Mercurial > repos > mkim8 > mintest2
comparison offtarget_v7.R @ 0:b194112c15d3 draft default tip
Uploaded
| author | mkim8 |
|---|---|
| date | Fri, 14 Mar 2014 10:55:19 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:b194112c15d3 |
|---|---|
| 1 library(methods) | |
| 2 library(lattice) | |
| 3 suppressMessages(library(Matrix)) | |
| 4 suppressMessages(library(ClassComparison)) | |
| 5 suppressMessages(library(glmnet)) | |
| 6 options(warn=-1) | |
| 7 | |
| 8 ####################### | |
| 9 ### arguments input ### | |
| 10 ####################### | |
| 11 | |
| 12 arg=commandArgs(TRUE) | |
| 13 | |
| 14 InputFile=arg[1] # must be given by user including both | |
| 15 # response variable and siRNA sequences | |
| 16 | |
| 17 Seed=as.integer(arg[2]) # Name: "Seed" | |
| 18 # specify the seed region to be used in analysis | |
| 19 # an interger out of 1~14. | |
| 20 # default is 2, which means 2~7 hexamer is used | |
| 21 | |
| 22 Strand=arg[3] # Name:"Strand Orientation for Analysis" | |
| 23 # specify which strand is used in analysis | |
| 24 # must be given by user, options are "sense", | |
| 25 #"antisense" or "both" | |
| 26 | |
| 27 Lambda=as.numeric(arg[4]) # Name:"Lambda Value" | |
| 28 # penalty parameter in LASSO regression | |
| 29 # default = 0.001, which can be changed by user | |
| 30 # in order to perform differennt LASSO estimation | |
| 31 | |
| 32 Library=arg[5] # Name:"siRNA Library to use" | |
| 33 # user has to specify which siRNA library will be | |
| 34 # used in analysis can be "Custom", "Ambion", "New Dharmacon" | |
| 35 # or "Old Dharmacon". Default is "Custom" | |
| 36 | |
| 37 ### new parameter ### | |
| 38 | |
| 39 Str=as.numeric(arg[6]) # Name:"Strength of seed-linked effect“ | |
| 40 # specify cutoff for strenth of seed-linked effet, must be positive | |
| 41 # default is 1 | |
| 42 | |
| 43 Sig=as.numeric(arg[7]) # Name:"Significance (P value)" | |
| 44 # specify cutoff for significance (p value) | |
| 45 # default is 0.01 | |
| 46 | |
| 47 ################# | |
| 48 ### functions ### | |
| 49 ################# | |
| 50 | |
| 51 # uppercase a sequence and transform T to U ### | |
| 52 | |
| 53 TtoU=function(x){ | |
| 54 x=as.character(x) | |
| 55 x=toupper(x) | |
| 56 x=chartr("T", "U", x) | |
| 57 return(x) | |
| 58 } | |
| 59 | |
| 60 # reverse a sequence # | |
| 61 | |
| 62 StrReverse <- function(x){ | |
| 63 x=as.character(x) | |
| 64 x=sapply(lapply(strsplit(x, NULL), rev), paste, collapse="") | |
| 65 return(x) | |
| 66 } | |
| 67 | |
| 68 # generate complementary sequence # | |
| 69 | |
| 70 DuplexReverse=function(x) | |
| 71 { | |
| 72 x=as.character(x) | |
| 73 x=gsub("U","T",x) | |
| 74 x=gsub("A","U",x) | |
| 75 x=gsub("T","A",x) | |
| 76 x=gsub("G","g",x) | |
| 77 x=gsub("C","G",x) | |
| 78 x=gsub("g","C",x) | |
| 79 x=StrReverse(x) | |
| 80 return(x) | |
| 81 } | |
| 82 | |
