# HG changeset patch # User mingchen0919 # Date 1514670121 18000 # Node ID 18e3fc69da76c28af0bfa87cf50e9ed4aab03770 # Parent 4a7131658ca681b5e0bd272618b7acdf196c4381 update tool diff -r 4a7131658ca6 -r 18e3fc69da76 rmarkdown_deseq2_count_matrix.Rmd --- a/rmarkdown_deseq2_count_matrix.Rmd Sat Dec 30 12:35:31 2017 -0500 +++ b/rmarkdown_deseq2_count_matrix.Rmd Sat Dec 30 16:42:01 2017 -0500 @@ -54,3 +54,54 @@ datatable(col_data) ``` +# DESeqDataSet + +```{r 'DeseqDataSet'} +dds = DESeqDataSetFromMatrix(countData = count_data, + colData = col_data, + design = formula(opt$design_formula)) +dds +``` + +Pre-filter low count genes + +```{r 'pre-filtering'} +keep = rowSums(counts(dds)) >= 10 +dds = dds[keep, ] +dds +``` + +# Differential expression analysis + +```{r 'differential expression analysis'} +dds = DESeq(dds) +# res = results(dds, contrast = c(opt$contrast_condition, opt$treatment, opt$control)) +res = results(dds) +resultsNames(dds) +if(nrow(res) > 500) { + cat('The result table has more than 500 rows. Only 500 rows are randomly selected to dispaly.') + datatable(as.data.frame(res)[sample(1:nrow(res), 500), ]) +} else { + datatable(as.data.frame(res)) +} +``` + + + +```{r 'write results into csv'} +#Write results into a CSV file. +write.csv(res, 'differential_genes.csv') +``` + +# MAplot + +```{r} +plotMA(res) +``` + + +```{r 'save R objects'} +# Save R objects to a file +save(dds, opt, file = 'deseq2.RData') +``` + diff -r 4a7131658ca6 -r 18e3fc69da76 rmarkdown_deseq2_count_matrix.xml --- a/rmarkdown_deseq2_count_matrix.xml Sat Dec 30 12:35:31 2017 -0500 +++ b/rmarkdown_deseq2_count_matrix.xml Sat Dec 30 16:42:01 2017 -0500 @@ -56,6 +56,8 @@