,21,30,22,17,35,53,13,52,61,45,93,74,87,120,60,302,41,331,272,131,877,513,931)/1000)
+p31<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(117,3,5,3,11,23,24,10,5,7,6,8,13,12,40,18,18,40,41,12,45,57,72,86,71,75,125,68,299,55,302,264,154,874,464,973)/1000)
+p32<-rep(c(33,35,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(120,1,7,3,4,9,13,19,8,5,3,10,17,25,13,19,18,23,33,49,25,41,51,72,74,56,95,112,60,291,58,281,267,145,916,463,993)/1000)
+p33<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(89,1,4,9,13,7,8,7,8,6,8,8,18,20,12,34,26,14,31,50,17,45,65,58,68,77,84,110,66,289,54,284,282,164,871,489,1003)/1000)
+p34<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(162,1,3,4,4,14,15,24,17,2,6,9,16,15,20,37,20,12,34,49,12,42,50,54,66,62,81,121,56,265,50,292,258,127,878,506,1015)/1000)
+p35<-rep(c(33,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(79,5,1,3,3,13,8,6,7,11,15,19,11,17,25,16,34,49,16,37,45,69,72,76,79,101,48,303,38,326,254,140,811,619,1043)/1000)
+p36<-rep(c(33,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(78,3,4,3,8,5,6,8,6,5,13,18,18,32,19,22,39,43,17,39,45,68,77,74,69,118,47,272,47,332,262,139,833,562,1068)/1000)
+p37<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(96,1,3,1,5,5,6,6,8,4,7,3,12,9,18,35,15,24,27,57,20,40,53,70,81,89,91,117,46,262,44,298,251,130,817,588,1059)/1000)
+p38<-rep(c(33,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(102,5,5,4,10,11,12,3,3,7,8,18,15,22,20,17,20,50,21,46,43,71,70,80,91,110,51,239,34,339,258,119,820,614,1058)/1000)
+p39<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(100,3,5,3,6,10,12,12,5,5,10,6,21,18,28,14,16,33,38,18,45,56,58,71,65,79,109,57,253,47,310,263,129,854,616,1017)/1000)
+p40<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(97,1,4,3,1,5,14,7,11,2,5,2,9,6,19,21,18,21,30,37,22,37,64,40,69,53,89,104,66,281,42,355,233,137,771,615,1095)/1000)
+p41<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(130,5,2,6,10,10,19,20,5,5,4,12,16,17,28,14,12,25,42,16,42,39,57,61,73,84,110,49,261,48,315,254,125,761,643,1028)/1000)
+p42<-rep(c(33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(108,2,1,2,1,5,4,12,13,7,6,7,3,6,14,19,20,22,15,22,52,14,50,45,57,67,72,78,119,51,272,45,284,226,127,831,604,1054)/1000)
+p43<-rep(c(33,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(124,2,2,1,2,5,13,17,10,1,6,4,14,11,19,31,14,14,24,30,12,42,41,54,64,74,82,112,68,250,49,308,261,142,775,557,1060)/1000)
+p44<-rep(c(33,35,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(106,1,1,4,4,10,9,9,7,9,6,8,8,16,21,12,18,24,50,14,43,43,56,55,100,87,109,51,261,51,308,217,139,759,562,1041)/1000)
+p45<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(120,3,3,2,9,7,12,9,6,4,1,10,9,15,26,11,16,22,35,16,26,45,50,60,56,67,74,62,247,50,282,243,123,747,618,1061)/1000)
+p46<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(116,1,2,3,2,10,15,10,1,2,6,6,10,9,13,8,14,29,26,12,31,42,59,41,57,88,92,58,257,43,304,236,133,707,612,1016)/1000)
+p47<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(130,1,2,4,2,6,8,18,21,3,5,5,7,12,15,17,7,7,23,43,9,28,32,44,42,56,68,83,54,225,38,289,181,133,713,594,991)/1000)
+p48<-rep(c(33,35,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(105,1,5,2,6,9,10,23,1,5,3,3,9,9,30,13,7,18,27,12,28,24,49,42,63,75,81,45,226,43,274,217,147,676,571,925)/1000)
+p49<-rep(c(33,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(99,3,1,3,5,5,16,3,3,6,7,4,13,15,11,3,10,34,16,20,37,46,41,52,66,85,35,201,45,253,201,119,685,497,913)/1000)
+p50<-rep(c(33,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(82,2,3,5,3,4,5,13,9,5,11,14,3,35,17,21,41,34,67,67,31,184,49,241,167,93,639,515,797)/1000)
+boxplot(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p23,p24,p25,p26,p27,p28,p29,p30,p31,p32,p33,p34,p35,p36,p37,p38,p39,p40,p41,p42,p43,p44,p45,p46,p47,p48,p49,p50,xlab="Position of Read(5'->3')",ylab="Phred Quality Score",outline=F)
+dev.off()
+
+
+pdf('output.qual.heatmap.pdf')
+qual=c(119,0,0,0,2,3,2,5,6,8,6,2,0,3,11,16,6,26,11,13,25,39,7,40,33,33,58,51,116,87,55,256,54,323,263,140,812,654,1119,105,0,0,0,2,2,2,4,8,6,21,3,1,1,8,13,13,16,16,14,29,32,18,50,30,57,66,73,97,105,60,253,57,330,270,142,801,630,1069,109,0,1,0,1,3,2,7,11,14,13,2,4,3,8,14,21,27,17,14,26,39,11,37,28,74,64,55,86,106,62,234,56,326,269,147,787,645,1081,108,0,0,0,1,6,4,2,9,12,7,0,3,3,9,14,13,24,20,8,24,46,14,43,28,59,67,75,88,107,51,285,56,293,239,139,802,660,1084,97,0,1,0,1,0,3,9,8,11,5,4,2,4,10,16,19,24,7,8,35,43,19,49,29,51,67,51,93,107,43,306,65,345,223,123,789,661,1075,96,0,0,0,3,0,2,5,11,6,8,2,7,2,12,17,15,16,12,11,25,31,12,32,36,59,70,69,74,99,56,277,59,343,249,111,845,650,1081,86,0,0,0,2,4,2,6,12,8,10,1,7,7,9,11,14,26,14,9,14,53,17,34,41,55,71,76,76,117,62,238,62,339,229,155,798,607,1131,76,0,0,0,1,4,4,6,11,9,13,5,5,6,6,17,19,20,17,8,19,45,15,30,33,60,68,58,76,99,59,291,54,349,251,129,818,602,1120,74,0,0,1,2,3,1,5,6,6,7,7,2,4,11,11,16,24,13,9,24,48,19,33,39,63,67,68,78,104,66,284,62,329,240,147,749,649,1132,98,0,0,0,1,2,2,6,11,19,10,0,5,3,8,18,19,24,14,5,18,53,21,41,39,56,79,64,70,93,57,291,42,334,259,143,795,616,1087,71,0,0,0,3,3,4,3,5,6,7,2,3,5,13,14,6,17,21,12,27,40,16,34,39,46,64,78,103,103,63,279,37,314,239,118,805,674,1129,76,1,0,0,4,3,3,7,10,11,8,5,6,3,12,13,18,21,16,18,21,46,21,32,41,77,56,77,103,105,54,269,40,320,247,144,796,621,1098,87,0,0,0,3,2,1,7,12,8,6,5,13,8,11,9,16,23,13,14,22,40,21,53,48,51,59,77,84,126,75,282,48,306,254,151,808,586,1074,76,0,0,0,5,1,3,6,3,7,8,4,3,10,12,14,13,23,12,19,25,43,17,52,42,63,57,92,91,114,61,281,45,342,256,132,812,586,1073,81,0,0,0,1,5,4,4,10,11,9,3,5,5,6,18,21,29,26,14,27,51,17,54,47,51,65,84,84,118,66,291,46,316,244,149,782,579,1080,87,0,0,1,2,5,2,10,17,12,9,0,7,2,10,10,12,20,18,21,27,50,17,50,54,42,82,57,84,103,54,285,41,342,265,115,822,582,1085,118,0,0,0,0,4,3,7,7,11,10,5,6,8,11,18,19,30,34,13,34,47,14,62,49,55,83,82,96,101,51,283,45,346,249,152,843,521,985,73,0,0,0,2,5,6,7,9,11,7,5,4,11,19,13,15,33,18,17,42,57,25,46,65,67,94,68,93,117,67,279,53,306,295,132,844,504,993,72,0,0,1,2,3,5,4,16,13,14,2,8,2,18,19,27,37,27,18,29,57,21,47,57,62,87,81,89,111,57,293,49,319,270,142,858,495,990,78,0,0,1,1,5,3,3,13,10,13,5,7,5,14,15,24,30,23,23,24,57,19,72,49,70,70,72,91,124,60,298,52,347,270,147,841,486,980,71,0,0,0,4,5,3,10,9,10,12,5,9,6,23,14,19,33,27,21,34,60,16,47,57,55,82,84,109,117,44,305,45,335,265,146,856,510,954,80,0,0,0,5,4,5,4,6,10,7,4,0,11,14,19,18,32,25,29,32,75,19,58,56,66,81,79,102,133,52,332,44,306,260,152,879,486,917,80,0,0,0,2,5,2,11,11,13,4,4,5,8,12,15,21,34,27,18,44,58,26,72,62,72,90,84,97,137,51,324,54,332,254,143,857,492,881,78,0,0,0,3,4,1,9,9,3,8,9,9,5,12,20,19,37,30,23,38,69,29,64,51,71,95,92,99,133,52,320,51,340,275,152,868,467,856,73,0,0,0,1,2,3,6,14,19,7,3,3,10,24,15,26,38,27,15,34,71,17,62,72,75,86,84,108,128,65,304,41,356,239,139,864,494,876,100,0,1,1,6,3,6,14,19,11,9,7,11,5,8,25,21,35,16,18,39,61,19,65,42,62,91,83,80,105,38,318,50,372,289,135,847,504,884,72,0,0,1,1,4,2,12,10,17,11,5,3,3,21,25,29,34,34,19,38,55,20,55,59,82,96,99,106,133,45,299,71,339,265,157,822,474,882,73,0,0,0,1,2,5,3,17,16,6,5,7,11,7,16,14,30,31,16,45,71,29,50,62,72,78,77,107,132,62,273,47,366,277,161,892,462,877,91,0,0,0,3,2,2,7,10,6,9,9,6,11,15,17,19,33,20,10,30,54,20,68,48,73,84,72,114,131,60,321,60,356,270,159,874,496,840,92,0,0,1,5,5,4,6,8,7,10,4,7,7,16,26,24,33,20,22,36,49,15,53,65,71,79,80,112,127,63,320,49,359,292,141,837,455,900,105,0,0,1,2,5,4,2,15,8,13,8,6,7,19,24,21,30,22,17,35,53,13,52,61,45,93,74,87,120,60,302,41,331,272,131,877,513,931,117,0,0,0,3,5,3,11,23,24,10,5,7,6,8,13,12,40,18,18,40,41,12,45,57,72,86,71,75,125,68,299,55,302,264,154,874,464,973,120,0,1,0,7,3,4,9,13,19,8,5,3,10,17,25,13,19,18,23,33,49,25,41,51,72,74,56,95,112,60,291,58,281,267,145,916,463,993,89,0,0,1,4,9,13,7,8,7,8,6,8,8,18,20,12,34,26,14,31,50,17,45,65,58,68,77,84,110,66,289,54,284,282,164,871,489,1003,162,0,0,1,3,4,4,14,15,24,17,2,6,9,16,15,20,37,20,12,34,49,12,42,50,54,66,62,81,121,56,265,50,292,258,127,878,506,1015,79,0,0,0,5,1,3,3,13,8,6,0,7,11,15,19,11,17,25,16,34,49,16,37,45,69,72,76,79,101,48,303,38,326,254,140,811,619,1043,78,0,0,0,3,0,4,3,8,5,6,8,6,5,13,18,18,32,19,22,39,43,17,39,45,68,77,74,69,118,47,272,47,332,262,139,833,562,1068,96,0,0,1,3,1,5,5,6,6,8,4,7,3,12,9,18,35,15,24,27,57,20,40,53,70,81,89,91,117,46,262,44,298,251,130,817,588,1059,102,0,0,0,5,0,5,4,10,11,12,3,3,7,8,18,15,22,20,17,20,50,21,46,43,71,70,80,91,110,51,239,34,339,258,119,820,614,1058,100,0,0,0,3,5,3,6,10,12,12,5,5,10,6,21,18,28,14,16,33,38,18,45,56,58,71,65,79,109,57,253,47,310,263,129,854,616,1017,97,0,0,1,4,3,1,5,14,7,11,2,5,2,9,6,19,21,18,21,30,37,22,37,64,40,69,53,89,104,66,281,42,355,233,137,771,615,1095,130,0,0,0,5,2,6,10,10,19,20,5,5,4,12,16,17,28,14,12,25,42,16,42,39,57,61,73,84,110,49,261,48,315,254,125,761,643,1028,108,0,2,1,2,1,5,4,12,13,7,6,7,3,6,14,19,20,22,15,22,52,14,50,45,57,67,72,78,119,51,272,45,284,226,127,831,604,1054,124,0,2,2,0,1,2,5,13,17,10,1,6,4,14,11,19,31,14,14,24,30,12,42,41,54,64,74,82,112,68,250,49,308,261,142,775,557,1060,106,0,1,0,1,4,4,10,9,9,7,0,9,6,8,8,16,21,12,18,24,50,14,43,43,56,55,100,87,109,51,261,51,308,217,139,759,562,1041,120,0,0,0,3,3,2,9,7,12,9,6,4,1,10,9,15,26,11,16,22,35,16,26,45,50,60,56,67,74,62,247,50,282,243,123,747,618,1061,116,0,0,0,1,2,3,2,10,15,10,1,2,6,6,10,9,13,8,14,29,26,12,31,42,59,41,57,88,92,58,257,43,304,236,133,707,612,1016,130,0,0,1,2,4,2,6,8,18,21,3,5,5,7,12,15,17,7,7,23,43,9,28,32,44,42,56,68,83,54,225,38,289,181,133,713,594,991,105,0,1,0,0,5,2,6,9,10,23,1,5,3,3,9,9,30,13,7,18,27,12,28,24,49,42,63,75,81,45,226,43,274,217,147,676,571,925,99,0,0,0,0,3,1,3,5,5,16,3,3,6,7,4,13,15,11,3,10,34,16,20,37,46,41,52,66,85,35,201,45,253,201,119,685,497,913,82,0,0,0,0,0,0,0,0,0,2,0,3,5,3,4,5,13,9,5,11,14,3,35,17,21,41,34,67,67,31,184,49,241,167,93,639,515,797)
+mat=matrix(qual,ncol=51,byrow=F)
+Lab.palette <- colorRampPalette(c("blue", "orange", "red3","red2","red1","red"), space = "rgb",interpolate=c('spline'))
+heatmap(mat,Rowv=NA,Colv=NA,xlab="Position of Read",ylab="Phred Quality Score",labRow=seq(from=33,to=71),col = Lab.palette(256),scale="none" )
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.qual.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.qual.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,62 @@
+pdf('output.qual.boxplot.pdf')
+p0<-rep(c(33,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(119,2,3,2,5,6,8,6,2,3,11,16,6,26,11,13,25,39,7,40,33,33,58,51,116,87,55,256,54,323,263,140,812,654,1119)/1000)
+p1<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(105,2,2,2,4,8,6,21,3,1,1,8,13,13,16,16,14,29,32,18,50,30,57,66,73,97,105,60,253,57,330,270,142,801,630,1069)/1000)