| 83 # check if input contains AUGC only # | |
| 84 | |
| 85 SeqCheck=function(x){ | |
| 86 x=as.character(x) | |
| 87 x=strsplit(x, "") | |
| 88 x=unlist(x) | |
| 89 if(sum(x %in% c("A", "U", "G", "C")) == length(x) ){ | |
| 90 return(TRUE) | |
| 91 } | |
| 92 else{ | |
| 93 return(FALSE) | |
| 94 } | |
| 95 } | |
| 96 | |
| 97 # extract seed sequence from siRNA # | |
| 98 | |
| 99 SeedExtract=function(x, start=2, end=7){ | |
| 100 x=as.character(x) | |
| 101 x=substr(x, start, end) | |
| 102 return(x) | |
| 103 } | |
| 104 | |
| 105 # examine if a pool contain a seed # | |
| 106 | |
| 107 SeedExist=function(dfr, s){ | |
| 108 dfr=data.frame(dfr) | |
| 109 s=as.character(s) | |
| 110 return(as.numeric(apply(dfr == s, 1, sum))) | |
| 111 } | |
| 112 | |
| 113 # seed analysis # | |
| 114 | |
| 115 SeedAnalysis=function(Z, data, start=2, end=7){ | |
| 116 | |
| 117 print("Generating seed.dfr ... ... ") | |
| 118 data=data.frame(data) | |
| 119 seed.dfr=data | |
| 120 for(i in 1:ncol(seed.dfr)){ | |
| 121 seed.dfr[, i]=as.character(SeedExtract(seed.dfr[, i], start=start, end=end)) | |
| 122 } | |
| 123 colnames(seed.dfr)=paste("seed", 1:ncol(seed.dfr), sep=".") | |
| 124 print("Generating seed.table ... ... ") | |
| 125 seed.table=data.frame(table(unlist(seed.dfr))) | |
| 126 names(seed.table)=c("seed", "family.size") | |
| 127 | |
| 128 seed.table$ks.p.value=rep(NA, length(seed.table$seed)) | |
| 129 y=Z | |
| 130 for(i in 1:length(seed.table$seed)){ | |
| 131 s=SeedExist(seed.dfr, seed.table$seed[i]) | |
| 132 seed.table$ks.p.value[i]= | |
| 133 ks.test(y[s > 0], y[s== 0])$p.value | |
| 134 print(paste("seed ", i)) | |
| 135 } | |
| 136 | |
| 137 return(list(Z=Z, data=data, seed.table=seed.table, seed.dfr=seed.dfr)) | |
| 138 } | |
| 139 | |
| 140 # offtarget analysis # | |
| 141 | |
| 142 OfftargetAnalysis=function(object, s=0.001){ | |
| 143 | |
| 144 seed.dfr=object$seed.dfr | |
| 145 seed.table=object$seed.table | |
| 146 y=object$Z | |
| 147 | |
| 148 print("Generating Matrix X ... ... ") | |
| 149 s.sub=as.character(seed.table$seed) | |
| 150 x=matrix(0, length(y), length(s.sub)) | |
| 151 colnames(x)=as.character(s.sub) | |
| 152 | |
| 153 for(i in 1:length(s.sub)){ | |
| 154 n=as.character(s.sub[i]) | |
| 155 x[, n]=SeedExist(seed.dfr, n) | |
| 156 print(paste("Matrix X seed ", i)) | |
| 157 } | |
| 158 | |
| 159 print("Fitting ... ... ") | |
| 160 gc() | |
| 161 | |
| 162 fit=glmnet(x, y) | |
| 163 | |
| 164 print("offtarget analysis") | |
| 165 offtarget=data.frame(as.matrix(coef(fit, s=s))) | |
| 166 offtarget$seed=rownames(offtarget) | |
| 167 offtarget=offtarget[, c(2, 1)] | |
| 168 names(offtarget)[2]="coef" | |
| 169 rownames(offtarget)=NULL | |
| 170 | |
| 171 offtarget=merge(offtarget, seed.table, by="seed", all.x=T) | |
| 172 y.fit=as.numeric(predict(fit, x, s=s)) | |
| 173 y.corrected=y-y.fit | |
| 174 print("Off-target analysis Done!") | |
