Mercurial > repos > melpetera > intensity_checks
comparison Intchecks/Script_intensity_check.R @ 1:d1133a7c26f9 draft
Uploaded
| author | melpetera |
|---|---|
| date | Fri, 03 Jan 2020 16:08:22 +0000 |
| parents | 51c39ea1fd54 |
| children | cab3e0dfb566 |
comparison
equal
deleted
inserted
replaced
| 0:51c39ea1fd54 | 1:d1133a7c26f9 |
|---|---|
| 1 ######################################################################### | 1 ######################################################################### |
| 2 # SCRIPT INTENSITY CHECK # | 2 # SCRIPT INTENSITY CHECK # |
| 3 # # | 3 # # |
| 4 # Input: Data Matrix, VariableMetadata, SampleMetadata # | 4 # Input: Data Matrix, VariableMetadata, SampleMetadata # |
| 5 # Output: VariableMetadata, Graphics (barplots and boxplots) # | 5 # Output: VariableMetadata, Graphics # |
| 6 # # | 6 # # |
| 7 # Dependencies: RcheckLibrary.R # | 7 # Dependencies: RcheckLibrary.R # |
| 8 # # | 8 # # |
| 9 ######################################################################### | 9 ######################################################################### |
| 10 | 10 |
| 11 | 11 |
| 12 # Parameters (for dev) | 12 # Parameters (for dev) |
| 13 if(FALSE){ | 13 if(FALSE){ |
| 14 | 14 |
| 15 rm(list = ls()) | 15 rm(list = ls()) |
| 16 setwd("Y:\\Developpement\\Intensity check\\Pour tests") | 16 setwd("Y:\\Developpement\\Intensity check\\Pour tests\\Tests_global") |
| 17 | 17 |
| 18 DM.name <- "DM_NA.tabular" | 18 DM.name <- "DM_NA.tabular" |
| 19 SM.name <- "SM_NA.tabular" | 19 SM.name <- "SM_NA.tabular" |
| 20 VM.name <- "vM_NA.tabular" | 20 VM.name <- "vM_NA.tabular" |
| 21 class.col <- "2" | 21 method <- "one_class" |
| 22 type <- "One_class" | 22 chosen.stat <- "mean,sd,quartile,decile,NA" |
| 23 class1 <- "Blanks" | 23 class.col <- "2" |
| 24 test.fold <- "Yes" | |
| 25 class1 <- "Pools" | |
| 24 fold.frac <- "Top" | 26 fold.frac <- "Top" |
| 25 logarithm <- "log2" | 27 logarithm <- "log10" |
| 26 VM.output <- "new_VM.txt" | 28 VM.output <- "new_VM.txt" |
| 27 graphs.output <- "Barplots_and_Boxplots.pdf" | 29 graphs.output <- "Barplots_and_Boxplots.pdf" |
| 28 } | 30 } |
| 29 | 31 |
| 30 | 32 |
| 31 | 33 |
| 32 | 34 |
| 33 intens_check <- function(DM.name, SM.name, VM.name, class.col, type, class1, fold.frac, logarithm, | 35 intens_check <- function(DM.name, SM.name, VM.name, method, chosen.stat, class.col, test.fold, class1, fold.frac, |
| 34 VM.output, graphs.output){ | 36 logarithm, VM.output, graphs.output){ |
| 35 | 37 |
| 36 | 38 # This function allows to check the intensities with various statistics, number of missing values and mean fold change |
| 37 # This function allows to check the intensities considering classes with a mean fold change calculation, | |
| 38 # the number and the proportion of missing values (NA) in dataMatrix | |
| 39 # | 39 # |
| 40 # Two options: | 40 # Three methods proposed: |
| 41 # - one class (selected by the user) against all the remaining samples ("One_class") | 41 # - global: tests for each variable without distinction between samples |
