|
0
|
1 ## Setup R error handling to go to stderr
|
|
|
2 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
|
|
|
3
|
|
|
4 # we need that to not crash galaxy with an UTF8 error on German LC settings.
|
|
|
5 #Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
|
|
|
6
|
|
|
7 suppressMessages(library('getopt'))
|
|
|
8
|
|
|
9 options(stringAsfactors = FALSE, useFancyQuotes = FALSE)
|
|
|
10 args <- commandArgs(trailingOnly = TRUE)
|
|
|
11
|
|
|
12 #get options, using the spec as defined by the enclosed list.
|
|
|
13 #we read the options from the default: commandArgs(TRUE).
|
|
|
14 spec = matrix(c(
|
|
|
15 'verbose', 'v', 2, "integer",
|
|
|
16 'help' , 'h', 0, "logical",
|
|
|
17 'sample', 's', 1, "character",
|
|
|
18 'control', 'c', 2, "character",
|
|
|
19 'window', 'w', 1, "integer",
|
|
|
20 'ball', 'b', 1, "double",
|
|
|
21 'peak', 'p', 1, "integer",
|
|
|
22 'output', 'o', 1, "character",
|
|
|
23 'counts', 'x', 1, "character",
|
|
|
24 'ratio', 'y', 1, "character",
|
|
|
25 'priming', 'z', 1, "character",
|
|
|
26 'plots', 'l', 2, "character"
|
|
|
27 ), byrow=TRUE, ncol=4);
|
|
|
28
|
|
|
29 opt = getopt(spec);
|
|
|
30
|
|
|
31 # if help was asked for print a friendly message
|
|
|
32 # and exit with a non-zero error code
|
|
|
33 if ( !is.null(opt$help) ) {
|
|
|
34 cat(getopt(spec, usage=TRUE));
|
|
|
35 q(status=1);
|
|
|
36 }
|
|
|
37
|
|
|
38
|
|
|
39 #This is streamlined protocol that works only with reads mapped to one RNA molecule (16S rRNA) #For plot used in NAR preparation (without two bottom plots) see under many #'s
|
|
|
40
|
|
|
41 suppressMessages(library('GenomicRanges'));
|
|
|
42 #setwd("/home/nikos/rna_probing_galaxy")
|
|
|
43
|
|
|
44 #Inputs:
|
|
|
45 #Options:
|
|
|
46 window_size <- opt$window
|
|
|
47 ball_size <- opt$ball
|
|
|
48 peak <- opt$peak
|
|
|
49
|
|
|
50 #Initialize variables:
|
|
|
51 counts <- list()
|
|
|
52 gene_coverage <- c()
|
|
|
53 gene_counts <- c()
|
|
|
54 gene_ratio <- c()
|
|
|
55 gene_priming <- c()
|
|
|
56 #End of initializing
|
|
|
57
|
|
|
58 ####Read in datasets:
|
|
|
59 counts[[1]] <- read.table( opt$sample )
|
|
|
60
|
|
|
61 #if ( !is.null( opt$control ) ) {
|
|
|
62 # counts[[2]] <- read.table( opt$control )
|
|
|
63 #}
|
|
|
64 #####
|
|
|
65
|
|
|
66 #Filter out the short inserts not to deal with size selection correctors.