| 175 | |
| 176 return(list(fit=fit, X=x, offtarget=offtarget, Z.corrected=y.corrected)) | |
| 177 | |
| 178 | |
| 179 } | |
| 180 | |
| 181 # generating data frame of siRNA sequence # | |
| 182 | |
| 183 SeqGenerate=function(SeqDat){ | |
| 184 SenseSeq=data.frame(apply(SeqDat, 2, TtoU)) | |
| 185 AntiSeq=data.frame(apply(SenseSeq, 2, DuplexReverse)) | |
| 186 for(i in 1:ncol(SenseSeq)){ | |
| 187 AntiSeq[, i]=DuplexReverse(SenseSeq[, i]) | |
| 188 } | |
| 189 BothSeq=cbind(SenseSeq, AntiSeq) | |
| 190 names(BothSeq)=paste("duplex", 1:ncol(BothSeq), sep=".") | |
| 191 output=list(SenseSeq=SenseSeq, AntiSeq=AntiSeq, BothSeq=BothSeq) | |
| 192 return(output) | |
| 193 } | |
| 194 | |
| 195 # DataAnalysis # | |
| 196 | |
| 197 DataAnalysis=function(Z, Seq, SeedStart, Strand, Lambda){ | |
| 198 | |
| 199 SeedEnd=SeedStart+5 | |
| 200 | |
| 201 analysis=list() | |
| 202 | |
| 203 if(Strand == 'sense'){ | |
| 204 Seq=Seq$SenseSeq | |
| 205 analysis$seed.analysis=SeedAnalysis(Z=Z, data=Seq, start=SeedStart, end=SeedEnd) | |
| 206 analysis$offtarget.analysis=OfftargetAnalysis(analysis$seed.analysis, s=Lambda) | |
| 207 } | |
| 208 else if(Strand == "antisense"){ | |
| 209 Seq=Seq$AntiSeq | |
| 210 analysis$seed.analysis=SeedAnalysis(Z=Z, data=Seq, start=SeedStart, end=SeedEnd) | |
| 211 analysis$offtarget.analysis=OfftargetAnalysis(analysis$seed.analysis, s=Lambda) | |
| 212 } | |
| 213 else if(Strand == 'both'){ | |
| 214 Seq=Seq$BothSeq | |
| 215 analysis$seed.analysis=SeedAnalysis(Z=Z, data=Seq, start=SeedStart, end=SeedEnd) | |
| 216 analysis$offtarget.analysis=OfftargetAnalysis(analysis$seed.analysis, s=Lambda) | |
| 217 } | |
| 218 return(analysis) | |
| 219 } | |
| 220 | |
| 221 # new functions # | |
| 222 | |
| 223 # FDR calculation # | |
| 224 | |
| 225 fdr.bum=function(p.value, Sig){ | |
| 226 p.sum=attributes(summary(Bum(p.value), tau=Sig))$estimates | |
| 227 f=p.sum[4]/(p.sum[2]+p.sum[4]) | |
| 228 f=as.numeric(f) | |
| 229 return(f) | |
| 230 } | |
| 231 | |
| 232 # load miRNA database # | |
| 233 | |
| 234 load("/home/galaxy/galaxy-dist/tools/offtarget/miRNA.RData") | |
| 235 | |
| 236 ################## | |
| 237 ### data input ### | |
| 238 ################## | |
| 239 | |
| 240 # data input # | |
| 241 | |
| 242 SeedStart=Seed | |
| 243 inputfile=read.csv(InputFile, header=F) | |
| 244 id=inputfile[, 1] | |
| 245 Z=as.numeric(inputfile[, 2]) | |
| 246 | |
| 247 # Z score checking # | |
| 248 | |
| 249 if(sum(is.na(Z)) > 0){ | |
| 250 print("Missing Value in Experimental Readouts!") | |
| 251 quit() | |
| 252 } | |
| 253 | |
| 254 if(sum(Z == "") > 0){ | |
| 255 print("Missing Value in Experimental Readouts!") | |
| 256 quit() | |
| 257 } | |
| 258 | |
| 259 ##################### | |
| 260 ### data analysis ### | |
| 261 ##################### | |
| 262 | |
| 263 ### Custom ### | |
| 264 | |