| 42 # - tests on each class ("Each_class") | 42 # - one class: one class versus all the remaining samples |
| 43 # - each class: if the class columns contains at least three classes and you want to test each of them | |
| 43 # | 44 # |
| 44 # Parameters: | 45 # Parameters: |
| 45 # DM.name, SM.name, VM.name: dataMatrix, sampleMetadata, variableMetadata files access | 46 # DM.name, SM.name, VM.name: dataMatrix, sampleMetadata, variableMetadata files access |
| 46 # class.col: number of the sampleMetadata's column with classes | 47 # method: "global", "one_class", "each_class" |
| 47 # type: "One_class" or "Each_class" | 48 # chosen.stat: character listing the chosen analysis (comma-separated) |
| 48 # class1: name of the class, only if type="One_class" | 49 # class.col: number of the sampleMetadata's column with classes (if method = one_class or each_class) |
| 49 # fold.frac: if type="One class": class1/other ("Top") or other/class1 ("Bottom") | 50 # test.fold: "yes" or "no" (if method = one_class or each_class) |
| 50 # logarithm: "log2", "log10" or "none" for log mean fold change | 51 # class1: name of the class (if method = one_class) |
| 52 # fold.frac: "Top" -> class1/other or "Bottom" -> other/class1 (if method = one_class) | |
| 53 # logarithm: "log2", "log10" or "none" (if method = one_class or each_class) | |
| 51 # VM.output: output file's access (VM with new columns) | 54 # VM.output: output file's access (VM with new columns) |
| 52 # graphs.output: pdf file's access with barplots for the proportion of NA and boxplots with the folds values | 55 # graphs.output: pdf file's access with barplots for the proportion of NA and boxplots with the folds values |
| 53 | 56 |
| 54 | |
| 55 | 57 |
| 56 | 58 |
| 57 | 59 |
| 58 # Input --------------------------------------------------------------------------------------------------- | 60 # Input --------------------------------------------------------------------------------------------------- |
| 59 | 61 |
| 64 | 66 |
| 65 | 67 |
| 66 # Table match check with Rchecklibrary | 68 # Table match check with Rchecklibrary |
| 67 table.check <- match3(DM, SM, VM) | 69 table.check <- match3(DM, SM, VM) |
| 68 check.err(table.check) | 70 check.err(table.check) |
| 69 | 71 |
| 70 | |
| 71 | 72 |
| 72 rownames(DM) <- DM[,1] | 73 rownames(DM) <- DM[,1] |
| 73 var_names <- DM[,1] | 74 var_names <- DM[,1] |
| 74 DM <- DM[,-1] | 75 DM <- DM[,-1] |
| 75 DM <- data.frame(t(DM)) | 76 DM <- data.frame(t(DM)) |
| 76 | 77 |
| 77 class.col <- colnames(SM)[as.numeric(class.col)] | 78 stat.list <- strsplit(chosen.stat,",")[[1]] |
| 78 | 79 |
| 79 | 80 |
| 80 # check class.col, class1 and the number of classes --------------------------------------------------------- | 81 # check class.col, class1 and the number of classes --------------------------------------------------------- |
| 81 | 82 |
| 82 if(!(class.col %in% colnames(SM))){ | 83 #set 1 class for all samples in case of method = no_class |
| 83 stop("\n- - - - - - - - -\n", "The column ",class.col, " is not a part of the specify sample Metadata","\n- - - - - - - - -\n") | 84 if(method=="no_class"){ |