|
|
|
67 for(i in seq(1,length(counts))){
|
|
|
68 counts[[i]] <- subset(counts[[i]], (counts[[i]][,3]-counts[[i]][,2])>=peak)
|
|
|
69 }
|
|
|
70
|
|
|
71 ############Initilize matrices for storing data:
|
|
|
72 counter <-1
|
|
|
73 for(i in seq(1,length(counts))){
|
|
|
74 temp_storage <- counts[[i]]
|
|
|
75 gene_coverage <- matrix(nrow=max(c(temp_storage[,3], nrow(gene_coverage))), ncol=counter)
|
|
|
76 gene_counts <- matrix(nrow=max(c(temp_storage[,3], nrow(gene_counts))), ncol=counter)
|
|
|
77 gene_priming <- matrix(nrow=max(c(temp_storage[,3], nrow(gene_priming))), ncol=counter)
|
|
|
78 gene_ratio <- matrix(nrow=max(c(temp_storage[,3], nrow(gene_ratio))), ncol=counter)
|
|
|
79 counter <- counter+1
|
|
|
80 }
|
|
|
81 ###########End of Initilize matrices for storing data
|
|
|
82
|
|
|
83 ##################
|
|
|
84 ##Fill in the matrices with data
|
|
|
85 counter <-1
|
|
|
86 for(i in seq(1,length(counts))){
|
|
|
87 temp_storage <- counts[[i]]
|
|
|
88 cover <- coverage(IRanges(start=temp_storage[,2], end=(temp_storage[,3]-peak)), weight=temp_storage[,4])
|
|
|
89 gene_coverage[1:length((rep(runValue(cover), runLength(cover)))),counter] <- c((rep(runValue(cover), runLength(cover))))
|
|
|
90 stopping_reads <- aggregate(temp_storage[,4]~temp_storage[,2],temp_storage, sum)
|
|
|
91 gene_counts[stopping_reads[,1],counter] <- stopping_reads[,2]
|
|
|
92 gene_counts[is.na(gene_counts)] <- 0
|
|
|
93 priming_reads <- aggregate(temp_storage[,4]~temp_storage[,3],temp_storage, sum)
|
|
|
94 gene_priming[priming_reads[,1],counter] <- priming_reads[,2]
|
|
|
95 gene_priming[is.na(gene_priming)] <- 0
|
|
|
96 counter <- counter+1
|
|
|
97 }
|
|
|
98
|
|
|
99 #End of filling in
|
|
|
100 gene_ratio <- gene_counts/gene_coverage
|
|
|
101
|
|
|
102 ###Export to Galaxy
|
|
|
103 data <- data.frame(gene_counts, gene_coverage, gene_priming, gene_ratio )
|
|
|
104 colnames(data) <- c("Read counts", "Effective Coverage EUC", "Termination EUC", "TCR")
|
|
|
105
|
|
|
106 write.table( data, opt$output, sep = "\t", quote = F, row.names = F)
|
|
|
107
|
|
|
108
|
|
|
109 #Return plots
|
|
|
110 if ( !is.null(opt$plots) ) {
|
|
|
111 pdf(opt$plots)
|
|
|
112
|
|
|
113 # Termination signal
|
|
|
114 plot(gene_counts, type= 'l', main = "Termination signal", ylab = "", xlab = "Position")
|
|
|
115
|
|
|
116 # Priming signal
|
|
|
117 plot(gene_priming, type= 'l', main = "Priming signal", ylab = "", xlab = "Position")
|
|
|
118 # Effective Coverage
|
|
|
119
|
|
|
120 y <- gene_coverage
|
|
|
121 y[is.na(y)] <- 0
|
|
|
122 x <- seq_along(y)
|
|
|
123 y2 <- rep(y, each=2)
|
|
|
124 y2 <- y2[-length(y2)]
|
|
|
125 x2 <- rep(x, each=2)[-1]
|
|
|
126 x3 <- c(min(x2), x2, max(x2))
|
|
|
127 y3 <- c(0, y2, 0)
|
|
|
128
|
|
|
129 # because polygon() is dumb and wants a pre-existing plot
|
|
|
130 plot(x, y, ylim=c(0, max(y)), type="n", main = "Effective Coverage", ylab = "", xlab = "Position")
|
|
|
131
|
|
|
132 polygon(x3, y3, border=NA, col="black")
|
|
|
133 lines(x2, y2)
|
|
|
134
|
|
|
135 # Termination Coverage Ratio
|
|
|
136 plot(gene_ratio, type= 'l', main = "Termination Coverage Ratio", ylab = "", xlab = "Position")
|
|
|
137 dump <- dev.off()
|
|
|
138 }
|