| 265 if(Library == "custom"){ | |
| 266 | |
| 267 ### check if user selected wrong "Library" parameter ### | |
| 268 if(ncol(inputfile) < 3){ | |
| 269 print("siRNA sequences not available and please check your Library selection") | |
| 270 quit() | |
| 271 } | |
| 272 ################################################################## | |
| 273 | |
| 274 SeqDat=inputfile[, 3:ncol(inputfile)] | |
| 275 SeqDat=data.frame(SeqDat) | |
| 276 | |
| 277 if(sum(is.na(unlist(SeqDat))) > 0){ | |
| 278 print("Missing Value in siRNA sequences!") | |
| 279 quit() | |
| 280 } | |
| 281 | |
| 282 if(sum(unlist(SeqDat) == "") > 0){ | |
| 283 print("Missing Value in siRNA sequences!") | |
| 284 quit() | |
| 285 } | |
| 286 | |
| 287 Seq=SeqGenerate(SeqDat) | |
| 288 | |
| 289 SenseSeq=Seq$SenseSeq | |
| 290 Check=data.frame(apply(SenseSeq, 1, SeqCheck)) | |
| 291 | |
| 292 if(sum(Check == FALSE) > 0){ | |
| 293 print("Non-Sequence Value in siRNA sequences!") | |
| 294 quit() | |
| 295 } | |
| 296 else{ | |
| 297 analysis=DataAnalysis(Z, Seq, SeedStart, Strand, Lambda) | |
| 298 } | |
| 299 } | |
| 300 | |
| 301 ### Ambion ### | |
| 302 | |
| 303 if(Library == "ambion"){ | |
| 304 | |
| 305 id=as.integer(id) | |
| 306 | |
| 307 if(sum(is.na(id)) > 0){ | |
| 308 print("Missing Value in Gene ID!") | |
| 309 quit() | |
| 310 } | |
| 311 | |
| 312 if(sum(id == "") > 0){ | |
| 313 print("Missing Value in Gene ID!") | |
| 314 quit() | |
| 315 } | |
| 316 | |
| 317 load("/home/galaxy/galaxy-dist/tools/offtarget/Ambion.RData") | |
| 318 id.ambion=unique(ambion$id) | |
| 319 | |
| 320 if(length(id[!(id %in% id.ambion)]) > 0){ | |
| 321 write.csv(c("No Matching siRNA Sequences with Below Gene ID and Removed from Analysis", | |
| 322 id[!(id %in% id.ambion)]), "unmatched.id.csv") | |
| 323 } | |
| 324 | |
| 325 Dat=data.frame(id=id, z=Z) | |
| 326 Dat=merge(Dat, ambion, by="id", sort=F) | |
| 327 Z=Dat$z | |
| 328 id=Dat$id | |
| 329 SeqDat=Dat[, 6:8] | |
| 330 Seq=SeqGenerate(SeqDat) | |
| 331 analysis=DataAnalysis(Z, Seq, SeedStart, Strand, Lambda) | |
| 332 | |
| 333 } | |
| 334 | |
| 335 ### New Dhar ### | |
| 336 | |
| 337 if(Library == "new_dharmacon"){ | |
| 338 | |
| 339 id=as.integer(id) | |
| 340 | |
| 341 if(sum(is.na(id)) > 0){ | |
| 342 print("Missing Value in Gene ID!") | |
| 343 quit() | |
| 344 } | |
| 345 | |
| 346 if(sum(id == "") > 0){ | |
| 347 print("Missing Value in Gene ID!") | |
| 348 quit() | |
| 349 } | |
| 350 | |
| 351 load("/home/galaxy/galaxy-dist/tools/offtarget/New_Dhar.RData") | |
| 352 id.new.dhar=unique(new.dhar$id) | |
| 353 | |
| 354 if(length(id[!(id %in% id.new.dhar)]) > 0){ | |
| 355 write.csv(c("No Matching siRNA Sequences with Below Gene ID and Removed from Analysis", | |
| 356 id[!(id %in% id.new.dhar)]), "unmatched.id.csv") | |
| 357 } | |
| 358 | |
| 359 Dat=data.frame(id=id, z=Z) | |
| 360 Dat=merge(Dat, new.dhar, by="id", sort=F) | |