| 84 } | 85 c_class <- rep("global", length=nrow(DM)) |
| 85 | 86 classnames <- "global" |
| 86 c_class <- SM[,class.col] | 87 nb_class=1 |
| 87 c_class <- as.factor(c_class) | 88 test.fold <- "No" |
| 88 nb_class <- nlevels(c_class) | 89 } |
| 89 classnames <- levels(c_class) | 90 |
| 90 | 91 |
| 91 if(nb_class < 2){ | 92 if(method != "no_class"){ |
| 92 err.1class <- c("\n The column",class.col, "contains only one class, fold calculation could not be executed \n") | 93 |
| 93 cat(err.1class) | 94 class.col <- colnames(SM)[as.numeric(class.col)] |
| 94 } | 95 |
| 95 | 96 if(!(class.col %in% colnames(SM))){ |
| 96 if((nb_class > (nrow(SM))/3)){ | 97 stop("\n- - - - - - - - -\n", "The column ",class.col, " is not a part of the specify sample Metadata","\n- - - - - - - - -\n") |
| 97 class.err <- c("\n There are too many classes, think about reducing the number of classes and excluding those | 98 } |
| 98 with few samples \n") | 99 |
| 99 cat(class.err) | 100 c_class <- SM[,class.col] |
| 100 } | 101 c_class <- as.factor(c_class) |
| 101 | 102 nb_class <- nlevels(c_class) |
| 102 | 103 classnames <- levels(c_class) |
| 103 if(type == "One_class"){ | 104 |
| 104 if(!(class1 %in% classnames)){ | 105 if((nb_class < 2)&&(test.fold=="Yes")){ |
| 105 list.class1 <- c("\n Classes:",classnames,"\n") | 106 err.1class <- c("\n The column",class.col, "contains only one class, fold calculation could not be executed \n") |
| 106 cat(list.class1) | 107 cat(err.1class) |
| 107 err.class1 <- c("The class ",class1, " does not appear in the column ", class.col) | 108 } |
| 108 stop("\n- - - - - - - - -\n", err.class1,"\n- - - - - - - - -\n") | 109 |
| 109 } | 110 if((nb_class > (nrow(SM))/3)&&(method == "each_class")){ |
| 110 } | 111 class.err <- c("\n There are too many classes, think about reducing the number of classes and excluding those |
| 111 | 112 with few samples \n") |
| 112 | 113 cat(class.err) |
| 113 #If type is "one_class", change others classes in "other" | 114 } |
| 114 if(type == "One_class"){ | 115 |
| 115 for(i in 1:length(c_class)){ | 116 |
| 116 if(c_class[i]!=class1){ | 117 if(method == "one_class"){ |
| 117 c_class <- as.character(c_class) | 118 if(!(class1 %in% classnames)){ |
| 118 c_class[i] <- "Other" | 119 list.class1 <- c("\n Classes:",classnames,"\n") |
| 119 c_class <- as.factor(c_class) | 120 cat(list.class1) |
| 120 nb_class <- nlevels(c_class) | 121 err.class1 <- c("The class ",class1, " does not appear in the column ", class.col) |
| 121 classnames <- c(class1,"Other") | 122 stop("\n- - - - - - - - -\n", err.class1,"\n- - - - - - - - -\n") |
| 123 } | |
| 124 | |
| 125 #If method is "one_class", change others classes in "other" | |
| 126 for(i in 1:length(c_class)){ | |
| 127 if(c_class[i]!=class1){ | |
| 128 c_class <- as.character(c_class) | |
| 129 c_class[i] <- "Other" | |
| 130 c_class <- as.factor(c_class) | |
| 131 nb_class <- nlevels(c_class) | |
| 132 classnames <- c(class1,"Other") | |
| 133 } | |
| 134 } | |
| 135 } | |
| 136 | |
| 137 } | |
| 138 | |
| 139 | |
