comparison rna_probing_coverage.R @ 0:83dfe38f6a09 draft

Uploaded
author nikos
date Tue, 04 Nov 2014 14:28:45 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:83dfe38f6a09
1 ## Setup R error handling to go to stderr
2 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
3
4 # we need that to not crash galaxy with an UTF8 error on German LC settings.
5 #Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
6
7 suppressMessages(library('getopt'))
8
9 options(stringAsfactors = FALSE, useFancyQuotes = FALSE)
10 args <- commandArgs(trailingOnly = TRUE)
11
12 #get options, using the spec as defined by the enclosed list.
13 #we read the options from the default: commandArgs(TRUE).
14 spec = matrix(c(
15 'verbose', 'v', 2, "integer",
16 'help' , 'h', 0, "logical",
17 'sample', 's', 1, "character",
18 'control', 'c', 2, "character",
19 'window', 'w', 1, "integer",
20 'ball', 'b', 1, "double",
21 'peak', 'p', 1, "integer",
22 'output', 'o', 1, "character",
23 'counts', 'x', 1, "character",
24 'ratio', 'y', 1, "character",
25 'priming', 'z', 1, "character",
26 'plots', 'l', 2, "character"
27 ), byrow=TRUE, ncol=4);
28
29 opt = getopt(spec);
30
31 # if help was asked for print a friendly message
32 # and exit with a non-zero error code
33 if ( !is.null(opt$help) ) {
34 cat(getopt(spec, usage=TRUE));
35 q(status=1);
36 }
37
38
39 #This is streamlined protocol that works only with reads mapped to one RNA molecule (16S rRNA) #For plot used in NAR preparation (without two bottom plots) see under many #'s
40
41 suppressMessages(library('GenomicRanges'));
42 #setwd("/home/nikos/rna_probing_galaxy")
43
44 #Inputs:
45 #Options:
46 window_size <- opt$window
47 ball_size <- opt$ball
48 peak <- opt$peak
49
50 #Initialize variables:
51 counts <- list()
52 gene_coverage <- c()
53 gene_counts <- c()
54 gene_ratio <- c()
55 gene_priming <- c()
56 #End of initializing
57
58 ####Read in datasets:
59 counts[[1]] <- read.table( opt$sample )
60
61 #if ( !is.null( opt$control ) ) {
62 # counts[[2]] <- read.table( opt$control )
63 #}
64 #####
65
66 #Filter out the short inserts not to deal with size selection correctors.
67 for(i in seq(1,length(counts))){
68 counts[[i]] <- subset(counts[[i]], (counts[[i]][,3]-counts[[i]][,2])>=peak)
69 }
70
71 ############Initilize matrices for storing data:
72 counter <-1
73 for(i in seq(1,length(counts))){
74 temp_storage <- counts[[i]]
75 gene_coverage <- matrix(nrow=max(c(temp_storage[,3], nrow(gene_coverage))), ncol=counter)
76 gene_counts <- matrix(nrow=max(c(temp_storage[,3], nrow(gene_counts))), ncol=counter)
77 gene_priming <- matrix(nrow=max(c(temp_storage[,3], nrow(gene_priming))), ncol=counter)
78 gene_ratio <- matrix(nrow=max(c(temp_storage[,3], nrow(gene_ratio))), ncol=counter)
79 counter <- counter+1
80 }
81 ###########End of Initilize matrices for storing data
82
83 ##################
84 ##Fill in the matrices with data
85 counter <-1
86 for(i in seq(1,length(counts))){
87 temp_storage <- counts[[i]]
88 cover <- coverage(IRanges(start=temp_storage[,2], end=(temp_storage[,3]-peak)), weight=temp_storage[,4])
89 gene_coverage[1:length((rep(runValue(cover), runLength(cover)))),counter] <- c((rep(runValue(cover), runLength(cover))))
90 stopping_reads <- aggregate(temp_storage[,4]~temp_storage[,2],temp_storage, sum)
91 gene_counts[stopping_reads[,1],counter] <- stopping_reads[,2]
92 gene_counts[is.na(gene_counts)] <- 0
93 priming_reads <- aggregate(temp_storage[,4]~temp_storage[,3],temp_storage, sum)
94 gene_priming[priming_reads[,1],counter] <- priming_reads[,2]
95 gene_priming[is.na(gene_priming)] <- 0
96 counter <- counter+1
97 }
98
99 #End of filling in
100 gene_ratio <- gene_counts/gene_coverage
101
102 ###Export to Galaxy
103 data <- data.frame(gene_counts, gene_coverage, gene_priming, gene_ratio )
104 colnames(data) <- c("Read counts", "Effective Coverage EUC", "Termination EUC", "TCR")
105
106 write.table( data, opt$output, sep = "\t", quote = F, row.names = F)
107
108
109 #Return plots
110 if ( !is.null(opt$plots) ) {
111 pdf(opt$plots)
112
113 # Termination signal
114 plot(gene_counts, type= 'l', main = "Termination signal", ylab = "", xlab = "Position")
115
116 # Priming signal
117 plot(gene_priming, type= 'l', main = "Priming signal", ylab = "", xlab = "Position")
118 # Effective Coverage
119
120 y <- gene_coverage
121 y[is.na(y)] <- 0
122 x <- seq_along(y)
123 y2 <- rep(y, each=2)
124 y2 <- y2[-length(y2)]
125 x2 <- rep(x, each=2)[-1]
126 x3 <- c(min(x2), x2, max(x2))
127 y3 <- c(0, y2, 0)
128
129 # because polygon() is dumb and wants a pre-existing plot
130 plot(x, y, ylim=c(0, max(y)), type="n", main = "Effective Coverage", ylab = "", xlab = "Position")
131
132 polygon(x3, y3, border=NA, col="black")
133 lines(x2, y2)
134
135 # Termination Coverage Ratio
136 plot(gene_ratio, type= 'l', main = "Termination Coverage Ratio", ylab = "", xlab = "Position")
137 dump <- dev.off()
138 }