Mercurial > repos > nikos > rna_probing
view k2n.R @ 4:d7af39b1fb6c draft
Uploaded
| author | nikos | 
|---|---|
| date | Tue, 04 Nov 2014 14:58:34 -0500 | 
| parents | 83dfe38f6a09 | 
| children | 2ae336f19de0 | 
line wrap: on
 line source
suppressMessages(library('getopt')) options(stringAsfactors = FALSE, useFancyQuotes = FALSE) args <- commandArgs(trailingOnly = TRUE) #get options, using the spec as defined by the enclosed list. #we read the options from the default: commandArgs(TRUE). spec = matrix( c( 'verbose', 'v', 2, "integer", 'help' , 'h', 0, "logical", 'merged', 'm', 1, "character", 'read_counts', 'c', 1, "character", 'max_observed', 'b', 1, "integer", 'barcode_length', 'l', 1, "integer", 'output', 'o', 1, "character" ), byrow = TRUE, ncol = 4 ); opt = getopt( spec ); # if help was asked for print a friendly message # and exit with a non-zero error code if ( !is.null( opt$help ) ) { cat( getopt( spec, usage=TRUE ) ) ; q( status = 1 ); } # Read inputs merged <- read.table( opt$merged ) read_counts <- read.table( opt$read_counts ) barcodes_nt <- merged[ do.call( paste, as.list( merged[ ,1:3 ] ) ) %in% do.call( paste, as.list( read_counts[ ( read_counts[ , 4 ] ) <= summary( read_counts[ , 4 ] )[ 5 ], 1:3 ] ) ) , 4 ] ##make the matrix with the nucleotide freqs per position: nt_counts <- matrix( nrow = 4, ncol = opt$barcode_length ) for( h in 1:ncol( nt_counts ) ){ j <- 1 for( nt_local in c( "A","C","G","T" ) ) { nt_counts[ j, h ] <- sum( substr( as.character( barcodes_nt ), h, h) == nt_local ) j <- j + 1 } } # Calculate frequencies nt_freqs <- nt_counts / colSums( nt_counts ) nt_values <- list() for( i in 1:ncol( nt_freqs ) ) { nt_values[[ i ]] <- nt_freqs[ , i ] } all_posible_comb <- expand.grid( nt_values ) probs <- apply( all_posible_comb, 1, prod ) ###Create Mf_to_Sf: results <- c() i <- 1 results[ i ] <- sum( 1 - ( 1 - probs )**i ) while( results[ i ] <= opt$max_observed ) { i <- i + 1 results[ i ] <- sum( 1 - ( 1 - probs )**i ) #Mf to Sf } #assign molecules number to unique barcode number: Uf_to_Mf <- c() for( i in 1:floor( max( results ) ) ) { abs( results - i ) -> difference Uf_to_Mf[ i ] <- which( difference == min( difference ) ) #if you want to know how many molecules underlie n unique barcodes ask Uf_to_Mf[n] } write( Uf_to_Mf, file = opt$output )