+p2<-rep(c(33,35,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(109,1,1,3,2,7,11,14,13,2,4,3,8,14,21,27,17,14,26,39,11,37,28,74,64,55,86,106,62,234,56,326,269,147,787,645,1081)/1000)
+p3<-rep(c(33,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(108,1,6,4,2,9,12,7,3,3,9,14,13,24,20,8,24,46,14,43,28,59,67,75,88,107,51,285,56,293,239,139,802,660,1084)/1000)
+p4<-rep(c(33,35,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(97,1,1,3,9,8,11,5,4,2,4,10,16,19,24,7,8,35,43,19,49,29,51,67,51,93,107,43,306,65,345,223,123,789,661,1075)/1000)
+p5<-rep(c(33,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(96,3,2,5,11,6,8,2,7,2,12,17,15,16,12,11,25,31,12,32,36,59,70,69,74,99,56,277,59,343,249,111,845,650,1081)/1000)
+p6<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(86,2,4,2,6,12,8,10,1,7,7,9,11,14,26,14,9,14,53,17,34,41,55,71,76,76,117,62,238,62,339,229,155,798,607,1131)/1000)
+p7<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(76,1,4,4,6,11,9,13,5,5,6,6,17,19,20,17,8,19,45,15,30,33,60,68,58,76,99,59,291,54,349,251,129,818,602,1120)/1000)
+p8<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(74,1,2,3,1,5,6,6,7,7,2,4,11,11,16,24,13,9,24,48,19,33,39,63,67,68,78,104,66,284,62,329,240,147,749,649,1132)/1000)
+p9<-rep(c(33,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(98,1,2,2,6,11,19,10,5,3,8,18,19,24,14,5,18,53,21,41,39,56,79,64,70,93,57,291,42,334,259,143,795,616,1087)/1000)
+p10<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(71,3,3,4,3,5,6,7,2,3,5,13,14,6,17,21,12,27,40,16,34,39,46,64,78,103,103,63,279,37,314,239,118,805,674,1129)/1000)
+p11<-rep(c(33,34,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(76,1,4,3,3,7,10,11,8,5,6,3,12,13,18,21,16,18,21,46,21,32,41,77,56,77,103,105,54,269,40,320,247,144,796,621,1098)/1000)
+p12<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(87,3,2,1,7,12,8,6,5,13,8,11,9,16,23,13,14,22,40,21,53,48,51,59,77,84,126,75,282,48,306,254,151,808,586,1074)/1000)
+p13<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(76,5,1,3,6,3,7,8,4,3,10,12,14,13,23,12,19,25,43,17,52,42,63,57,92,91,114,61,281,45,342,256,132,812,586,1073)/1000)
+p14<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(81,1,5,4,4,10,11,9,3,5,5,6,18,21,29,26,14,27,51,17,54,47,51,65,84,84,118,66,291,46,316,244,149,782,579,1080)/1000)
+p15<-rep(c(33,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(87,1,2,5,2,10,17,12,9,7,2,10,10,12,20,18,21,27,50,17,50,54,42,82,57,84,103,54,285,41,342,265,115,822,582,1085)/1000)
+p16<-rep(c(33,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(118,4,3,7,7,11,10,5,6,8,11,18,19,30,34,13,34,47,14,62,49,55,83,82,96,101,51,283,45,346,249,152,843,521,985)/1000)
+p17<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(73,2,5,6,7,9,11,7,5,4,11,19,13,15,33,18,17,42,57,25,46,65,67,94,68,93,117,67,279,53,306,295,132,844,504,993)/1000)
+p18<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(72,1,2,3,5,4,16,13,14,2,8,2,18,19,27,37,27,18,29,57,21,47,57,62,87,81,89,111,57,293,49,319,270,142,858,495,990)/1000)
+p19<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(78,1,1,5,3,3,13,10,13,5,7,5,14,15,24,30,23,23,24,57,19,72,49,70,70,72,91,124,60,298,52,347,270,147,841,486,980)/1000)
+p20<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(71,4,5,3,10,9,10,12,5,9,6,23,14,19,33,27,21,34,60,16,47,57,55,82,84,109,117,44,305,45,335,265,146,856,510,954)/1000)
+p21<-rep(c(33,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(80,5,4,5,4,6,10,7,4,11,14,19,18,32,25,29,32,75,19,58,56,66,81,79,102,133,52,332,44,306,260,152,879,486,917)/1000)
+p22<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(80,2,5,2,11,11,13,4,4,5,8,12,15,21,34,27,18,44,58,26,72,62,72,90,84,97,137,51,324,54,332,254,143,857,492,881)/1000)
+p23<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(78,3,4,1,9,9,3,8,9,9,5,12,20,19,37,30,23,38,69,29,64,51,71,95,92,99,133,52,320,51,340,275,152,868,467,856)/1000)
+p24<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(73,1,2,3,6,14,19,7,3,3,10,24,15,26,38,27,15,34,71,17,62,72,75,86,84,108,128,65,304,41,356,239,139,864,494,876)/1000)
+p25<-rep(c(33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(100,1,1,6,3,6,14,19,11,9,7,11,5,8,25,21,35,16,18,39,61,19,65,42,62,91,83,80,105,38,318,50,372,289,135,847,504,884)/1000)
+p26<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(72,1,1,4,2,12,10,17,11,5,3,3,21,25,29,34,34,19,38,55,20,55,59,82,96,99,106,133,45,299,71,339,265,157,822,474,882)/1000)
+p27<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(73,1,2,5,3,17,16,6,5,7,11,7,16,14,30,31,16,45,71,29,50,62,72,78,77,107,132,62,273,47,366,277,161,892,462,877)/1000)
+p28<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(91,3,2,2,7,10,6,9,9,6,11,15,17,19,33,20,10,30,54,20,68,48,73,84,72,114,131,60,321,60,356,270,159,874,496,840)/1000)
+p29<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(92,1,5,5,4,6,8,7,10,4,7,7,16,26,24,33,20,22,36,49,15,53,65,71,79,80,112,127,63,320,49,359,292,141,837,455,900)/1000)
+p30<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(105,1,2,5,4,2,15,8,13,8,6,7,19,24,21,30,22,17,35,53,13,52,61,45,93,74,87,120,60,302,41,331,272,131,877,513,931)/1000)
+p31<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(117,3,5,3,11,23,24,10,5,7,6,8,13,12,40,18,18,40,41,12,45,57,72,86,71,75,125,68,299,55,302,264,154,874,464,973)/1000)
+p32<-rep(c(33,35,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(120,1,7,3,4,9,13,19,8,5,3,10,17,25,13,19,18,23,33,49,25,41,51,72,74,56,95,112,60,291,58,281,267,145,916,463,993)/1000)
+p33<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(89,1,4,9,13,7,8,7,8,6,8,8,18,20,12,34,26,14,31,50,17,45,65,58,68,77,84,110,66,289,54,284,282,164,871,489,1003)/1000)
+p34<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(162,1,3,4,4,14,15,24,17,2,6,9,16,15,20,37,20,12,34,49,12,42,50,54,66,62,81,121,56,265,50,292,258,127,878,506,1015)/1000)
+p35<-rep(c(33,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(79,5,1,3,3,13,8,6,7,11,15,19,11,17,25,16,34,49,16,37,45,69,72,76,79,101,48,303,38,326,254,140,811,619,1043)/1000)
+p36<-rep(c(33,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(78,3,4,3,8,5,6,8,6,5,13,18,18,32,19,22,39,43,17,39,45,68,77,74,69,118,47,272,47,332,262,139,833,562,1068)/1000)
+p37<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(96,1,3,1,5,5,6,6,8,4,7,3,12,9,18,35,15,24,27,57,20,40,53,70,81,89,91,117,46,262,44,298,251,130,817,588,1059)/1000)
+p38<-rep(c(33,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(102,5,5,4,10,11,12,3,3,7,8,18,15,22,20,17,20,50,21,46,43,71,70,80,91,110,51,239,34,339,258,119,820,614,1058)/1000)
+p39<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(100,3,5,3,6,10,12,12,5,5,10,6,21,18,28,14,16,33,38,18,45,56,58,71,65,79,109,57,253,47,310,263,129,854,616,1017)/1000)
+p40<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(97,1,4,3,1,5,14,7,11,2,5,2,9,6,19,21,18,21,30,37,22,37,64,40,69,53,89,104,66,281,42,355,233,137,771,615,1095)/1000)
+p41<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(130,5,2,6,10,10,19,20,5,5,4,12,16,17,28,14,12,25,42,16,42,39,57,61,73,84,110,49,261,48,315,254,125,761,643,1028)/1000)
+p42<-rep(c(33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(108,2,1,2,1,5,4,12,13,7,6,7,3,6,14,19,20,22,15,22,52,14,50,45,57,67,72,78,119,51,272,45,284,226,127,831,604,1054)/1000)
+p43<-rep(c(33,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(124,2,2,1,2,5,13,17,10,1,6,4,14,11,19,31,14,14,24,30,12,42,41,54,64,74,82,112,68,250,49,308,261,142,775,557,1060)/1000)
+p44<-rep(c(33,35,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(106,1,1,4,4,10,9,9,7,9,6,8,8,16,21,12,18,24,50,14,43,43,56,55,100,87,109,51,261,51,308,217,139,759,562,1041)/1000)
+p45<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(120,3,3,2,9,7,12,9,6,4,1,10,9,15,26,11,16,22,35,16,26,45,50,60,56,67,74,62,247,50,282,243,123,747,618,1061)/1000)
+p46<-rep(c(33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(116,1,2,3,2,10,15,10,1,2,6,6,10,9,13,8,14,29,26,12,31,42,59,41,57,88,92,58,257,43,304,236,133,707,612,1016)/1000)
+p47<-rep(c(33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(130,1,2,4,2,6,8,18,21,3,5,5,7,12,15,17,7,7,23,43,9,28,32,44,42,56,68,83,54,225,38,289,181,133,713,594,991)/1000)
+p48<-rep(c(33,35,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(105,1,5,2,6,9,10,23,1,5,3,3,9,9,30,13,7,18,27,12,28,24,49,42,63,75,81,45,226,43,274,217,147,676,571,925)/1000)
+p49<-rep(c(33,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(99,3,1,3,5,5,16,3,3,6,7,4,13,15,11,3,10,34,16,20,37,46,41,52,66,85,35,201,45,253,201,119,685,497,913)/1000)
+p50<-rep(c(33,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(82,2,3,5,3,4,5,13,9,5,11,14,3,35,17,21,41,34,67,67,31,184,49,241,167,93,639,515,797)/1000)
+boxplot(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p23,p24,p25,p26,p27,p28,p29,p30,p31,p32,p33,p34,p35,p36,p37,p38,p39,p40,p41,p42,p43,p44,p45,p46,p47,p48,p49,p50,xlab="Position of Read(5'->3')",ylab="Phred Quality Score",outline=F)
+dev.off()
+
+
+pdf('output.qual.heatmap.pdf')
