comparison rmarkdown_deseq2_count_matrix.Rmd @ 2:18e3fc69da76 draft

update tool
author mingchen0919
date Sat, 30 Dec 2017 16:42:01 -0500
parents 4a7131658ca6
children 320aa7da31d9
comparison
equal deleted inserted replaced
1:4a7131658ca6 2:18e3fc69da76
52 ```{r 'match sample names'} 52 ```{r 'match sample names'}
53 col_data = col_data[col_names, ] 53 col_data = col_data[col_names, ]
54 datatable(col_data) 54 datatable(col_data)
55 ``` 55 ```
56 56
57 # DESeqDataSet
58
59 ```{r 'DeseqDataSet'}
60 dds = DESeqDataSetFromMatrix(countData = count_data,
61 colData = col_data,
62 design = formula(opt$design_formula))
63 dds
64 ```
65
66 Pre-filter low count genes
67
68 ```{r 'pre-filtering'}
69 keep = rowSums(counts(dds)) >= 10
70 dds = dds[keep, ]
71 dds
72 ```
73
74 # Differential expression analysis
75
76 ```{r 'differential expression analysis'}
77 dds = DESeq(dds)
78 # res = results(dds, contrast = c(opt$contrast_condition, opt$treatment, opt$control))
79 res = results(dds)
80 resultsNames(dds)
81 if(nrow(res) > 500) {
82 cat('The result table has more than 500 rows. Only 500 rows are randomly selected to dispaly.')
83 datatable(as.data.frame(res)[sample(1:nrow(res), 500), ])
84 } else {
85 datatable(as.data.frame(res))
86 }
87 ```
88
89
90
91 ```{r 'write results into csv'}
92 #Write results into a CSV file.
93 write.csv(res, 'differential_genes.csv')
94 ```
95
96 # MAplot
97
98 ```{r}
99 plotMA(res)
100 ```
101
102
103 ```{r 'save R objects'}
104 # Save R objects to a file
105 save(dds, opt, file = 'deseq2.RData')
106 ```
107