| 361 Z=Dat$z | |
| 362 id=Dat$id | |
| 363 SeqDat=Dat[, 7:10] | |
| 364 Seq=SeqGenerate(SeqDat) | |
| 365 analysis=DataAnalysis(Z, Seq, SeedStart, Strand, Lambda) | |
| 366 | |
| 367 } | |
| 368 | |
| 369 ### Old Dhar ### | |
| 370 | |
| 371 if(Library == "old_dharmacon"){ | |
| 372 | |
| 373 id=as.integer(id) | |
| 374 | |
| 375 if(sum(is.na(id)) > 0){ | |
| 376 print("Missing Value in Gene ID!") | |
| 377 quit() | |
| 378 } | |
| 379 | |
| 380 if(sum(id == "") > 0){ | |
| 381 print("Missing Value in Gene ID!") | |
| 382 quit() | |
| 383 } | |
| 384 | |
| 385 load("/home/galaxy/galaxy-dist/tools/offtarget/Old_Dhar.RData") | |
| 386 id.old.dhar=unique(old.dhar$id) | |
| 387 | |
| 388 if(length(id[!(id %in% id.old.dhar)]) > 0){ | |
| 389 write.csv(c("No Matching siRNA Sequences with Below Gene ID and Removed from Analysis", | |
| 390 id[!(id %in% id.old.dhar)]), "unmatched.id.csv") | |
| 391 } | |
| 392 | |
| 393 Dat=data.frame(id=id, z=Z) | |
| 394 Dat=merge(Dat, old.dhar, by="id", sort=F) | |
| 395 Z=Dat$z | |
| 396 id=Dat$id | |
| 397 SeqDat=Dat[, 7:10] | |
| 398 Seq=SeqGenerate(SeqDat) | |
| 399 analysis=DataAnalysis(Z, Seq, SeedStart, Strand, Lambda) | |
| 400 | |
| 401 } | |
| 402 | |
| 403 ###################### | |
| 404 ### results output ### | |
| 405 ###################### | |
| 406 | |
| 407 # code chagned below # | |
| 408 | |
| 409 # generating output files # | |
| 410 | |
| 411 duplex.dfr=analysis$seed.analysis$data | |
| 412 names(duplex.dfr)=paste("duplex", 1:length(names(duplex.dfr)), sep=".") | |
| 413 seed.dfr=analysis$seed.analysis$seed.dfr | |
| 414 offtarget=analysis$offtarget.analysis$offtarget | |
| 415 Z.corrected=analysis$offtarget.analysis$Z.corrected | |
| 416 output.corr=cbind(ID=id, Z.Score=Z, Corrected.Z.Score=Z.corrected, | |
| 417 duplex.dfr, seed.dfr) | |
| 418 | |
| 419 | |
| 420 print("outputing results... ...") | |
| 421 | |
| 422 if(Library == 'custom'){ | |
| 423 | |
| 424 print("outputing corrected Z score... ...") | |
| 425 write.csv(output.corr, "CorrectedZScore.csv", row.names=F) ### export corrected z score | |
| 426 | |
| 427 print("outputing summary... ...") | |
| 428 write.csv(offtarget, "Seed_Famliy_Summary.csv", row.names=FALSE) ### output seed family summary table | |
| 429 | |
| 430 print("outputing offtarget seed families... ...") | |
| 431 | |
| 432 off.target=offtarget$seed[offtarget$ks.p.value < Sig & ( | |
| 433 offtarget$coef < -Str | offtarget$coef > Str)] # select off target by custom setup | |
| 434 | |
| 435 write.csv(offtarget[offtarget$seed %in% off.target, ], | |
| 436 "Off-Target_Seed_Families.csv", row.names=FALSE) ### export off-target seed families | |
| 437 | |
| 438 print("outputing miRNAs... ...") | |
| 439 if(nrow(miRNA[miRNA$Seed.sequence %in% off.target, ]) == 0){ | |
| 440 write.csv("No miRNA detected", "miRNA.csv", row.names=F) | |