+qual=c(119,0,0,0,2,3,2,5,6,8,6,2,0,3,11,16,6,26,11,13,25,39,7,40,33,33,58,51,116,87,55,256,54,323,263,140,812,654,1119,105,0,0,0,2,2,2,4,8,6,21,3,1,1,8,13,13,16,16,14,29,32,18,50,30,57,66,73,97,105,60,253,57,330,270,142,801,630,1069,109,0,1,0,1,3,2,7,11,14,13,2,4,3,8,14,21,27,17,14,26,39,11,37,28,74,64,55,86,106,62,234,56,326,269,147,787,645,1081,108,0,0,0,1,6,4,2,9,12,7,0,3,3,9,14,13,24,20,8,24,46,14,43,28,59,67,75,88,107,51,285,56,293,239,139,802,660,1084,97,0,1,0,1,0,3,9,8,11,5,4,2,4,10,16,19,24,7,8,35,43,19,49,29,51,67,51,93,107,43,306,65,345,223,123,789,661,1075,96,0,0,0,3,0,2,5,11,6,8,2,7,2,12,17,15,16,12,11,25,31,12,32,36,59,70,69,74,99,56,277,59,343,249,111,845,650,1081,86,0,0,0,2,4,2,6,12,8,10,1,7,7,9,11,14,26,14,9,14,53,17,34,41,55,71,76,76,117,62,238,62,339,229,155,798,607,1131,76,0,0,0,1,4,4,6,11,9,13,5,5,6,6,17,19,20,17,8,19,45,15,30,33,60,68,58,76,99,59,291,54,349,251,129,818,602,1120,74,0,0,1,2,3,1,5,6,6,7,7,2,4,11,11,16,24,13,9,24,48,19,33,39,63,67,68,78,104,66,284,62,329,240,147,749,649,1132,98,0,0,0,1,2,2,6,11,19,10,0,5,3,8,18,19,24,14,5,18,53,21,41,39,56,79,64,70,93,57,291,42,334,259,143,795,616,1087,71,0,0,0,3,3,4,3,5,6,7,2,3,5,13,14,6,17,21,12,27,40,16,34,39,46,64,78,103,103,63,279,37,314,239,118,805,674,1129,76,1,0,0,4,3,3,7,10,11,8,5,6,3,12,13,18,21,16,18,21,46,21,32,41,77,56,77,103,105,54,269,40,320,247,144,796,621,1098,87,0,0,0,3,2,1,7,12,8,6,5,13,8,11,9,16,23,13,14,22,40,21,53,48,51,59,77,84,126,75,282,48,306,254,151,808,586,1074,76,0,0,0,5,1,3,6,3,7,8,4,3,10,12,14,13,23,12,19,25,43,17,52,42,63,57,92,91,114,61,281,45,342,256,132,812,586,1073,81,0,0,0,1,5,4,4,10,11,9,3,5,5,6,18,21,29,26,14,27,51,17,54,47,51,65,84,84,118,66,291,46,316,244,149,782,579,1080,87,0,0,1,2,5,2,10,17,12,9,0,7,2,10,10,12,20,18,21,27,50,17,50,54,42,82,57,84,103,54,285,41,342,265,115,822,582,1085,118,0,0,0,0,4,3,7,7,11,10,5,6,8,11,18,19,30,34,13,34,47,14,62,49,55,83,82,96,101,51,283,45,346,249,152,843,521,985,73,0,0,0,2,5,6,7,9,11,7,5,4,11,19,13,15,33,18,17,42,57,25,46,65,67,94,68,93,117,67,279,53,306,295,132,844,504,993,72,0,0,1,2,3,5,4,16,13,14,2,8,2,18,19,27,37,27,18,29,57,21,47,57,62,87,81,89,111,57,293,49,319,270,142,858,495,990,78,0,0,1,1,5,3,3,13,10,13,5,7,5,14,15,24,30,23,23,24,57,19,72,49,70,70,72,91,124,60,298,52,347,270,147,841,486,980,71,0,0,0,4,5,3,10,9,10,12,5,9,6,23,14,19,33,27,21,34,60,16,47,57,55,82,84,109,117,44,305,45,335,265,146,856,510,954,80,0,0,0,5,4,5,4,6,10,7,4,0,11,14,19,18,32,25,29,32,75,19,58,56,66,81,79,102,133,52,332,44,306,260,152,879,486,917,80,0,0,0,2,5,2,11,11,13,4,4,5,8,12,15,21,34,27,18,44,58,26,72,62,72,90,84,97,137,51,324,54,332,254,143,857,492,881,78,0,0,0,3,4,1,9,9,3,8,9,9,5,12,20,19,37,30,23,38,69,29,64,51,71,95,92,99,133,52,320,51,340,275,152,868,467,856,73,0,0,0,1,2,3,6,14,19,7,3,3,10,24,15,26,38,27,15,34,71,17,62,72,75,86,84,108,128,65,304,41,356,239,139,864,494,876,100,0,1,1,6,3,6,14,19,11,9,7,11,5,8,25,21,35,16,18,39,61,19,65,42,62,91,83,80,105,38,318,50,372,289,135,847,504,884,72,0,0,1,1,4,2,12,10,17,11,5,3,3,21,25,29,34,34,19,38,55,20,55,59,82,96,99,106,133,45,299,71,339,265,157,822,474,882,73,0,0,0,1,2,5,3,17,16,6,5,7,11,7,16,14,30,31,16,45,71,29,50,62,72,78,77,107,132,62,273,47,366,277,161,892,462,877,91,0,0,0,3,2,2,7,10,6,9,9,6,11,15,17,19,33,20,10,30,54,20,68,48,73,84,72,114,131,60,321,60,356,270,159,874,496,840,92,0,0,1,5,5,4,6,8,7,10,4,7,7,16,26,24,33,20,22,36,49,15,53,65,71,79,80,112,127,63,320,49,359,292,141,837,455,900,105,0,0,1,2,5,4,2,15,8,13,8,6,7,19,24,21,30,22,17,35,53,13,52,61,45,93,74,87,120,60,302,41,331,272,131,877,513,931,117,0,0,0,3,5,3,11,23,24,10,5,7,6,8,13,12,40,18,18,40,41,12,45,57,72,86,71,75,125,68,299,55,302,264,154,874,464,973,120,0,1,0,7,3,4,9,13,19,8,5,3,10,17,25,13,19,18,23,33,49,25,41,51,72,74,56,95,112,60,291,58,281,267,145,916,463,993,89,0,0,1,4,9,13,7,8,7,8,6,8,8,18,20,12,34,26,14,31,50,17,45,65,58,68,77,84,110,66,289,54,284,282,164,871,489,1003,162,0,0,1,3,4,4,14,15,24,17,2,6,9,16,15,20,37,20,12,34,49,12,42,50,54,66,62,81,121,56,265,50,292,258,127,878,506,1015,79,0,0,0,5,1,3,3,13,8,6,0,7,11,15,19,11,17,25,16,34,49,16,37,45,69,72,76,79,101,48,303,38,326,254,140,811,619,1043,78,0,0,0,3,0,4,3,8,5,6,8,6,5,13,18,18,32,19,22,39,43,17,39,45,68,77,74,69,118,47,272,47,332,262,139,833,562,1068,96,0,0,1,3,1,5,5,6,6,8,4,7,3,12,9,18,35,15,24,27,57,20,40,53,70,81,89,91,117,46,262,44,298,251,130,817,588,1059,102,0,0,0,5,0,5,4,10,11,12,3,3,7,8,18,15,22,20,17,20,50,21,46,43,71,70,80,91,110,51,239,34,339,258,119,820,614,1058,100,0,0,0,3,5,3,6,10,12,12,5,5,10,6,21,18,28,14,16,33,38,18,45,56,58,71,65,79,109,57,253,47,310,263,129,854,616,1017,97,0,0,1,4,3,1,5,14,7,11,2,5,2,9,6,19,21,18,21,30,37,22,37,64,40,69,53,89,104,66,281,42,355,233,137,771,615,1095,130,0,0,0,5,2,6,10,10,19,20,5,5,4,12,16,17,28,14,12,25,42,16,42,39,57,61,73,84,110,49,261,48,315,254,125,761,643,1028,108,0,2,1,2,1,5,4,12,13,7,6,7,3,6,14,19,20,22,15,22,52,14,50,45,57,67,72,78,119,51,272,45,284,226,127,831,604,1054,124,0,2,2,0,1,2,5,13,17,10,1,6,4,14,11,19,31,14,14,24,30,12,42,41,54,64,74,82,112,68,250,49,308,261,142,775,557,1060,106,0,1,0,1,4,4,10,9,9,7,0,9,6,8,8,16,21,12,18,24,50,14,43,43,56,55,100,87,109,51,261,51,308,217,139,759,562,1041,120,0,0,0,3,3,2,9,7,12,9,6,4,1,10,9,15,26,11,16,22,35,16,26,45,50,60,56,67,74,62,247,50,282,243,123,747,618,1061,116,0,0,0,1,2,3,2,10,15,10,1,2,6,6,10,9,13,8,14,29,26,12,31,42,59,41,57,88,92,58,257,43,304,236,133,707,612,1016,130,0,0,1,2,4,2,6,8,18,21,3,5,5,7,12,15,17,7,7,23,43,9,28,32,44,42,56,68,83,54,225,38,289,181,133,713,594,991,105,0,1,0,0,5,2,6,9,10,23,1,5,3,3,9,9,30,13,7,18,27,12,28,24,49,42,63,75,81,45,226,43,274,217,147,676,571,925,99,0,0,0,0,3,1,3,5,5,16,3,3,6,7,4,13,15,11,3,10,34,16,20,37,46,41,52,66,85,35,201,45,253,201,119,685,497,913,82,0,0,0,0,0,0,0,0,0,2,0,3,5,3,4,5,13,9,5,11,14,3,35,17,21,41,34,67,67,31,184,49,241,167,93,639,515,797)
+mat=matrix(qual,ncol=51,byrow=F)
+Lab.palette <- colorRampPalette(c("blue", "orange", "red3","red2","red1","red"), space = "rgb",interpolate=c('spline'))
+heatmap(mat,Rowv=NA,Colv=NA,xlab="Position of Read",ylab="Phred Quality Score",labRow=seq(from=33,to=71),col = Lab.palette(256),scale="none" )
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.read_distribution.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.read_distribution.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,16 @@
+Total Reads                   40
+Total Tags                    44
+Total Assigned Tags           38
+=====================================================================
+Group               Total_bases         Tag_count           Tags/Kb             
+CDS_Exons           918                 0                   0.00              
+5'UTR_Exons         1652                3                   1.81              
+3'UTR_Exons         2967                4                   1.35              
+Introns             14397               27                  1.88              
+TSS_up_1kb          4000                0                   0.00              
+TSS_up_5kb          20000               4                   0.20              
+TSS_up_10kb         35240               4                   0.11              
+TES_down_1kb        2000                0                   0.00              
+TES_down_5kb        12512               0                   0.00              
+TES_down_10kb       22752               0                   0.00              
+=====================================================================
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.saturation.pdf
Binary file test-data/output.saturation.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.seq.DupRate.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.seq.DupRate.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,2 @@
+Occurrence	UniqReadNumber
+1	40
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.splice_events.pdf
Binary file test-data/output.splice_events.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.splice_junction.pdf
Binary file test-data/output.splice_junction.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.tin.summary.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.tin.summary.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,2 @@
+Bam_file	TIN(mean)	TIN(median)	TIN(stdev)
+input.bam	8.87096774194	8.87096774194	0.0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output.tin.xls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.tin.xls	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,8 @@
+geneID	chrom	tx_start	tx_end	TIN
+NR_046018	chr1	11873	14409	0.0
+NR_024540	chr1	14361	29370	8.87096774194
+NR_106918	chr1	17368	17436	0.0
+NR_107062	chr1	17368	17436	0.0
+NR_026818	chr1	34610	36081	0.0
+NR_026820	chr1	34610	36081	0.0
+NM_001005484	chr1	69090	70008	0.0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output2.geneBodyCoverage.curves.pdf
Binary file test-data/output2.geneBodyCoverage.curves.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output2.geneBodyCoverage.heatMap.pdf
Binary file test-data/output2.geneBodyCoverage.heatMap.pdf has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output2.geneBodyCoverage.r
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output2.geneBodyCoverage.r	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,21 @@
+pairend_strandspecific_51mer_hg19_chr1_1_100000_bam <- c(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
+pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.1 <- c(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
+pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.2 <- c(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
+data_matrix <- matrix(c(pairend_strandspecific_51mer_hg19_chr1_1_100000_bam,pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.1,pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.2), byrow=T, ncol=100)
+rowLabel <- c("pairend_strandspecific_51mer_hg19_chr1_1_100000_bam","pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.1","pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.2")
+
+
+pdf("output.geneBodyCoverage.heatMap.pdf")
+rc <- cm.colors(ncol(data_matrix))
+heatmap(data_matrix, scale=c("none"),keep.dendro=F, labRow = rowLabel ,Colv = NA,Rowv = NA,labCol=NA,col=cm.colors(256),margins = c(6, 8),ColSideColors = rc,cexRow=1,cexCol=1,xlab="Gene body percentile (5'->3')", add.expr=x_axis_expr <- axis(side=1,at=c(1,10,20,30,40,50,60,70,80,90,100),labels=c("1","10","20","30","40","50","60","70","80","90","100")))
+dev.off()
+
+
+pdf("output.geneBodyCoverage.curves.pdf")
+x=1:100
+icolor = colorRampPalette(c("#7fc97f","#beaed4","#fdc086","#ffff99","#386cb0","#f0027f"))(3)
+plot(x,pairend_strandspecific_51mer_hg19_chr1_1_100000_bam,type='l',xlab="Gene body percentile (5'->3')", ylab="Coverage",lwd=0.8,col=icolor[1])
+lines(x,pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.1,type='l',col=icolor[2])
+lines(x,pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.2,type='l',col=icolor[3])
+legend(0,1,fill=icolor[1:3], legend=c('pairend_strandspecific_51mer_hg19_chr1_1_100000_bam','pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.1','pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.2'))
+dev.off()
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/output2.geneBodyCoverage.txt
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output2.geneBodyCoverage.txt	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,4 @@
+Percentile	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
+pairend_strandspecific_51mer_hg19_chr1_1_100000_bam	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+pairend_strandspecific_51mer_hg19_chr1_1_100000_bam.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.R1.fastq
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.R1.fastq	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,80 @@
+@seq.11990047/1
+ACGGCCGACTTGGATCACACTCTTGCAGGGCCATCAGGCACCAAAGGGATT
++
+hgffghhhhfhhchfhghhhhhhhggahh[chffhfhghhhhhhafehfeh
+@seq.14614493/1
+AGAGGAGGACGAGGACGACTGGGAATCGTAGGGGGCTCCATGACACCTTCC
++
+hhgghehehghgghhaffffcggchghhhhgfhfhahghhhghhghhhhhe
+@seq.24018133/1
+CGGGTGGATTTTCTGTGGGTTTGTTAAGTGGTCAGAAATTCTCAATTTTTT
++
+`aggggecfffa\\^Ua``\af`fffcffffafaffcffffec``fWfffe
+@seq.10608403/1
+GTATGGCCAGAGGGCAGGGCCGAGGGGTGTGGGCGGGAGGCCCGGCCTGGC
++
+_dd_]bfggfgcg[egdbdbdXc`cfggaagdgggf^ggfdfggggggggg
+@seq.10820209/1
+GTGCTGGCCCCAGTTTTCTAACCAGGTGTTGAATGAACTGGATGGACTCTG
++
+ghhccgfgghhhdhfhhghhhfffdf_hfhhhffhhhgdchhhhhgfhahh
+@seq.1537155/1
+GGGAGTGTGCAGAGACTGGAGGGGATGACAGTCACCCTCTGTTTTCTGTGG
++
+aag`hhhhhgghhhhhhfhhchgfacchhhhah]hhdcafhhhhffachhg
+@seq.25274725/1
+AGGGTGTGGGGCAAGGCAGTGAGTGAAGAGTTGGGATGAGTGAGTTAGGGC
++
+hhhhdhhhhhhffffcfdffff_fdffffffhchahhhhchgfhhfhfhhh
+@seq.26326595/1
+GGGAAGGGGGTGCTTCTGCATGGGAAGCACAGACAGCGCTGCCTCTCCCTT
++
+Wbfdf]ddggggdgggdfdfWggdggf]fffadfffffVfffgfgfdgggg
+@seq.28833653/1
+TGGGGCCAGGGGACTATGACACACCACTTGGCTTAGACTGAGGAGCTCTGT
++
+_cffafhdghhhhhhhhhhhghhaffhhhhdhfhhehhhhhhgghfhghhh
+@seq.25049090/1
+AGGGCGAGATTGATTGTTAATTGCTAGCATGAACCGCGTGGGCTTCTCAGG
++
+fdffbfdddb[_afffacdggafdbc[fcfcgggfgffccfgagggggfgc
+@seq.23476912/1
+GGCCTCTCCACCATGTGCTCCACCTCGTGCTGGACCTTAAGAGATACCAAT
++
+fgggggeggecfefffd^^aY]fdfcaggggfdefdggggggggggggggg
+@seq.28059536/1
+GGGATGAGGAGAGGGCAGGAAGGCATTTCCTGGGTAGTGGAGTGCTGTGTT
++
+B_bbea[_V[WZVY`\Pacaaebecd]]fddbaed[decbe]fd`fggggg
+@seq.13270875/1
+TGCCCCGAGTTTGTCAAGAATGTCCCAGTAACCAGGGGACACACAGTGAAG
++
+ffffafgagcggggfgfcfffccfcffg]ggggfgcgggggggggggggcf
+@seq.2214586/1
+GTGGGAGGGGCTGAAGTGAGAGCCCAACTTGGAAGCTTTTACTCCTGGGAG
++
+gghghghhhhhhhhhhffefafhfhhhhhgghhhghhehhhhehhhhhhhh
+@seq.31061198/1
+GAGGAGCTAGGGTTTCTCATAAAACTCCCTGATAGAAGACGACTTTTGATA
++
+cd\WaaaRcaacJdd[dff_f_ffcfddfff_dafffcd[cd\aW\eedcc
+@seq.13835843/1
+GGGGAGGCAGAGGTTGCAGTGAGCCGAGATCATGTCACTGCACTCCAGGCT
++
+ggcgafggfgggggggfgggagggagggefgdffffdadeggggggggegg
+@seq.13539256/1
+GTGGGGAAACCTAGAATTGCTGTAGAGAAAATGCCCTAGAGCAGCTCTAGA
++
+hfhhchfhhhfhghhhhhhhhghghhhgfhhhhhhhhhghhhhfhhhhfhh
+@seq.5556605/1
+GGGATGAGGCCAAATCTTTCTGAATCTGAGATAGCCTCTCAGCCTATGCAT
++
+hfhchhchhhehhhhhhhhdhh_hghchgfhdhhhhhhhhhchhghhhhhh
+@seq.32597077/1
+GAGAGACGGGGTTTCACCATGTTGGCCAGGATGGTCTTGATCTCTTGACCT
++
+dcba]fffcdfdWccf\``S_da_cdc_fdafggggfffcfcfcfddafff
+@seq.20367385/1
+TTAAGTGCACTCAAATAATGTGATTTTATGAGGCTATAGGAGAAAAAAATT
++
+fdddZ`dc[cdadJ_ddScad[[^\^ddadad__daa^a^\]QY\T^ZZZY
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.R1.fastq.gz
Binary file test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.R1.fastq.gz has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.R2.fastq
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.R2.fastq	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,80 @@
+@seq.11990047/2
+CCCGTGGGCAGAGCAAAGGAAGGGCACAGCGCCAGGCAGTGGTGCAGCTGC
++
+hfadfddd`]f[fa_fh]hhcagffhWhhhh]eeehhhha^hfhhhhghhf
+@seq.14614493/2
+TCCCCTCCCAAGGAAGTAGGTCTGAGCAGCTTGTCCTGGCTGTGTCCATGT
++
+hhhhhhhhhehhhhehehhhghhehfhahhdhfdhhfhhhdf]f_ffbdfa
+@seq.24018133/2
+TACCACTATTTTATGAACCAAGTATAACAAGATACTTGAAATGGAAACTAT
++
+fLffddhhhhag_gefafffhaefhfffffchffhhggahhhhRhhgccgh
+@seq.10608403/2
+GGGACCTGCTGTTCCATCGGCTCTCTCTTGCTGATGGACAAGGGGGCATCA
++
+hefchhhfda`]]b]a^aLa^[Za^WdWb[faff]fd]defQacffdRd]f
+@seq.10820209/2
+GCCCGGGGAAAACATGCATCACAGTTCATCTCGAGTCAGCAGGATTTTGAC
++
+ffcddeed]eaTfccfffffceee]ffdcdcee[efdaffffdSfhhdc]d
+@seq.1537155/2
+TNNATCAATCAGCAGGNNNCGTGCACTCTCTTTGAGCCACCACAGAAAACA
++
+VBBVT^WZ^^I[]V]YBBBIVS[W[eeKceccaccUfaffff_afghg`gd
+@seq.25274725/2
+GGCNCCTCCNTGCCCTNCTNAAAANNCAATCACAGCTCCCTAACAGTCCTG
++
+^UZB]]]Y]B][IS[[B]]BW][XBB\WaadddddhhghgffffaGVV[Se
+@seq.26326595/2
+CATGCGTGCCCTGCTCGANATCCAATCACAGCTCCCTAACACTCCTGAATC
++
+^K^K_YT[YVe_eLe[INBTYZUV^S`babhacfhhccghhahghhdaghW
+@seq.28833653/2
+CAGCAGCTATTTCCTGNTNACTCAANCAATGGCCCCATTTCCCTGGTGGAA
++
+fLdYfeYdddXbbabSBWBTY[[[]BdeedfffffghhhghdfgLfbfddg
+@seq.25049090/2
+CTNCCCTTANTCCGAANGCNGCTCNNCTGATTGGTTAATTTTTGCGTAGCT
++
+VVBNZT[]]BSHZWS[BZHBTQPOBBZUZO]bZ^^hfehffff[fcfd_]g
+@seq.23476912/2
+TNACTGATTNCTCTCCACTNTAGANNCTGAGAAGCCCACGCTGTTCATGCT
++
+`Ba_a^]^\Bbab\aa`b`BV]^VBBZV[Z`a^abffYfaa^e^dedbdd]
+@seq.28059536/2
+CGTNTGACTCTAGACCNTNNGAAGCCCACGCGGTTCATTCTAGCAAGTAAC
++
+ZXZBY`\`]][dcKcUBVBBWNVV]ghchfdcc]ecccLa`edecf_cfdf
+@seq.13270875/2
+TAGATTATCAACAGGGGAGAGATAGCATTTCCTGAAGGCTTCCTAGGTGCC
++
+eghggd_hhhfahhg\K^[[ffafchehg_ffWffhgceghhhhhffLfcY
+@seq.2214586/2
+GNNTGCANANATAGANNTTNCCACACTGCCTTGCACAGGAGCACTGCGGGG
++
+VBBSITZBVBTTRHXBBZYBVUUVHH[QV[chhghacKaa_eeeeghgghg
+@seq.31061198/2
+GNCGGAAAAAAAAATTNNNNAAAATNCGTCTGCTATCAGGGAGTTTTATGA
++
+VB[NV^\_]_`hfccXBBBBTUT[TBa_aLTRNQQaYcaeaKa^adcS\Vd
+@seq.13539256/2
+CCTATTTTTTTTTTTTTTTTTGACACAGGTTCTCTGTCACCCAGCCTGGGG
++
+hhhhhhhhhhhghhhghhghfccWKVVYZRd[_[aZQYZ^``WT`[L^^Q\
+@seq.13835843/2
+TCCATCTTTTTTTTTTTTTTTTTGACACAGGTTCTCTGTCACCCAGCCTGG
++
+ghhhggffhhhhhhhhhhhghhh]fMPLPVW^^WXUZ\WXL[VVJY`\Wbb
+@seq.5556605/2
+GCAGCTANGNCCATCNNNTTTGAAANCCAGATTTCGTTTTAAACCAGAGGA
++
+fLfLf]VBTBI]]]]BBB[^WW[]XBdede`eedeffhhehffhhhhahee
+@seq.20367385/2
+ATTTGGCAGAGAAGCAAACACCAGTCGGAGAGCTGGGGCCCTCCCAGCCCT
++
+W_\_^W___WdcfceVIW[T^aa\[aaacaQYYSZY`KK````^[GaQZ\Y
+@seq.17373919/2
+TTTTTGTTTTTTTTTTTTTTTGAGTCAGAATCTCGCTCTGTTGCCCAGGCT
++
+hgghhhhhhSfffffhgh`h__Wb`ZZZ_]PVPUSVYVQVaWWacaQa^BB
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.bam
Binary file test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.bam has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.bigwig
Binary file test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.bigwig has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/pairend_strandspecific_51mer_hg19_random.bam
Binary file test-data/pairend_strandspecific_51mer_hg19_random.bam has changed
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/testwig.Forward.wig
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/testwig.Forward.wig	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,127 @@
+variableStep chrom=chr13
+variableStep chrom=chr12
+variableStep chrom=chr11
+variableStep chrom=chr10
+variableStep chrom=chr17
+variableStep chrom=chr16
+variableStep chrom=chr15
+variableStep chrom=chr14
+variableStep chrom=chr19
+variableStep chrom=chr18
+variableStep chrom=chr8
+variableStep chrom=chr3
+variableStep chrom=chr1
+12674	1.00
+12675	1.00
+12676	1.00
+12677	1.00
+12678	1.00
+12679	1.00
+12680	1.00
+12681	1.00
+12682	1.00
+12683	1.00
+12684	1.00
+12685	1.00
+12686	1.00
+12687	1.00
+12688	1.00
+12689	1.00
+12690	1.00
+12691	1.00
+12692	1.00
+12693	1.00
+12694	1.00
+12695	1.00
+12696	1.00
+12697	1.00
+13221	1.00
+13222	1.00
+13223	1.00
+13224	1.00
+13225	1.00
+13226	1.00
+13227	1.00
+13228	1.00
+13229	1.00
+13230	1.00
+13231	1.00
+13232	1.00
+13233	1.00
+13234	1.00
+13235	1.00
+13236	1.00
+13237	1.00
+13238	1.00
+13239	1.00
+13240	1.00
+13241	1.00
+13242	1.00
+13243	1.00
+13244	1.00
+13245	1.00
+13246	1.00
+13247	1.00
+13483	1.00
+13484	1.00
+13485	1.00
+13486	1.00
+13487	1.00
+13488	1.00
+13489	1.00
+13490	1.00
+13491	1.00
+13492	1.00
+13493	1.00
+13494	1.00
+13495	1.00
+13496	1.00
+13497	1.00
+13498	1.00
+13499	1.00
+13500	1.00
+13501	1.00
+13502	1.00
+13503	1.00
+13504	1.00
+13505	1.00
+13506	1.00
+13507	1.00
+13508	1.00
+13509	1.00
+13510	1.00
+13511	1.00
+13512	1.00
+13513	1.00
+13514	1.00
+13515	1.00
+13516	1.00
+13517	1.00
+13518	1.00
+13519	1.00
+13520	1.00
+13521	1.00
+13522	1.00
+13523	1.00
+13524	1.00
+13525	1.00
+13526	1.00
+13527	1.00
+13528	1.00
+13529	1.00
+13530	1.00
+13531	1.00
+13532	1.00
+13533	1.00
+variableStep chrom=chrY
+variableStep chrom=chrX
+variableStep chrom=chr9
+variableStep chrom=chrM
+variableStep chrom=chr22
+variableStep chrom=chr20
+variableStep chrom=chr21
+variableStep chrom=chr7
+variableStep chrom=chr6
+variableStep chrom=chr5
+variableStep chrom=chr4
+variableStep chrom=chr2
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/testwig.Reverse.wig
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/testwig.Reverse.wig	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,1686 @@
+variableStep chrom=chr13
+variableStep chrom=chr12
+variableStep chrom=chr11
+variableStep chrom=chr10
+variableStep chrom=chr17
+variableStep chrom=chr16
+variableStep chrom=chr15
+variableStep chrom=chr14
+variableStep chrom=chr19
+variableStep chrom=chr18
+variableStep chrom=chr8
+variableStep chrom=chr3
+variableStep chrom=chr1
+14596	-1.00
+14597	-1.00
+14598	-1.00
+14599	-1.00
+14600	-1.00
+14601	-1.00
+14602	-1.00
+14603	-1.00
+14604	-1.00
+14605	-1.00
+14606	-1.00
+14607	-1.00
+14608	-1.00
+14609	-1.00
+14610	-1.00
+14611	-1.00
+14612	-1.00
+14613	-1.00
+14614	-1.00
+14615	-1.00
+14616	-1.00
+14617	-1.00
+14618	-1.00
+14619	-1.00
+14620	-1.00
+14621	-1.00
+14622	-1.00
+14623	-1.00
+14624	-1.00
+14625	-1.00
+14626	-1.00
+14627	-1.00
+14628	-1.00
+14629	-1.00
+14630	-1.00
+14631	-1.00
+14632	-1.00
+14633	-1.00
+14634	-1.00
+14635	-1.00
+14636	-1.00
+14637	-1.00
+14638	-1.00
+14639	-1.00
+14640	-1.00
+14641	-1.00
+14642	-1.00
+14643	-1.00
+14644	-1.00
+14645	-1.00
+14676	-1.00
+14677	-1.00
+14678	-1.00
+14679	-1.00
+14680	-1.00
+14681	-1.00
+14682	-1.00
+14683	-1.00
+14684	-1.00
+14685	-1.00
+14686	-1.00
+14687	-1.00
+14688	-1.00
+14689	-1.00
+14690	-1.00
+14691	-1.00
+14692	-1.00
+14693	-1.00
+14694	-1.00
+14695	-1.00
+14696	-1.00
+14697	-1.00
+14698	-1.00
+14699	-1.00
+14700	-1.00
+14701	-1.00
+14702	-1.00
+14703	-1.00
+14704	-1.00
+14705	-1.00
+14706	-1.00
+14707	-1.00
+14708	-1.00
+14709	-1.00
+14710	-1.00
+14711	-1.00
+14712	-1.00
+14713	-1.00
+14714	-1.00
+14715	-1.00
+14716	-1.00
+14717	-1.00
+14718	-1.00
+14719	-1.00
+14720	-1.00
+14721	-1.00
+14722	-1.00
+14723	-1.00
+14724	-1.00
+14725	-1.00
+14726	-1.00
+16455	-1.00
+16456	-1.00
+16457	-1.00
+16458	-1.00
+16459	-1.00
+16460	-1.00
+16461	-1.00
+16462	-1.00
+16463	-1.00
+16464	-1.00
+16465	-1.00
+16466	-1.00
+16467	-1.00
+16468	-1.00
+16469	-1.00
+16470	-1.00
+16471	-1.00
+16472	-1.00
+16473	-1.00
+16474	-1.00
+16475	-1.00
+16476	-1.00
+16477	-1.00
+16478	-1.00
+16479	-1.00
+16480	-1.00
+16481	-1.00
+16482	-1.00
+16483	-1.00
+16484	-1.00
+16485	-1.00
+16486	-1.00
+16487	-1.00
+16488	-1.00
+16489	-1.00
+16490	-1.00
+16491	-1.00
+16492	-1.00
+16493	-1.00
+16494	-1.00
+16495	-1.00
+16496	-1.00
+16497	-1.00
+16498	-1.00
+16499	-1.00
+16500	-1.00
+16501	-1.00
+16502	-1.00
+16503	-1.00
+16504	-1.00
+16506	-1.00
+16507	-1.00
+16508	-1.00
+16509	-1.00
+16510	-1.00
+16511	-1.00
+16512	-1.00
+16513	-1.00
+16514	-1.00
+16515	-1.00
+16516	-1.00
+16517	-1.00
+16518	-1.00
+16519	-1.00
+16520	-1.00
+16521	-1.00
+16522	-1.00
+16523	-1.00
+16524	-1.00
+16525	-1.00
+16526	-1.00
+16527	-1.00
+16528	-1.00
+16529	-1.00
+16530	-1.00
+16531	-1.00
+16532	-1.00
+16533	-1.00
+16534	-1.00
+16535	-1.00
+16536	-1.00
+16537	-1.00
+16538	-1.00
+16539	-1.00
+16540	-1.00
+16541	-1.00
+16542	-1.00
+16543	-1.00
+16544	-1.00
+16545	-1.00
+16546	-1.00
+16547	-1.00
+16548	-1.00
+16549	-1.00
+16550	-1.00
+16551	-1.00
+16552	-1.00
+16553	-1.00
+16554	-1.00
+16555	-1.00
+16556	-1.00