| 441 fe="No" | |
| 442 } ### export miRNAs table sharing common seed | |
| 443 | |
| 444 if(nrow(miRNA[miRNA$Seed.sequence %in% off.target, ]) != 0){ | |
| 445 write.csv(miRNA[miRNA$Seed.sequence %in% off.target, ], "miRNA.csv", row.names=F) | |
| 446 fe="Yes" | |
| 447 } ### export miRNAs talbe sharing common seed | |
| 448 | |
| 449 if(length(off.target) > 0){ | |
| 450 for(i in 1:length(off.target)){ | |
| 451 | |
| 452 n=off.target[i] | |
| 453 si=SeedExist(seed.dfr, n) | |
| 454 si.offtarget=output.corr[si == 1, -3] | |
| 455 si.offtarget$off.target.seed=n | |
| 456 si.offtarget=si.offtarget[order(si.offtarget$Z.Score), ] | |
| 457 print(paste(n, "siRNA pools ... ...")) | |
| 458 write.csv(si.offtarget, paste("siRNAsPool_OffTargetSeedFamily_", n, ".csv", sep=""), row.names=F) | |
| 459 | |
| 460 } | |
| 461 } | |
| 462 }else{ | |
| 463 | |
| 464 print("outputing corrected Z score... ...") | |
| 465 write.csv(output.corr[, 1:3], "CorrectedZScore.csv", row.names=F) | |
| 466 | |
| 467 print("outputing summary... ...") | |
| 468 write.csv(offtarget, "Seed_Famliy_Summary.csv", row.names=FALSE) ### output seed family summary table | |
| 469 | |
| 470 print("outputing offtarget seed families... ...") | |
| 471 | |
| 472 off.target=offtarget$seed[offtarget$ks.p.value < Sig & ( | |
| 473 offtarget$coef < -Str | offtarget$coef > Str)] # select off target by custom setup | |
| 474 | |
| 475 write.csv(offtarget[offtarget$seed %in% off.target, ], | |
| 476 "Off-Target_Seed_Families.csv", row.names=FALSE) ### export off-target seed families | |
| 477 | |
| 478 print("outputing miRNAs... ...") | |
| 479 if(nrow(miRNA[miRNA$Seed.sequence %in% off.target, ]) == 0){ | |
| 480 write.csv("No miRNA detected", "miRNA.csv", row.names=F) | |
| 481 fe="No" | |
| 482 } ### export miRNAs table sharing common seed | |
| 483 | |
| 484 if(nrow(miRNA[miRNA$Seed.sequence %in% off.target, ]) != 0){ | |
| 485 write.csv(miRNA[miRNA$Seed.sequence %in% off.target, ], "miRNA.csv", row.names=F) | |
| 486 fe="Yes" | |
| 487 } ### export miRNAs talbe sharing common seed | |
| 488 | |
| 489 if(length(off.target) > 0){ | |
| 490 for(i in 1:length(off.target)){ | |
| 491 | |
| 492 n=off.target[i] | |
| 493 si=SeedExist(seed.dfr, n) | |
| 494 si.offtarget=output.corr[si == 1, -3] | |
| 495 si.offtarget$off.target.seed=n | |
| 496 si.offtarget=si.offtarget[order(si.offtarget$Z.Score), ] | |
| 497 print(paste(n, "siRNA pools ... ...")) | |
| 498 write.csv(si.offtarget, paste("siRNAsPool_OffTargetSeedFamily_", n, ".csv", sep=""), row.names=F) | |
| 499 | |
| 500 } | |
| 501 } | |
| 502 } | |
| 503 | |
| 504 | |
| 505 # generating output figures # | |
| 506 | |
| 507 print("outputing figures... ...") | |
| 508 | |
| 509 jpeg(file="SeedFamilyOffTarget.jpeg", height=600, width=800) | |
| 510 par(mar=c(5, 5, 2, 2)) | |
| 511 plot(offtarget$coef, -log10(offtarget$ks.p.value), | |