+17051	-1.00
+17052	-1.00
+17053	-1.00
+17054	-1.00
+17055	-1.00
+17233	-1.00
+17234	-1.00
+17235	-1.00
+17236	-1.00
+17237	-1.00
+17238	-1.00
+17239	-1.00
+17240	-1.00
+17241	-1.00
+17242	-1.00
+17243	-1.00
+17244	-1.00
+17245	-1.00
+17246	-1.00
+17247	-1.00
+17248	-1.00
+17249	-1.00
+17250	-1.00
+17251	-1.00
+17252	-1.00
+17253	-1.00
+17254	-1.00
+17255	-1.00
+17256	-1.00
+17257	-1.00
+17258	-1.00
+17259	-1.00
+17260	-1.00
+17261	-1.00
+17262	-1.00
+17263	-1.00
+17264	-1.00
+17265	-1.00
+17266	-1.00
+17267	-1.00
+17268	-1.00
+17269	-1.00
+17270	-1.00
+17271	-1.00
+17272	-1.00
+17273	-1.00
+17274	-1.00
+17275	-1.00
+17276	-1.00
+17277	-1.00
+17278	-1.00
+17555	-1.00
+17556	-1.00
+17557	-1.00
+17558	-1.00
+17559	-1.00
+17560	-1.00
+17561	-1.00
+17562	-1.00
+17563	-1.00
+17564	-1.00
+17565	-1.00
+17566	-1.00
+17567	-1.00
+17568	-1.00
+17569	-1.00
+17570	-1.00
+17571	-1.00
+17572	-1.00
+17573	-1.00
+17574	-1.00
+17575	-1.00
+17576	-1.00
+17577	-1.00
+17578	-1.00
+17579	-1.00
+17580	-1.00
+17581	-1.00
+17582	-1.00
+17583	-1.00
+17584	-1.00
+17585	-1.00
+17586	-1.00
+17587	-1.00
+17588	-1.00
+17589	-1.00
+17590	-1.00
+17591	-1.00
+17592	-1.00
+17593	-1.00
+17594	-1.00
+17595	-1.00
+17596	-1.00
+17597	-1.00
+17598	-1.00
+17599	-1.00
+17600	-1.00
+17601	-1.00
+17602	-1.00
+17603	-1.00
+17604	-1.00
+17605	-1.00
+20203	-1.00
+20204	-1.00
+20205	-1.00
+20206	-1.00
+20207	-1.00
+20208	-1.00
+20209	-1.00
+20210	-1.00
+20211	-1.00
+20212	-1.00
+20213	-1.00
+20214	-1.00
+20215	-1.00
+20216	-1.00
+20217	-1.00
+20218	-1.00
+20219	-1.00
+20220	-1.00
+20221	-1.00
+20222	-1.00
+20223	-1.00
+20224	-1.00
+20225	-1.00
+20226	-1.00
+20227	-1.00
+20228	-1.00
+20229	-1.00
+20230	-1.00
+20231	-1.00
+20232	-1.00
+20233	-1.00
+20234	-1.00
+20235	-1.00
+20236	-1.00
+20237	-1.00
+20238	-1.00
+20239	-1.00
+20240	-1.00
+20241	-1.00
+20242	-1.00
+20243	-1.00
+20244	-1.00
+20245	-1.00
+20246	-1.00
+20247	-1.00
+20248	-1.00
+20249	-1.00
+20250	-1.00
+20251	-1.00
+20252	-1.00
+20253	-1.00
+20400	-1.00
+20401	-1.00
+20402	-1.00
+20403	-1.00
+20404	-1.00
+20405	-1.00
+20406	-1.00
+20407	-1.00
+20408	-1.00
+20409	-1.00
+20410	-1.00
+20411	-1.00
+20412	-1.00
+20413	-1.00
+20414	-1.00
+20415	-1.00
+20416	-1.00
+20417	-1.00
+20418	-1.00
+20419	-1.00
+20420	-1.00
+20421	-1.00
+20422	-1.00
+20423	-1.00
+20424	-1.00
+20425	-1.00
+20426	-1.00
+20427	-1.00
+20428	-1.00
+20429	-1.00
+20430	-1.00
+20431	-1.00
+20432	-1.00
+20433	-1.00
+20434	-1.00
+20435	-1.00
+20436	-1.00
+20437	-1.00
+20438	-1.00
+20439	-1.00
+20440	-1.00
+20441	-1.00
+20442	-1.00
+20443	-1.00
+20444	-1.00
+20445	-1.00
+20446	-1.00
+20447	-1.00
+20448	-1.00
+20449	-1.00
+20450	-1.00
+20773	-1.00
+20774	-1.00
+20775	-1.00
+20776	-1.00
+20777	-1.00
+20778	-1.00
+20779	-1.00
+20780	-1.00
+20781	-1.00
+20782	-1.00
+20783	-1.00
+20784	-1.00
+20785	-1.00
+20786	-1.00
+20787	-1.00
+20788	-1.00
+20789	-1.00
+20790	-1.00
+20791	-1.00
+20792	-1.00
+20793	-1.00
+20794	-1.00
+20795	-1.00
+20796	-1.00
+20797	-1.00
+20798	-1.00
+20799	-1.00
+20800	-1.00
+20801	-1.00
+20802	-1.00
+20803	-1.00
+20804	-1.00
+20805	-1.00
+20806	-1.00
+20807	-1.00
+20808	-1.00
+20809	-1.00
+20810	-1.00
+20811	-1.00
+20812	-1.00
+20813	-1.00
+20814	-1.00
+20815	-1.00
+20816	-1.00
+20817	-1.00
+20818	-1.00
+20819	-1.00
+20849	-1.00
+20850	-1.00
+20851	-1.00
+20852	-1.00
+20853	-1.00
+20854	-1.00
+20855	-1.00
+20856	-1.00
+20857	-1.00
+20858	-1.00
+20859	-1.00
+20860	-1.00
+20861	-1.00
+20862	-1.00
+20863	-1.00
+20864	-1.00
+20865	-1.00
+20866	-1.00
+20867	-1.00
+20868	-1.00
+20869	-1.00
+20870	-1.00
+20871	-1.00
+20872	-1.00
+20873	-1.00
+20874	-1.00
+20875	-1.00
+20876	-1.00
+20877	-1.00
+20878	-1.00
+20879	-1.00
+20880	-1.00
+20881	-1.00
+20882	-1.00
+20883	-1.00
+20884	-1.00
+20885	-1.00
+20886	-1.00
+20887	-1.00
+20888	-1.00
+20889	-1.00
+20890	-1.00
+20891	-1.00
+20892	-1.00
+20893	-1.00
+20894	-1.00
+20895	-1.00
+20896	-1.00
+20897	-1.00
+20898	-1.00
+20899	-1.00
+21469	-1.00
+21470	-1.00
+21471	-1.00
+21472	-1.00
+21473	-2.00
+21474	-2.00
+21475	-2.00
+21476	-2.00
+21477	-2.00
+21478	-2.00
+21479	-2.00
+21480	-2.00
+21481	-2.00
+21482	-2.00
+21483	-2.00
+21484	-2.00
+21485	-2.00
+21486	-2.00
+21487	-2.00
+21488	-2.00
+21489	-2.00
+21490	-2.00
+21491	-2.00
+21492	-2.00
+21493	-2.00
+21494	-2.00
+21495	-2.00
+21496	-2.00
+21497	-2.00
+21498	-2.00
+21499	-2.00
+21500	-2.00
+21501	-2.00
+21502	-2.00
+21503	-2.00
+21504	-2.00
+21505	-2.00
+21506	-2.00
+21507	-2.00
+21508	-1.00
+21509	-1.00
+21510	-1.00
+21511	-1.00
+21512	-1.00
+21513	-1.00
+21514	-1.00
+21515	-1.00
+21516	-1.00
+21517	-1.00
+21526	-1.00
+21527	-1.00
+21528	-1.00
+21529	-1.00
+21530	-1.00
+21531	-1.00
+21543	-1.00
+21544	-1.00
+21545	-1.00
+21546	-1.00
+21547	-1.00
+21548	-1.00
+21549	-1.00
+21550	-1.00
+21551	-1.00
+21552	-1.00
+21553	-1.00
+21554	-1.00
+21555	-1.00
+21556	-1.00
+21557	-1.00
+21558	-1.00
+21559	-1.00
+21560	-1.00
+21561	-1.00
+21562	-1.00
+21563	-1.00
+21564	-1.00
+21565	-1.00
+21566	-1.00
+21567	-1.00
+21568	-1.00
+21569	-1.00
+21570	-1.00
+21571	-1.00
+21572	-1.00
+21573	-1.00
+21574	-1.00
+21575	-1.00
+21576	-1.00
+21577	-1.00
+21578	-1.00
+21579	-1.00
+21580	-1.00
+21581	-1.00
+21582	-1.00
+21583	-1.00
+21584	-1.00
+21585	-1.00
+21586	-1.00
+21587	-1.00
+21588	-1.00
+21589	-1.00
+21590	-1.00
+21591	-1.00
+21592	-1.00
+21593	-1.00
+21723	-1.00
+21724	-1.00
+21725	-1.00
+21726	-1.00
+21727	-1.00
+21728	-1.00
+21729	-1.00
+21730	-1.00
+21731	-1.00
+21732	-1.00
+21733	-1.00
+21734	-1.00
+21735	-1.00
+21736	-1.00
+21737	-1.00
+21738	-1.00
+21739	-1.00
+21740	-1.00
+21741	-1.00
+21742	-1.00
+21743	-1.00
+21744	-1.00
+21745	-1.00
+21746	-1.00
+21747	-1.00
+21748	-1.00
+21749	-1.00
+21750	-1.00
+21751	-1.00
+21752	-1.00
+21753	-1.00
+21754	-1.00
+21755	-1.00
+21756	-1.00
+21757	-1.00
+21758	-1.00
+21759	-1.00
+21760	-1.00
+21761	-1.00
+21762	-1.00
+21763	-1.00
+21764	-1.00
+21765	-1.00
+21766	-1.00
+21767	-1.00
+21768	-1.00
+21963	-1.00
+21964	-1.00
+21965	-1.00
+21966	-1.00
+21967	-1.00
+21968	-1.00
+21969	-1.00
+21970	-1.00
+21971	-1.00
+21972	-1.00
+21973	-1.00
+21974	-1.00
+21975	-1.00
+21976	-1.00
+21977	-1.00
+21978	-1.00
+21979	-1.00
+21980	-1.00
+21981	-1.00
+21982	-1.00
+21983	-1.00
+21984	-1.00
+21985	-1.00
+21986	-1.00
+21987	-1.00
+21988	-1.00
+21989	-1.00
+21990	-1.00
+21991	-1.00
+21992	-1.00
+21993	-1.00
+21994	-1.00
+21995	-1.00
+21996	-1.00
+21997	-1.00
+21998	-1.00
+21999	-1.00
+22000	-1.00
+22001	-2.00
+22002	-2.00
+22003	-2.00
+22004	-2.00
+22005	-2.00
+22006	-1.00
+22062	-1.00
+22063	-1.00
+22064	-1.00
+22065	-1.00
+22066	-1.00
+22067	-1.00
+22068	-1.00
+22069	-1.00
+22070	-1.00
+22071	-1.00
+22072	-1.00
+22073	-1.00
+22074	-1.00
+22075	-1.00
+22076	-1.00
+22077	-1.00
+22078	-1.00
+22079	-1.00
+22080	-1.00
+22081	-1.00
+22082	-1.00
+22083	-1.00
+22084	-1.00
+22085	-1.00
+22086	-1.00
+22087	-1.00
+22088	-1.00
+22089	-1.00
+22090	-1.00
+22091	-1.00
+22092	-1.00
+22093	-1.00
+22094	-1.00
+22095	-1.00
+22096	-1.00
+22097	-1.00
+22098	-1.00
+22099	-1.00
+22100	-1.00
+22101	-1.00
+22102	-1.00
+22103	-1.00
+22104	-1.00
+22105	-1.00
+22106	-1.00
+22107	-1.00
+22108	-1.00
+22109	-1.00
+22110	-1.00
+22111	-1.00
+22112	-1.00
+22343	-1.00
+22344	-1.00
+22345	-1.00
+22346	-1.00
+22347	-1.00
+22348	-1.00
+22349	-1.00
+22350	-1.00
+22351	-1.00
+22352	-1.00
+22353	-1.00
+22354	-1.00
+22355	-1.00
+22356	-1.00
+22357	-1.00
+22358	-1.00
+22359	-1.00
+22360	-1.00
+22361	-1.00
+22362	-1.00
+22363	-1.00
+22364	-1.00
+22365	-1.00
+22366	-1.00
+22367	-1.00
+22368	-1.00
+22369	-1.00
+22370	-1.00
+22371	-1.00
+22372	-1.00
+22373	-1.00
+22374	-1.00
+22375	-1.00
+22376	-1.00
+22377	-1.00
+22378	-1.00
+22379	-1.00
+22380	-1.00
+22381	-1.00
+22382	-1.00
+22383	-1.00
+22384	-1.00
+22385	-1.00
+22386	-1.00
+22387	-1.00
+22388	-1.00
+22389	-1.00
+22390	-1.00
+22434	-1.00
+22435	-1.00
+22436	-1.00
+22437	-1.00
+22438	-1.00
+22439	-1.00
+22440	-1.00
+22441	-1.00
+22442	-1.00
+22443	-1.00
+22444	-1.00
+22445	-1.00
+22446	-2.00
+22447	-2.00
+22448	-2.00
+22449	-3.00
+22450	-3.00
+22451	-3.00
+22452	-3.00
+22453	-3.00
+22454	-3.00
+22455	-3.00
+22456	-3.00
+22457	-3.00
+22458	-3.00
+22459	-3.00
+22460	-3.00
+22461	-3.00
+22462	-3.00
+22463	-3.00
+22464	-3.00
+22465	-3.00
+22466	-3.00
+22467	-3.00
+22468	-3.00
+22469	-3.00
+22470	-3.00
+22471	-3.00
+22472	-3.00
+22473	-3.00
+22474	-3.00
+22475	-3.00
+22476	-3.00
+22477	-3.00
+22478	-3.00
+22479	-3.00
+22480	-2.00
+22481	-2.00
+22482	-2.00
+22483	-2.00
+22484	-2.00
+22485	-2.00
+22486	-2.00
+22487	-2.00
+22488	-2.00
+22489	-2.00
+22490	-2.00
+22491	-1.00
+22492	-1.00
+22493	-1.00
+22494	-1.00
+22495	-1.00
+22496	-1.00
+22497	-1.00
+22498	-1.00
+22499	-1.00
+22544	-1.00
+22545	-1.00
+22546	-1.00
+22547	-1.00
+22548	-1.00
+22549	-1.00
+22550	-1.00
+22551	-1.00
+22552	-1.00
+22553	-1.00
+22554	-1.00
+22555	-1.00
+22556	-1.00
+22557	-1.00
+22558	-1.00
+22559	-1.00
+22560	-1.00
+22561	-1.00
+22562	-1.00
+22563	-1.00
+22564	-1.00
+22565	-1.00
+22566	-1.00
+22567	-1.00
+22568	-1.00
+22569	-1.00
+22570	-1.00
+22571	-1.00
+22572	-1.00
+22573	-1.00
+22574	-1.00
+22575	-1.00
+22576	-1.00
+22577	-1.00
+22578	-1.00
+22579	-1.00
+22580	-1.00
+22581	-1.00
+22582	-1.00
+22583	-1.00
+22584	-1.00
+22585	-1.00
+22586	-1.00
+22587	-1.00
+22588	-1.00
+22589	-1.00
+22590	-1.00
+22591	-1.00
+22710	-1.00
+22711	-1.00
+22712	-1.00
+22713	-1.00
+22714	-1.00
+22715	-1.00
+22716	-1.00
+22717	-1.00
+22718	-1.00
+22719	-1.00
+22720	-1.00
+22721	-1.00
+22722	-1.00
+22723	-1.00
+22724	-1.00
+22725	-1.00
+22726	-1.00
+22727	-1.00
+22728	-1.00
+22729	-1.00
+22730	-1.00
+22731	-1.00
+22732	-1.00
+22733	-1.00
+22734	-1.00
+22735	-1.00
+22736	-1.00
+22737	-1.00
+22738	-1.00
+22739	-1.00
+22740	-1.00
+22741	-1.00
+22742	-1.00
+22743	-1.00
+22744	-1.00
+22745	-1.00
+22746	-1.00
+22747	-1.00
+22748	-1.00
+22749	-1.00
+22750	-1.00
+22751	-1.00
+22752	-1.00
+22753	-1.00
+22754	-1.00
+22755	-1.00
+22756	-1.00
+22757	-1.00
+22758	-1.00
+22759	-1.00
+22760	-1.00
+23105	-1.00
+23106	-1.00
+23107	-1.00
+23108	-1.00
+23109	-1.00
+23110	-1.00
+23111	-1.00
+23112	-1.00
+23113	-1.00
+23114	-1.00
+23115	-1.00
+23116	-1.00
+23117	-1.00
+23118	-1.00
+23119	-1.00
+23120	-1.00
+23121	-1.00
+23122	-1.00
+23123	-1.00
+23124	-1.00
+23125	-1.00
+23126	-1.00
+23127	-1.00
+23128	-1.00
+23129	-1.00
+23130	-1.00
+23131	-1.00
+23132	-1.00
+23133	-1.00
+23134	-1.00
+23135	-1.00
+23136	-1.00
+23137	-1.00
+23138	-1.00
+23139	-1.00
+23140	-1.00
+23141	-1.00
+23142	-1.00
+23143	-1.00
+23144	-1.00
+23145	-1.00
+23146	-1.00
+23147	-1.00
+23148	-1.00
+23149	-1.00
+23150	-1.00
+23151	-1.00
+23152	-1.00
+23153	-1.00
+23154	-1.00
+23354	-1.00
+23355	-1.00
+23356	-1.00
+23357	-1.00
+23358	-1.00
+23359	-1.00
+23360	-1.00
+23361	-1.00
+23362	-1.00
+23363	-1.00
+23364	-1.00
+23365	-1.00
+23366	-1.00
+23367	-1.00
+23368	-1.00
+23369	-1.00
+23370	-1.00
+23371	-1.00
+23372	-1.00
+23373	-1.00
+23374	-1.00
+23375	-1.00
+23376	-1.00
+23377	-1.00
+23378	-1.00
+23379	-1.00
+23380	-1.00
+23381	-1.00
+23382	-1.00
+23383	-1.00
+23384	-1.00
+23385	-1.00
+23386	-1.00
+23387	-1.00
+23388	-1.00
+23389	-1.00
+23390	-1.00
+23391	-1.00
+23392	-1.00
+23393	-1.00
+23394	-1.00
+23395	-1.00
+23396	-1.00
+23397	-1.00
+23398	-1.00
+23399	-1.00
+23400	-1.00
+23401	-1.00
+23402	-1.00
+23403	-1.00
+23404	-1.00
+24395	-1.00
+24396	-1.00
+24397	-1.00
+24398	-1.00
+24399	-1.00
+24400	-1.00
+24401	-1.00
+24402	-1.00
+24403	-1.00
+24404	-1.00
+24405	-1.00
+24406	-1.00
+24407	-1.00
+24408	-1.00
+24409	-1.00
+24410	-1.00
+24411	-1.00
+24412	-1.00
+24413	-1.00
+24414	-1.00
+24415	-1.00
+24416	-1.00
+24417	-1.00
+24418	-1.00
+24419	-1.00
+24420	-1.00
+24421	-1.00
+24422	-1.00
+24423	-1.00
+24424	-1.00
+24425	-1.00
+24426	-1.00
+24427	-1.00
+24428	-1.00
+24429	-1.00
+24430	-1.00
+24431	-1.00
+24432	-1.00
+24433	-1.00
+24434	-1.00
+24435	-1.00
+24558	-1.00
+24559	-1.00
+24560	-1.00
+24561	-1.00
+24562	-1.00
+24563	-1.00
+24564	-1.00
+24565	-1.00
+24566	-1.00
+24567	-1.00
+24568	-1.00
+24569	-1.00
+24570	-1.00
+24571	-1.00
+24572	-1.00
+24573	-1.00
+24574	-1.00
+24575	-1.00
+24576	-1.00
+24577	-1.00
+24578	-1.00
+24579	-1.00
+24580	-1.00
+24581	-1.00
+24582	-1.00
+24583	-1.00
+24584	-1.00
+24585	-1.00
+24586	-1.00
+24587	-1.00
+24588	-1.00
+24589	-1.00
+24590	-1.00
+24591	-1.00
+24592	-1.00
+24593	-1.00
+24594	-1.00
+24595	-1.00
+24596	-1.00
+24597	-1.00
+24598	-1.00
+24599	-1.00
+24600	-1.00
+24601	-1.00
+24602	-1.00
+24603	-1.00
+24604	-1.00
+24605	-1.00
+24606	-1.00
+24607	-1.00
+24608	-1.00
+28411	-1.00
+28412	-1.00
+28413	-1.00
+28414	-1.00
+28415	-1.00
+28416	-1.00
+28417	-1.00
+28418	-1.00
+28419	-1.00
+28420	-1.00
+28421	-1.00
+28422	-1.00
+28423	-1.00
+28424	-1.00
+28425	-1.00
+28426	-1.00
+28427	-1.00
+28428	-1.00
+28429	-1.00
+28430	-1.00
+28431	-2.00
+28432	-2.00
+28433	-2.00
+28434	-2.00
+28435	-2.00
+28436	-2.00
+28437	-2.00
+28438	-2.00
+28439	-2.00
+28440	-2.00
+28441	-2.00
+28442	-2.00
+28443	-2.00
+28444	-2.00
+28445	-2.00
+28446	-2.00
+28447	-2.00
+28448	-2.00
+28449	-2.00
+28450	-2.00
+28451	-2.00
+28452	-2.00
+28453	-2.00
+28454	-2.00
+28455	-2.00
+28456	-2.00
+28457	-2.00
+28458	-2.00
+28459	-2.00
+28460	-1.00
+28461	-1.00
+28462	-1.00
+28463	-1.00
+28464	-1.00
+28465	-1.00
+28466	-1.00
+28467	-1.00
+28468	-1.00
+28469	-1.00
+28470	-1.00
+28471	-1.00
+28472	-1.00
+28473	-1.00
+28474	-1.00
+28475	-1.00
+28476	-1.00
+28477	-1.00
+40638	-1.00
+40639	-1.00
+40640	-1.00
+40641	-1.00
+40642	-1.00
+40643	-1.00
+40644	-1.00
+40645	-1.00
+40646	-1.00
+40647	-1.00
+40648	-2.00
+40649	-2.00
+40650	-2.00
+40651	-2.00
+40652	-2.00
+40653	-2.00
+40654	-2.00
+40655	-2.00
+40656	-2.00
+40657	-2.00
+40658	-2.00
+40659	-2.00
+40660	-2.00
+40661	-2.00
+40662	-2.00
+40663	-2.00
+40664	-2.00
+40665	-2.00
+40666	-2.00
+40667	-2.00
+40668	-2.00
+40669	-2.00
+40670	-2.00
+40671	-2.00
+40672	-2.00
+40673	-2.00
+40674	-2.00
+40675	-2.00
+40676	-2.00
+40677	-2.00
+40678	-2.00
+40679	-2.00
+40680	-3.00
+40681	-3.00
+40682	-3.00
+40683	-3.00
+40684	-3.00
+40685	-3.00
+40686	-3.00
+40687	-2.00
+40688	-2.00
+40689	-2.00
+40690	-2.00
+40691	-2.00
+40692	-2.00
+40693	-1.00
+40694	-1.00
+40695	-1.00
+40696	-1.00
+40697	-1.00
+40698	-1.00
+40699	-1.00
+40700	-1.00
+40701	-1.00
+40702	-1.00
+40703	-1.00
+40704	-1.00
+40705	-1.00
+40706	-1.00
+40707	-1.00
+40708	-1.00
+40709	-1.00
+40710	-1.00
+40711	-1.00
+40712	-1.00
+40713	-1.00
+40714	-1.00
+40715	-1.00
+40716	-1.00
+40717	-1.00
+40718	-1.00
+40719	-1.00
+40720	-1.00
+40721	-1.00
+40722	-1.00
+40723	-1.00
+40724	-1.00
+40725	-1.00
+40726	-1.00
+40727	-1.00
+40728	-1.00
+40729	-1.00
+40730	-1.00
+40895	-1.00
+40896	-1.00
+40897	-1.00
+40898	-1.00
+40899	-1.00
+40900	-1.00
+40901	-1.00
+40902	-1.00
+40903	-1.00
+40904	-1.00
+40905	-1.00
+40906	-1.00
+40907	-1.00
+40908	-1.00
+40909	-1.00
+40910	-1.00
+40911	-1.00
+40912	-1.00
+40913	-1.00
+40914	-1.00
+40915	-1.00
+40916	-1.00
+40917	-1.00
+40918	-1.00
+40919	-1.00
+40920	-1.00
+40921	-1.00
+40922	-1.00
+40923	-1.00
+40924	-1.00
+40925	-1.00
+40926	-1.00
+40927	-1.00
+40928	-1.00
+40929	-1.00
+40930	-1.00
+40931	-1.00
+40932	-1.00
+40933	-1.00
+40934	-1.00
+40935	-1.00
+40936	-1.00
+40937	-1.00
+40938	-1.00
+40939	-1.00
+40940	-1.00
+40941	-1.00
+40942	-1.00
+40943	-1.00
+40944	-1.00
+40945	-1.00
+57998	-1.00
+57999	-1.00
+58000	-1.00
+58001	-1.00
+58002	-1.00
+58003	-1.00
+58004	-1.00
+58005	-1.00
+58006	-1.00
+58007	-1.00
+58008	-1.00
+58009	-1.00
+58010	-1.00
+58011	-1.00
+58012	-1.00
+58013	-1.00
+58014	-1.00
+58015	-1.00
+58016	-1.00
+58017	-1.00
+58018	-1.00
+58019	-1.00
+58020	-1.00
+58021	-1.00
+58022	-1.00
+58023	-1.00
+58024	-1.00
+58025	-1.00
+58026	-1.00
+58027	-1.00
+58028	-1.00
+58029	-1.00
+58030	-1.00
+58031	-1.00
+58032	-1.00
+58033	-1.00
+58034	-1.00
+58035	-1.00
+58036	-1.00
+58037	-1.00
+58038	-1.00
+58039	-1.00
+58040	-1.00
+58041	-1.00
+58042	-1.00
+58043	-1.00
+58044	-1.00
+58045	-1.00
+58046	-1.00
+58047	-1.00
+58135	-1.00
+58136	-1.00
+58137	-1.00
+58138	-1.00
+58139	-1.00
+58140	-1.00
+58141	-1.00
+58142	-1.00
+58143	-1.00
+58144	-1.00
+58145	-1.00
+58146	-1.00
+58147	-1.00
+58148	-1.00
+58149	-1.00
+58150	-1.00
+58151	-1.00
+58152	-1.00
+58153	-1.00
+58154	-1.00
+58155	-1.00
+58156	-1.00
+58157	-1.00
+58158	-1.00
+58159	-1.00
+58160	-1.00
+58161	-1.00
+58162	-1.00
+58163	-1.00
+58164	-1.00
+58165	-1.00
+58166	-1.00
+58167	-1.00
+58168	-1.00
+58169	-1.00
+58170	-1.00
+58171	-1.00
+58172	-1.00
+58173	-1.00
+58174	-1.00
+58175	-1.00
+58176	-1.00
+58177	-1.00
+58178	-1.00
+58179	-1.00
+58180	-1.00
+58181	-1.00
+58182	-1.00
+58183	-1.00
+58184	-1.00
+58185	-1.00
+80866	-1.00
+80867	-1.00
+80868	-1.00
+80869	-1.00
+80870	-1.00
+80871	-1.00
+80872	-1.00
+80873	-1.00
+80874	-1.00
+80875	-1.00
+80876	-1.00
+80877	-1.00
+80878	-1.00
+80879	-1.00
+80880	-1.00
+80881	-1.00
+80882	-1.00
+80883	-1.00
+80884	-1.00
+80885	-1.00
+80886	-1.00
+80887	-1.00
+80888	-1.00
+80889	-1.00
+80890	-1.00
+80891	-1.00
+80892	-1.00
+80893	-1.00
+80894	-1.00
+80895	-1.00
+80896	-1.00
+80897	-1.00
+80898	-1.00
+80899	-1.00
+80900	-1.00
+80901	-1.00
+80902	-1.00
+80903	-1.00
+80904	-1.00
+80905	-1.00
+80906	-1.00
+80907	-1.00
+80908	-1.00
+80909	-1.00
+80910	-1.00
+80911	-1.00
+80912	-1.00
+80913	-1.00
+80914	-1.00
+80915	-1.00
+80916	-1.00
+87735	-1.00
+87736	-1.00
+87737	-1.00
+87738	-1.00
+87739	-1.00
+87740	-1.00
+87741	-1.00
+87742	-1.00
+87743	-1.00
+87744	-1.00
+87745	-1.00
+87746	-1.00
+87747	-1.00
+87748	-1.00
+87749	-1.00
+87750	-1.00
+87751	-1.00
+87752	-1.00
+87753	-1.00
+87754	-1.00
+87755	-1.00
+87756	-1.00
+87757	-1.00
+87758	-1.00
+87759	-1.00
+87760	-1.00
+87761	-1.00
+87762	-1.00
+87763	-1.00
+87764	-1.00
+87765	-1.00
+87766	-1.00
+87767	-1.00
+87768	-1.00
+87769	-1.00
+87770	-1.00
+87771	-1.00
+87772	-1.00
+87773	-1.00
+87774	-1.00
+87775	-1.00
+87776	-1.00
+87777	-1.00
+87778	-1.00
+87779	-1.00
+87780	-1.00
+87781	-1.00
+87782	-1.00
+87800	-1.00
+87801	-1.00
+87802	-1.00
+87803	-1.00
+87804	-1.00
+87805	-1.00
+87806	-1.00
+87807	-1.00
+87808	-1.00
+87809	-1.00
+87810	-1.00
+87811	-1.00
+87812	-1.00
+87813	-1.00
+87814	-1.00
+87815	-1.00
+87816	-1.00
+87817	-1.00
+87818	-1.00
+87819	-1.00
+87820	-1.00
+87821	-1.00
+87822	-1.00
+87823	-1.00
+87824	-1.00
+87825	-1.00
+87826	-1.00
+87827	-1.00
+87828	-1.00
+87829	-1.00
+87830	-1.00
+87831	-1.00
+87832	-1.00
+87833	-1.00
+87834	-1.00
+87835	-1.00
+87836	-1.00
+87837	-1.00
+87838	-1.00
+87839	-1.00
+87840	-1.00
+87841	-1.00
+94827	-1.00
+94828	-1.00
+94829	-1.00
+94830	-1.00
+94831	-1.00
+94832	-1.00
+94833	-1.00
+94834	-1.00
+94835	-1.00
+94836	-1.00
+94837	-1.00
+94838	-1.00
+94839	-1.00
+94840	-1.00
+94841	-1.00
+94842	-1.00
+94843	-1.00
+94844	-1.00
+94845	-1.00
+94846	-1.00
+94847	-1.00
+94848	-1.00
+94849	-1.00
+94850	-1.00
+94851	-1.00
+94852	-1.00
+94853	-1.00
+94854	-1.00
+94855	-1.00
+94856	-1.00
+94857	-1.00
+94858	-1.00
+94859	-1.00
+94860	-1.00
+94861	-1.00
+94862	-1.00
+94863	-1.00
+94864	-1.00
+94865	-1.00
+94866	-1.00
+94867	-1.00
+94868	-1.00
+94869	-1.00
+94870	-1.00
+94871	-1.00
+94872	-1.00
+94873	-1.00
+94874	-1.00
+94875	-1.00
+94876	-1.00
+94877	-1.00
+variableStep chrom=chrY
+variableStep chrom=chrX
+variableStep chrom=chr9
+variableStep chrom=chrM
+variableStep chrom=chr22
+variableStep chrom=chr20
+variableStep chrom=chr21
+variableStep chrom=chr7
+variableStep chrom=chr6
+variableStep chrom=chr5
+variableStep chrom=chr4
+variableStep chrom=chr2
diff -r ebadf9ee2d08 -r 71ed55a3515a test-data/testwig.wig
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/testwig.wig	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,1788 @@
+variableStep chrom=chr13
+variableStep chrom=chr12
+variableStep chrom=chr11
+variableStep chrom=chr10
+variableStep chrom=chr17
+variableStep chrom=chr16
+variableStep chrom=chr15
+variableStep chrom=chr14
+variableStep chrom=chr19
+variableStep chrom=chr18
+variableStep chrom=chr8
+variableStep chrom=chr3
+variableStep chrom=chr1
+12674	1.00
+12675	1.00
+12676	1.00
+12677	1.00
+12678	1.00
+12679	1.00
+12680	1.00
+12681	1.00
+12682	1.00
+12683	1.00
+12684	1.00
+12685	1.00
+12686	1.00
+12687	1.00
+12688	1.00
+12689	1.00
+12690	1.00
+12691	1.00
+12692	1.00
+12693	1.00
+12694	1.00
+12695	1.00
+12696	1.00
+12697	1.00
+13221	1.00
+13222	1.00
+13223	1.00
+13224	1.00
+13225	1.00
+13226	1.00
+13227	1.00
+13228	1.00
+13229	1.00
+13230	1.00
+13231	1.00
+13232	1.00
+13233	1.00
+13234	1.00
+13235	1.00
+13236	1.00
+13237	1.00
+13238	1.00
+13239	1.00
+13240	1.00
+13241	1.00
+13242	1.00
+13243	1.00
+13244	1.00
+13245	1.00
+13246	1.00
+13247	1.00
+13483	1.00
+13484	1.00
+13485	1.00
+13486	1.00
+13487	1.00
+13488	1.00
+13489	1.00
+13490	1.00
+13491	1.00
+13492	1.00
+13493	1.00
+13494	1.00
+13495	1.00
+13496	1.00
+13497	1.00
+13498	1.00
+13499	1.00
+13500	1.00
+13501	1.00
+13502	1.00
+13503	1.00
+13504	1.00
+13505	1.00
+13506	1.00
+13507	1.00
+13508	1.00
+13509	1.00
+13510	1.00
+13511	1.00
+13512	1.00
+13513	1.00
+13514	1.00
+13515	1.00
+13516	1.00
+13517	1.00
+13518	1.00
+13519	1.00
+13520	1.00
+13521	1.00
+13522	1.00
+13523	1.00
+13524	1.00
+13525	1.00
+13526	1.00
+13527	1.00
+13528	1.00
+13529	1.00
+13530	1.00
+13531	1.00
+13532	1.00
+13533	1.00
+14596	1.00
+14597	1.00
+14598	1.00
+14599	1.00
+14600	1.00
+14601	1.00
+14602	1.00
+14603	1.00
+14604	1.00
+14605	1.00
+14606	1.00
+14607	1.00
+14608	1.00
+14609	1.00
+14610	1.00
+14611	1.00
+14612	1.00
+14613	1.00
+14614	1.00
+14615	1.00
+14616	1.00