| 512 pch=20, col="blue", yaxt="n", cex.axis=1.5, cex.lab=2, | |
| 513 xlab="Strength of seed-linked effect", ylab="Significance (P value)") | |
| 514 p.log=ceiling(-log10(min(offtarget$ks.p.value, na.rm=T))/2) | |
| 515 p.range=10^(0:-p.log*2) | |
| 516 axis(2, p.range, | |
| 517 at=-log(p.range, 10), | |
| 518 cex.axis=1.5) | |
| 519 off.target=offtarget$seed[offtarget$coef < -Str & offtarget$ks.p.value < Sig] | |
| 520 nn=length(off.target) | |
| 521 points(offtarget$coef[offtarget$seed %in% off.target], | |
| 522 -log10(offtarget$ks.p.value[offtarget$seed %in% off.target]), | |
| 523 col="red", pch=20) | |
| 524 off.target=offtarget$seed[offtarget$coef > Str & offtarget$ks.p.value < Sig] | |
| 525 np=length(off.target) | |
| 526 points(offtarget$coef[offtarget$seed %in% off.target], | |
| 527 -log10(offtarget$ks.p.value[offtarget$seed %in% off.target]), | |
| 528 col="green", pch=20) | |
| 529 abline(v=-Str, col="red", lwd=3) | |
| 530 abline(v=Str, col="green", lwd=3) | |
| 531 abline(h=-log10(Sig), col="blue", lwd=3) | |
| 532 dev.off() | |
| 533 | |
| 534 # generating legend # | |
| 535 | |
| 536 jpeg(file="SeedFamilyOffTargetLegend.jpeg", width=500, height=100) | |
| 537 par(mar=c(0, 0, 0, 0)) | |
| 538 plot(c(0, 2), c(0.8, 1.2), type="n", bty="n", yaxt="n", xaxt='n') | |
| 539 points(c(0, 0), c(1.1, 0.9), col=c('red', "green"), pch=20, cex=2) | |
| 540 text(1, 1.1, paste('N: ', nn, " (Strength < ", -Str, ", P value < ", Sig, ")", sep=""), cex=2) | |
| 541 text(1, 0.9, paste('N: ', np, " (Strength > ", Str, ", P value < ", Sig, ")", sep=""), cex=2) | |
| 542 dev.off() | |
| 543 | |
| 544 # new output # | |
| 545 | |
| 546 # generating summary # | |
| 547 | |
| 548 print("Ansysis Summary ... ...") | |
| 549 | |
| 550 print("p value ... ...") | |
| 551 p.value=offtarget$ks.p.value[offtarget$coef < -Str | offtarget$coef > Str] | |
| 552 | |
| 553 print("FDR ... ...") | |
| 554 f=fdr.bum(p.value, Sig) | |
| 555 print("rounding ... ...") | |
| 556 f=round(f, digits=3) | |
| 557 print(f) | |
| 558 print("FDR done ... ...") | |
| 559 | |
| 560 | |
| 561 print("off.sum ... ...") | |
| 562 off.sum=matrix(rep("", 30), 15, 2) | |
| 563 off.sum[1,1]="Analysis is successfully done!" | |
| 564 off.sum[3,1]="Parameters set up" | |
| 565 off.sum[4:15, 1]=c("Strand Orientation for Analysis:", "Lambda value:", "Seed:", | |
| 566 "siRNA Library:", "Strength of seed-linked effect:", "P value:", "", | |
| 567 "Analysis summary", | |
| 568 "Number of negative off-target seed families:", | |
| 569 "Number of positive off-target seed families:", "FDR:", | |
| 570 "Identify miRNA with phenotypical effects:") | |
| 571 off.sum[4:15, 2]=c(Strand, Lambda, Seed, Library, Str, Sig, "", "", nn, np, f, fe) | |
| 572 write.table(off.sum, "Analysis_Summary.csv", row.names=F, col.names=F, sep=",") | |
| 573 | |
| 574 print("Analysis done ... ...") | |
| 575 |