+14617	1.00
+14618	1.00
+14619	1.00
+14620	1.00
+14621	1.00
+14622	1.00
+14623	1.00
+14624	1.00
+14625	1.00
+14626	1.00
+14627	1.00
+14628	1.00
+14629	1.00
+14630	1.00
+14631	1.00
+14632	1.00
+14633	1.00
+14634	1.00
+14635	1.00
+14636	1.00
+14637	1.00
+14638	1.00
+14639	1.00
+14640	1.00
+14641	1.00
+14642	1.00
+14643	1.00
+14644	1.00
+14645	1.00
+14676	1.00
+14677	1.00
+14678	1.00
+14679	1.00
+14680	1.00
+14681	1.00
+14682	1.00
+14683	1.00
+14684	1.00
+14685	1.00
+14686	1.00
+14687	1.00
+14688	1.00
+14689	1.00
+14690	1.00
+14691	1.00
+14692	1.00
+14693	1.00
+14694	1.00
+14695	1.00
+14696	1.00
+14697	1.00
+14698	1.00
+14699	1.00
+14700	1.00
+14701	1.00
+14702	1.00
+14703	1.00
+14704	1.00
+14705	1.00
+14706	1.00
+14707	1.00
+14708	1.00
+14709	1.00
+14710	1.00
+14711	1.00
+14712	1.00
+14713	1.00
+14714	1.00
+14715	1.00
+14716	1.00
+14717	1.00
+14718	1.00
+14719	1.00
+14720	1.00
+14721	1.00
+14722	1.00
+14723	1.00
+14724	1.00
+14725	1.00
+14726	1.00
+16455	1.00
+16456	1.00
+16457	1.00
+16458	1.00
+16459	1.00
+16460	1.00
+16461	1.00
+16462	1.00
+16463	1.00
+16464	1.00
+16465	1.00
+16466	1.00
+16467	1.00
+16468	1.00
+16469	1.00
+16470	1.00
+16471	1.00
+16472	1.00
+16473	1.00
+16474	1.00
+16475	1.00
+16476	1.00
+16477	1.00
+16478	1.00
+16479	1.00
+16480	1.00
+16481	1.00
+16482	1.00
+16483	1.00
+16484	1.00
+16485	1.00
+16486	1.00
+16487	1.00
+16488	1.00
+16489	1.00
+16490	1.00
+16491	1.00
+16492	1.00
+16493	1.00
+16494	1.00
+16495	1.00
+16496	1.00
+16497	1.00
+16498	1.00
+16499	1.00
+16500	1.00
+16501	1.00
+16502	1.00
+16503	1.00
+16504	1.00
+16506	1.00
+16507	1.00
+16508	1.00
+16509	1.00
+16510	1.00
+16511	1.00
+16512	1.00
+16513	1.00
+16514	1.00
+16515	1.00
+16516	1.00
+16517	1.00
+16518	1.00
+16519	1.00
+16520	1.00
+16521	1.00
+16522	1.00
+16523	1.00
+16524	1.00
+16525	1.00
+16526	1.00
+16527	1.00
+16528	1.00
+16529	1.00
+16530	1.00
+16531	1.00
+16532	1.00
+16533	1.00
+16534	1.00
+16535	1.00
+16536	1.00
+16537	1.00
+16538	1.00
+16539	1.00
+16540	1.00
+16541	1.00
+16542	1.00
+16543	1.00
+16544	1.00
+16545	1.00
+16546	1.00
+16547	1.00
+16548	1.00
+16549	1.00
+16550	1.00
+16551	1.00
+16552	1.00
+16553	1.00
+16554	1.00
+16555	1.00
+16556	1.00
+17051	1.00
+17052	1.00
+17053	1.00
+17054	1.00
+17055	1.00
+17233	1.00
+17234	1.00
+17235	1.00
+17236	1.00
+17237	1.00
+17238	1.00
+17239	1.00
+17240	1.00
+17241	1.00
+17242	1.00
+17243	1.00
+17244	1.00
+17245	1.00
+17246	1.00
+17247	1.00
+17248	1.00
+17249	1.00
+17250	1.00
+17251	1.00
+17252	1.00
+17253	1.00
+17254	1.00
+17255	1.00
+17256	1.00
+17257	1.00
+17258	1.00
+17259	1.00
+17260	1.00
+17261	1.00
+17262	1.00
+17263	1.00
+17264	1.00
+17265	1.00
+17266	1.00
+17267	1.00
+17268	1.00
+17269	1.00
+17270	1.00
+17271	1.00
+17272	1.00
+17273	1.00
+17274	1.00
+17275	1.00
+17276	1.00
+17277	1.00
+17278	1.00
+17555	1.00
+17556	1.00
+17557	1.00
+17558	1.00
+17559	1.00
+17560	1.00
+17561	1.00
+17562	1.00
+17563	1.00
+17564	1.00
+17565	1.00
+17566	1.00
+17567	1.00
+17568	1.00
+17569	1.00
+17570	1.00
+17571	1.00
+17572	1.00
+17573	1.00
+17574	1.00
+17575	1.00
+17576	1.00
+17577	1.00
+17578	1.00
+17579	1.00
+17580	1.00
+17581	1.00
+17582	1.00
+17583	1.00
+17584	1.00
+17585	1.00
+17586	1.00
+17587	1.00
+17588	1.00
+17589	1.00
+17590	1.00
+17591	1.00
+17592	1.00
+17593	1.00
+17594	1.00
+17595	1.00
+17596	1.00
+17597	1.00
+17598	1.00
+17599	1.00
+17600	1.00
+17601	1.00
+17602	1.00
+17603	1.00
+17604	1.00
+17605	1.00
+20203	1.00
+20204	1.00
+20205	1.00
+20206	1.00
+20207	1.00
+20208	1.00
+20209	1.00
+20210	1.00
+20211	1.00
+20212	1.00
+20213	1.00
+20214	1.00
+20215	1.00
+20216	1.00
+20217	1.00
+20218	1.00
+20219	1.00
+20220	1.00
+20221	1.00
+20222	1.00
+20223	1.00
+20224	1.00
+20225	1.00
+20226	1.00
+20227	1.00
+20228	1.00
+20229	1.00
+20230	1.00
+20231	1.00
+20232	1.00
+20233	1.00
+20234	1.00
+20235	1.00
+20236	1.00
+20237	1.00
+20238	1.00
+20239	1.00
+20240	1.00
+20241	1.00
+20242	1.00
+20243	1.00
+20244	1.00
+20245	1.00
+20246	1.00
+20247	1.00
+20248	1.00
+20249	1.00
+20250	1.00
+20251	1.00
+20252	1.00
+20253	1.00
+20400	1.00
+20401	1.00
+20402	1.00
+20403	1.00
+20404	1.00
+20405	1.00
+20406	1.00
+20407	1.00
+20408	1.00
+20409	1.00
+20410	1.00
+20411	1.00
+20412	1.00
+20413	1.00
+20414	1.00
+20415	1.00
+20416	1.00
+20417	1.00
+20418	1.00
+20419	1.00
+20420	1.00
+20421	1.00
+20422	1.00
+20423	1.00
+20424	1.00
+20425	1.00
+20426	1.00
+20427	1.00
+20428	1.00
+20429	1.00
+20430	1.00
+20431	1.00
+20432	1.00
+20433	1.00
+20434	1.00
+20435	1.00
+20436	1.00
+20437	1.00
+20438	1.00
+20439	1.00
+20440	1.00
+20441	1.00
+20442	1.00
+20443	1.00
+20444	1.00
+20445	1.00
+20446	1.00
+20447	1.00
+20448	1.00
+20449	1.00
+20450	1.00
+20773	1.00
+20774	1.00
+20775	1.00
+20776	1.00
+20777	1.00
+20778	1.00
+20779	1.00
+20780	1.00
+20781	1.00
+20782	1.00
+20783	1.00
+20784	1.00
+20785	1.00
+20786	1.00
+20787	1.00
+20788	1.00
+20789	1.00
+20790	1.00
+20791	1.00
+20792	1.00
+20793	1.00
+20794	1.00
+20795	1.00
+20796	1.00
+20797	1.00
+20798	1.00
+20799	1.00
+20800	1.00
+20801	1.00
+20802	1.00
+20803	1.00
+20804	1.00
+20805	1.00
+20806	1.00
+20807	1.00
+20808	1.00
+20809	1.00
+20810	1.00
+20811	1.00
+20812	1.00
+20813	1.00
+20814	1.00
+20815	1.00
+20816	1.00
+20817	1.00
+20818	1.00
+20819	1.00
+20849	1.00
+20850	1.00
+20851	1.00
+20852	1.00
+20853	1.00
+20854	1.00
+20855	1.00
+20856	1.00
+20857	1.00
+20858	1.00
+20859	1.00
+20860	1.00
+20861	1.00
+20862	1.00
+20863	1.00
+20864	1.00
+20865	1.00
+20866	1.00
+20867	1.00
+20868	1.00
+20869	1.00
+20870	1.00
+20871	1.00
+20872	1.00
+20873	1.00
+20874	1.00
+20875	1.00
+20876	1.00
+20877	1.00
+20878	1.00
+20879	1.00
+20880	1.00
+20881	1.00
+20882	1.00
+20883	1.00
+20884	1.00
+20885	1.00
+20886	1.00
+20887	1.00
+20888	1.00
+20889	1.00
+20890	1.00
+20891	1.00
+20892	1.00
+20893	1.00
+20894	1.00
+20895	1.00
+20896	1.00
+20897	1.00
+20898	1.00
+20899	1.00
+21469	1.00
+21470	1.00
+21471	1.00
+21472	1.00
+21473	2.00
+21474	2.00
+21475	2.00
+21476	2.00
+21477	2.00
+21478	2.00
+21479	2.00
+21480	2.00
+21481	2.00
+21482	2.00
+21483	2.00
+21484	2.00
+21485	2.00
+21486	2.00
+21487	2.00
+21488	2.00
+21489	2.00
+21490	2.00
+21491	2.00
+21492	2.00
+21493	2.00
+21494	2.00
+21495	2.00
+21496	2.00
+21497	2.00
+21498	2.00
+21499	2.00
+21500	2.00
+21501	2.00
+21502	2.00
+21503	2.00
+21504	2.00
+21505	2.00
+21506	2.00
+21507	2.00
+21508	1.00
+21509	1.00
+21510	1.00
+21511	1.00
+21512	1.00
+21513	1.00
+21514	1.00
+21515	1.00
+21516	1.00
+21517	1.00
+21526	1.00
+21527	1.00
+21528	1.00
+21529	1.00
+21530	1.00
+21531	1.00
+21543	1.00
+21544	1.00
+21545	1.00
+21546	1.00
+21547	1.00
+21548	1.00
+21549	1.00
+21550	1.00
+21551	1.00
+21552	1.00
+21553	1.00
+21554	1.00
+21555	1.00
+21556	1.00
+21557	1.00
+21558	1.00
+21559	1.00
+21560	1.00
+21561	1.00
+21562	1.00
+21563	1.00
+21564	1.00
+21565	1.00
+21566	1.00
+21567	1.00
+21568	1.00
+21569	1.00
+21570	1.00
+21571	1.00
+21572	1.00
+21573	1.00
+21574	1.00
+21575	1.00
+21576	1.00
+21577	1.00
+21578	1.00
+21579	1.00
+21580	1.00
+21581	1.00
+21582	1.00
+21583	1.00
+21584	1.00
+21585	1.00
+21586	1.00
+21587	1.00
+21588	1.00
+21589	1.00
+21590	1.00
+21591	1.00
+21592	1.00
+21593	1.00
+21723	1.00
+21724	1.00
+21725	1.00
+21726	1.00
+21727	1.00
+21728	1.00
+21729	1.00
+21730	1.00
+21731	1.00
+21732	1.00
+21733	1.00
+21734	1.00
+21735	1.00
+21736	1.00
+21737	1.00
+21738	1.00
+21739	1.00
+21740	1.00
+21741	1.00
+21742	1.00
+21743	1.00
+21744	1.00
+21745	1.00
+21746	1.00
+21747	1.00
+21748	1.00
+21749	1.00
+21750	1.00
+21751	1.00
+21752	1.00
+21753	1.00
+21754	1.00
+21755	1.00
+21756	1.00
+21757	1.00
+21758	1.00
+21759	1.00
+21760	1.00
+21761	1.00
+21762	1.00
+21763	1.00
+21764	1.00
+21765	1.00
+21766	1.00
+21767	1.00
+21768	1.00
+21963	1.00
+21964	1.00
+21965	1.00
+21966	1.00
+21967	1.00
+21968	1.00
+21969	1.00
+21970	1.00
+21971	1.00
+21972	1.00
+21973	1.00
+21974	1.00
+21975	1.00
+21976	1.00
+21977	1.00
+21978	1.00
+21979	1.00
+21980	1.00
+21981	1.00
+21982	1.00
+21983	1.00
+21984	1.00
+21985	1.00
+21986	1.00
+21987	1.00
+21988	1.00
+21989	1.00
+21990	1.00
+21991	1.00
+21992	1.00
+21993	1.00
+21994	1.00
+21995	1.00
+21996	1.00
+21997	1.00
+21998	1.00
+21999	1.00
+22000	1.00
+22001	2.00
+22002	2.00
+22003	2.00
+22004	2.00
+22005	2.00
+22006	1.00
+22062	1.00
+22063	1.00
+22064	1.00
+22065	1.00
+22066	1.00
+22067	1.00
+22068	1.00
+22069	1.00
+22070	1.00
+22071	1.00
+22072	1.00
+22073	1.00
+22074	1.00
+22075	1.00
+22076	1.00
+22077	1.00
+22078	1.00
+22079	1.00
+22080	1.00
+22081	1.00
+22082	1.00
+22083	1.00
+22084	1.00
+22085	1.00
+22086	1.00
+22087	1.00
+22088	1.00
+22089	1.00
+22090	1.00
+22091	1.00
+22092	1.00
+22093	1.00
+22094	1.00
+22095	1.00
+22096	1.00
+22097	1.00
+22098	1.00
+22099	1.00
+22100	1.00
+22101	1.00
+22102	1.00
+22103	1.00
+22104	1.00
+22105	1.00
+22106	1.00
+22107	1.00
+22108	1.00
+22109	1.00
+22110	1.00
+22111	1.00
+22112	1.00
+22343	1.00
+22344	1.00
+22345	1.00
+22346	1.00
+22347	1.00
+22348	1.00
+22349	1.00
+22350	1.00
+22351	1.00
+22352	1.00
+22353	1.00
+22354	1.00
+22355	1.00
+22356	1.00
+22357	1.00
+22358	1.00
+22359	1.00
+22360	1.00
+22361	1.00
+22362	1.00
+22363	1.00
+22364	1.00
+22365	1.00
+22366	1.00
+22367	1.00
+22368	1.00
+22369	1.00
+22370	1.00
+22371	1.00
+22372	1.00
+22373	1.00
+22374	1.00
+22375	1.00
+22376	1.00
+22377	1.00
+22378	1.00
+22379	1.00
+22380	1.00
+22381	1.00
+22382	1.00
+22383	1.00
+22384	1.00
+22385	1.00
+22386	1.00
+22387	1.00
+22388	1.00
+22389	1.00
+22390	1.00
+22434	1.00
+22435	1.00
+22436	1.00
+22437	1.00
+22438	1.00
+22439	1.00
+22440	1.00
+22441	1.00
+22442	1.00
+22443	1.00
+22444	1.00
+22445	1.00
+22446	2.00
+22447	2.00
+22448	2.00
+22449	3.00
+22450	3.00
+22451	3.00
+22452	3.00
+22453	3.00
+22454	3.00
+22455	3.00
+22456	3.00
+22457	3.00
+22458	3.00
+22459	3.00
+22460	3.00
+22461	3.00
+22462	3.00
+22463	3.00
+22464	3.00
+22465	3.00
+22466	3.00
+22467	3.00
+22468	3.00
+22469	3.00
+22470	3.00
+22471	3.00
+22472	3.00
+22473	3.00
+22474	3.00
+22475	3.00
+22476	3.00
+22477	3.00
+22478	3.00
+22479	3.00
+22480	2.00
+22481	2.00
+22482	2.00
+22483	2.00
+22484	2.00
+22485	2.00
+22486	2.00
+22487	2.00
+22488	2.00
+22489	2.00
+22490	2.00
+22491	1.00
+22492	1.00
+22493	1.00
+22494	1.00
+22495	1.00
+22496	1.00
+22497	1.00
+22498	1.00
+22499	1.00
+22544	1.00
+22545	1.00
+22546	1.00
+22547	1.00
+22548	1.00
+22549	1.00
+22550	1.00
+22551	1.00
+22552	1.00
+22553	1.00
+22554	1.00
+22555	1.00
+22556	1.00
+22557	1.00
+22558	1.00
+22559	1.00
+22560	1.00
+22561	1.00
+22562	1.00
+22563	1.00
+22564	1.00
+22565	1.00
+22566	1.00
+22567	1.00
+22568	1.00
+22569	1.00
+22570	1.00
+22571	1.00
+22572	1.00
+22573	1.00
+22574	1.00
+22575	1.00
+22576	1.00
+22577	1.00
+22578	1.00
+22579	1.00
+22580	1.00
+22581	1.00
+22582	1.00
+22583	1.00
+22584	1.00
+22585	1.00
+22586	1.00
+22587	1.00
+22588	1.00
+22589	1.00
+22590	1.00
+22591	1.00
+22710	1.00
+22711	1.00
+22712	1.00
+22713	1.00
+22714	1.00
+22715	1.00
+22716	1.00
+22717	1.00
+22718	1.00
+22719	1.00
+22720	1.00
+22721	1.00
+22722	1.00
+22723	1.00
+22724	1.00
+22725	1.00
+22726	1.00
+22727	1.00
+22728	1.00
+22729	1.00
+22730	1.00
+22731	1.00
+22732	1.00
+22733	1.00
+22734	1.00
+22735	1.00
+22736	1.00
+22737	1.00
+22738	1.00
+22739	1.00
+22740	1.00
+22741	1.00
+22742	1.00
+22743	1.00
+22744	1.00
+22745	1.00
+22746	1.00
+22747	1.00
+22748	1.00
+22749	1.00
+22750	1.00
+22751	1.00
+22752	1.00
+22753	1.00
+22754	1.00
+22755	1.00
+22756	1.00
+22757	1.00
+22758	1.00
+22759	1.00
+22760	1.00
+23105	1.00
+23106	1.00
+23107	1.00
+23108	1.00
+23109	1.00
+23110	1.00
+23111	1.00
+23112	1.00
+23113	1.00
+23114	1.00
+23115	1.00
+23116	1.00
+23117	1.00
+23118	1.00
+23119	1.00
+23120	1.00
+23121	1.00
+23122	1.00
+23123	1.00
+23124	1.00
+23125	1.00
+23126	1.00
+23127	1.00
+23128	1.00
+23129	1.00
+23130	1.00
+23131	1.00
+23132	1.00
+23133	1.00
+23134	1.00
+23135	1.00
+23136	1.00
+23137	1.00
+23138	1.00
+23139	1.00
+23140	1.00
+23141	1.00
+23142	1.00
+23143	1.00
+23144	1.00
+23145	1.00
+23146	1.00
+23147	1.00
+23148	1.00
+23149	1.00
+23150	1.00
+23151	1.00
+23152	1.00
+23153	1.00
+23154	1.00
+23354	1.00
+23355	1.00
+23356	1.00
+23357	1.00
+23358	1.00
+23359	1.00
+23360	1.00
+23361	1.00
+23362	1.00
+23363	1.00
+23364	1.00
+23365	1.00
+23366	1.00
+23367	1.00
+23368	1.00
+23369	1.00
+23370	1.00
+23371	1.00
+23372	1.00
+23373	1.00
+23374	1.00
+23375	1.00
+23376	1.00
+23377	1.00
+23378	1.00
+23379	1.00
+23380	1.00
+23381	1.00
+23382	1.00
+23383	1.00
+23384	1.00
+23385	1.00
+23386	1.00
+23387	1.00
+23388	1.00
+23389	1.00
+23390	1.00
+23391	1.00
+23392	1.00
+23393	1.00
+23394	1.00
+23395	1.00
+23396	1.00
+23397	1.00
+23398	1.00
+23399	1.00
+23400	1.00
+23401	1.00
+23402	1.00
+23403	1.00
+23404	1.00
+24395	1.00
+24396	1.00
+24397	1.00
+24398	1.00
+24399	1.00
+24400	1.00
+24401	1.00
+24402	1.00
+24403	1.00
+24404	1.00
+24405	1.00
+24406	1.00
+24407	1.00
+24408	1.00
+24409	1.00
+24410	1.00
+24411	1.00
+24412	1.00
+24413	1.00
+24414	1.00
+24415	1.00
+24416	1.00
+24417	1.00
+24418	1.00
+24419	1.00
+24420	1.00
+24421	1.00
+24422	1.00
+24423	1.00
+24424	1.00
+24425	1.00
+24426	1.00
+24427	1.00
+24428	1.00
+24429	1.00
+24430	1.00
+24431	1.00
+24432	1.00
+24433	1.00
+24434	1.00
+24435	1.00
+24558	1.00
+24559	1.00
+24560	1.00
+24561	1.00
+24562	1.00
+24563	1.00
+24564	1.00
+24565	1.00
+24566	1.00
+24567	1.00
+24568	1.00
+24569	1.00
+24570	1.00
+24571	1.00
+24572	1.00
+24573	1.00
+24574	1.00
+24575	1.00
+24576	1.00
+24577	1.00
+24578	1.00
+24579	1.00
+24580	1.00
+24581	1.00
+24582	1.00
+24583	1.00
+24584	1.00
+24585	1.00
+24586	1.00
+24587	1.00
+24588	1.00
+24589	1.00
+24590	1.00
+24591	1.00
+24592	1.00
+24593	1.00
+24594	1.00
+24595	1.00
+24596	1.00
+24597	1.00
+24598	1.00
+24599	1.00
+24600	1.00
+24601	1.00
+24602	1.00
+24603	1.00
+24604	1.00
+24605	1.00
+24606	1.00
+24607	1.00
+24608	1.00
+28411	1.00
+28412	1.00
+28413	1.00
+28414	1.00
+28415	1.00
+28416	1.00
+28417	1.00
+28418	1.00
+28419	1.00
+28420	1.00
+28421	1.00
+28422	1.00
+28423	1.00
+28424	1.00
+28425	1.00
+28426	1.00
+28427	1.00
+28428	1.00
+28429	1.00
+28430	1.00
+28431	2.00
+28432	2.00
+28433	2.00
+28434	2.00
+28435	2.00
+28436	2.00
+28437	2.00
+28438	2.00
+28439	2.00
+28440	2.00
+28441	2.00
+28442	2.00
+28443	2.00
+28444	2.00
+28445	2.00
+28446	2.00
+28447	2.00
+28448	2.00
+28449	2.00
+28450	2.00
+28451	2.00
+28452	2.00
+28453	2.00
+28454	2.00
+28455	2.00
+28456	2.00
+28457	2.00
+28458	2.00
+28459	2.00
+28460	1.00
+28461	1.00
+28462	1.00
+28463	1.00
+28464	1.00
+28465	1.00
+28466	1.00
+28467	1.00
+28468	1.00
+28469	1.00
+28470	1.00
+28471	1.00
+28472	1.00
+28473	1.00
+28474	1.00
+28475	1.00
+28476	1.00
+28477	1.00
+40638	1.00
+40639	1.00
+40640	1.00
+40641	1.00
+40642	1.00
+40643	1.00
+40644	1.00
+40645	1.00
+40646	1.00
+40647	1.00
+40648	2.00
+40649	2.00
+40650	2.00
+40651	2.00
+40652	2.00
+40653	2.00
+40654	2.00
+40655	2.00
+40656	2.00
+40657	2.00
+40658	2.00
+40659	2.00
+40660	2.00
+40661	2.00
+40662	2.00
+40663	2.00
+40664	2.00
+40665	2.00
+40666	2.00
+40667	2.00
+40668	2.00
+40669	2.00
+40670	2.00
+40671	2.00
+40672	2.00
+40673	2.00
+40674	2.00
+40675	2.00
+40676	2.00
+40677	2.00
+40678	2.00
+40679	2.00
+40680	3.00
+40681	3.00
+40682	3.00
+40683	3.00
+40684	3.00
+40685	3.00
+40686	3.00
+40687	2.00
+40688	2.00
+40689	2.00
+40690	2.00
+40691	2.00
+40692	2.00
+40693	1.00
+40694	1.00
+40695	1.00
+40696	1.00
+40697	1.00
+40698	1.00
+40699	1.00
+40700	1.00
+40701	1.00
+40702	1.00
+40703	1.00
+40704	1.00
+40705	1.00
+40706	1.00
+40707	1.00
+40708	1.00
+40709	1.00
+40710	1.00
+40711	1.00
+40712	1.00
+40713	1.00
+40714	1.00
+40715	1.00
+40716	1.00
+40717	1.00
+40718	1.00
+40719	1.00
+40720	1.00
+40721	1.00
+40722	1.00
+40723	1.00
+40724	1.00
+40725	1.00
+40726	1.00
+40727	1.00
+40728	1.00
+40729	1.00
+40730	1.00
+40895	1.00
+40896	1.00
+40897	1.00
+40898	1.00
+40899	1.00
+40900	1.00
+40901	1.00
+40902	1.00
+40903	1.00
+40904	1.00
+40905	1.00
+40906	1.00
+40907	1.00
+40908	1.00
+40909	1.00
+40910	1.00
+40911	1.00
+40912	1.00
+40913	1.00
+40914	1.00
+40915	1.00
+40916	1.00
+40917	1.00
+40918	1.00
+40919	1.00
+40920	1.00
+40921	1.00
+40922	1.00
+40923	1.00
+40924	1.00
+40925	1.00
+40926	1.00
+40927	1.00
+40928	1.00
+40929	1.00
+40930	1.00
+40931	1.00
+40932	1.00
+40933	1.00
+40934	1.00
+40935	1.00
+40936	1.00
+40937	1.00
+40938	1.00
+40939	1.00
+40940	1.00
+40941	1.00
+40942	1.00
+40943	1.00
+40944	1.00
+40945	1.00
+57998	1.00
+57999	1.00
+58000	1.00
+58001	1.00
+58002	1.00
+58003	1.00
+58004	1.00
+58005	1.00
+58006	1.00
+58007	1.00
+58008	1.00
+58009	1.00
+58010	1.00
+58011	1.00
+58012	1.00
+58013	1.00
+58014	1.00
+58015	1.00
+58016	1.00
+58017	1.00
+58018	1.00
+58019	1.00
+58020	1.00
+58021	1.00
+58022	1.00
+58023	1.00
+58024	1.00
+58025	1.00
+58026	1.00
+58027	1.00
+58028	1.00
+58029	1.00
+58030	1.00
+58031	1.00
+58032	1.00
+58033	1.00
+58034	1.00
+58035	1.00
+58036	1.00
+58037	1.00
+58038	1.00
+58039	1.00
+58040	1.00
+58041	1.00
+58042	1.00
+58043	1.00
+58044	1.00
+58045	1.00
+58046	1.00
+58047	1.00
+58135	1.00
+58136	1.00
+58137	1.00
+58138	1.00
+58139	1.00
+58140	1.00
+58141	1.00
+58142	1.00
+58143	1.00
+58144	1.00
+58145	1.00
+58146	1.00
+58147	1.00
+58148	1.00
+58149	1.00
+58150	1.00
+58151	1.00
+58152	1.00
+58153	1.00
+58154	1.00
+58155	1.00
+58156	1.00
+58157	1.00
+58158	1.00
+58159	1.00
+58160	1.00
+58161	1.00
+58162	1.00
+58163	1.00
+58164	1.00
+58165	1.00
+58166	1.00
+58167	1.00
+58168	1.00
+58169	1.00
+58170	1.00
+58171	1.00
+58172	1.00
+58173	1.00
+58174	1.00
+58175	1.00
+58176	1.00
+58177	1.00
+58178	1.00
+58179	1.00
+58180	1.00
+58181	1.00
+58182	1.00
+58183	1.00
+58184	1.00
+58185	1.00
+80866	1.00
+80867	1.00
+80868	1.00
+80869	1.00
+80870	1.00
+80871	1.00
+80872	1.00
+80873	1.00
+80874	1.00
+80875	1.00
+80876	1.00
+80877	1.00
+80878	1.00
+80879	1.00
+80880	1.00
+80881	1.00
+80882	1.00
+80883	1.00
+80884	1.00
+80885	1.00
+80886	1.00
+80887	1.00
+80888	1.00
+80889	1.00
+80890	1.00
+80891	1.00
+80892	1.00
+80893	1.00
+80894	1.00
+80895	1.00
+80896	1.00
+80897	1.00
+80898	1.00
+80899	1.00
+80900	1.00
+80901	1.00
+80902	1.00
+80903	1.00
+80904	1.00
+80905	1.00
+80906	1.00
+80907	1.00
+80908	1.00
+80909	1.00
+80910	1.00
+80911	1.00
+80912	1.00
+80913	1.00
+80914	1.00
+80915	1.00
+80916	1.00
+87735	1.00
+87736	1.00
+87737	1.00
+87738	1.00
+87739	1.00
+87740	1.00
+87741	1.00
+87742	1.00
+87743	1.00
+87744	1.00
+87745	1.00
+87746	1.00
+87747	1.00
+87748	1.00
+87749	1.00
+87750	1.00
+87751	1.00
+87752	1.00
+87753	1.00
+87754	1.00
+87755	1.00
+87756	1.00
+87757	1.00
+87758	1.00
+87759	1.00
+87760	1.00
+87761	1.00
+87762	1.00
+87763	1.00
+87764	1.00
+87765	1.00
+87766	1.00
+87767	1.00
+87768	1.00
+87769	1.00
+87770	1.00
+87771	1.00
+87772	1.00
+87773	1.00
+87774	1.00
+87775	1.00
+87776	1.00
+87777	1.00
+87778	1.00
+87779	1.00
+87780	1.00
+87781	1.00
+87782	1.00
+87800	1.00
+87801	1.00
+87802	1.00
+87803	1.00
+87804	1.00
+87805	1.00
+87806	1.00
+87807	1.00
+87808	1.00
+87809	1.00
+87810	1.00
+87811	1.00
+87812	1.00
+87813	1.00
+87814	1.00
+87815	1.00
+87816	1.00
+87817	1.00
+87818	1.00
+87819	1.00
+87820	1.00
+87821	1.00
+87822	1.00
+87823	1.00
+87824	1.00
+87825	1.00
+87826	1.00
+87827	1.00
+87828	1.00
+87829	1.00
+87830	1.00
+87831	1.00
+87832	1.00
+87833	1.00
+87834	1.00
+87835	1.00
+87836	1.00
+87837	1.00
+87838	1.00
+87839	1.00
+87840	1.00
+87841	1.00
+94827	1.00
+94828	1.00
+94829	1.00
+94830	1.00
+94831	1.00
+94832	1.00
+94833	1.00
+94834	1.00
+94835	1.00
+94836	1.00
+94837	1.00
+94838	1.00
+94839	1.00
+94840	1.00
+94841	1.00
+94842	1.00
+94843	1.00
+94844	1.00
+94845	1.00
+94846	1.00
+94847	1.00
+94848	1.00
+94849	1.00
+94850	1.00
+94851	1.00
+94852	1.00
+94853	1.00
+94854	1.00
+94855	1.00
+94856	1.00
+94857	1.00
+94858	1.00
+94859	1.00
+94860	1.00
+94861	1.00
+94862	1.00
+94863	1.00
+94864	1.00
+94865	1.00
+94866	1.00
+94867	1.00
+94868	1.00
+94869	1.00
+94870	1.00
+94871	1.00
+94872	1.00
+94873	1.00
+94874	1.00
+94875	1.00
+94876	1.00
+94877	1.00
+variableStep chrom=chrY
+variableStep chrom=chrX
+variableStep chrom=chr9
+variableStep chrom=chrM
+variableStep chrom=chr22
+variableStep chrom=chr20
+variableStep chrom=chr21
+variableStep chrom=chr7
+variableStep chrom=chr6
+variableStep chrom=chr5
+variableStep chrom=chr4
+variableStep chrom=chr2
diff -r ebadf9ee2d08 -r 71ed55a3515a tin.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tin.xml	Tue Mar 14 10:22:57 2017 -0400
@@ -0,0 +1,144 @@
+
+    
+        evaluates RNA integrity at a transcript level
+    
+
+    
+        rseqc_macros.xml
+    
+
+    
+
+    
+
+    
+
+    
+    
+    
+
+    
+        
+        
+        
+        
+        
+    
+
+    
+        
+        
+    
+
+    
+    
+        
+            
+            
+            
+            
+        
+    
+
+    
+    
+
+    
+
+
diff -r ebadf9ee2d08 -r 71ed55a3515a tool_dependencies.xml
--- a/tool_dependencies.xml	Thu Jul 18 11:01:08 2013 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,22 +0,0 @@
-
-
-    
-    
-        
-            
-                https://sourceforge.net/projects/rseqc/files/RSeQC-2.3.7.tar.gz
-                python setup.py install --root $INSTALL_DIR/lib/rseqc
-                
-                    $INSTALL_DIR/lib/rseqc/usr/local/lib/python2.7/site-packages
-                
-                
-                    $INSTALL_DIR/lib/rseqc/usr/local/bin
-                
-            
-        
-        
-        	RSeQC version 2.3.7, documentation available at http://dldcc-web.brc.bcm.edu/lilab/liguow/CGI/rseqc/_build/html/index.html#.
-        
-    
-    
-