| 140 # Statistics ------------------------------------------------------------------------------------------------ | |
| 141 | |
| 142 | |
| 143 ### Initialization | |
| 144 | |
| 145 DM <- cbind(c_class,DM) | |
| 146 | |
| 147 stat.res <- t(DM[0,-1,drop=FALSE]) | |
| 148 names <- NULL | |
| 149 | |
| 150 mean.res <- NULL | |
| 151 mean.names <- NULL | |
| 152 | |
| 153 sd.res <- NULL | |
| 154 sd.names <- NULL | |
| 155 | |
| 156 med.res <- NULL | |
| 157 med.names <- NULL | |
| 158 | |
| 159 quart.res <- NULL | |
| 160 quart.names <- NULL | |
| 161 | |
| 162 dec.res <- NULL | |
| 163 dec.names <- NULL | |
| 164 | |
| 165 NA.res <- NULL | |
| 166 NA.names <- NULL | |
| 167 pct_NA.res <- NULL | |
| 168 pct_NA.names <- NULL | |
| 169 | |
| 170 fold.res <- NULL | |
| 171 fold.names <- NULL | |
| 172 | |
| 173 if(("NA" %in% stat.list)||(test.fold=="Yes")){ | |
| 174 graphs <- 1 | |
| 175 }else{ | |
| 176 graphs=0 | |
| 177 } | |
| 178 | |
| 179 data_bp <- data.frame() #table for NA barplot | |
| 180 | |
| 181 | |
| 182 | |
| 183 ### Computation | |
| 184 | |
| 185 | |
| 186 for(j in 1:nb_class){ | |
| 187 | |
| 188 # Mean --------- | |
| 189 | |
| 190 if("mean" %in% stat.list){ | |
| 191 mean.res <- cbind(mean.res, colMeans(DM[which(DM$c_class==classnames[j]),-1],na.rm=TRUE)) | |
| 192 mean.names <- cbind(mean.names, paste("Mean",classnames[j], sep="_")) | |
| 193 if(j == nb_class){ | |
| 194 stat.res <- cbind(stat.res, mean.res) | |
| 195 names <- cbind(names, mean.names) | |
| 196 } | |
| 197 } | |
| 198 | |
| 199 # Standard deviation ----- | |
| 200 | |
| 201 if("sd" %in% stat.list){ | |
| 202 sd.res <- cbind(sd.res, apply(DM[which(DM$c_class==classnames[j]),-1],2,sd,na.rm=TRUE)) | |
| 203 sd.names <- cbind(sd.names, paste("Sd",classnames[j], sep="_")) | |
| 204 if(j == nb_class){ | |
| 205 stat.res <- cbind(stat.res, sd.res) | |
| 206 names <- cbind(names, sd.names) | |
| 207 } | |
| 208 } | |
| 209 | |
| 210 # Median --------- | |
| 211 | |
| 212 if(("median" %in% stat.list)&&(!("quartile" %in% stat.list))){ | |
| 213 med.res <- cbind(med.res, apply(DM[which(DM$c_class==classnames[j]),-1],2,median,na.rm=TRUE)) | |
| 214 med.names <- cbind(med.names, paste("Median",classnames[j], sep="_")) | |
| 215 if(j == nb_class){ | |
| 216 stat.res <- cbind(stat.res, med.res) | |
| 217 names <- cbind(names, med.names) | |
| 218 } | |
| 219 } | |
| 220 | |
| 221 # Quartiles ------ | |
| 222 | |
| 223 if("quartile" %in% stat.list){ | |
| 224 quart.res <- cbind(quart.res,t(apply(DM[which(DM$c_class==classnames[j]),-1],2,quantile,na.rm=TRUE))) | |
| 225 quart.names <- cbind(quart.names, paste("Min",classnames[j], sep="_"),paste("Q1",classnames[j], sep="_"), | |
| 226 paste("Median",classnames[j],sep="_"),paste("Q3",classnames[j],sep="_"), | |
| 227 paste("Max",classnames[j],sep="_")) | |
| 228 if(j == nb_class){ | |
| 229 stat.res <- cbind(stat.res, quart.res) | |
| 230 names <- cbind(names, quart.names) | |
| 231 } | |
| 232 } | |
| 233 | |
| 234 # Deciles ------ | |
| 235 | |
| 236 if("decile" %in% stat.list){ | |
| 237 dec.res <- cbind(dec.res,t(apply(DM[which(DM$c_class==classnames[j]),-1],2,quantile,na.rm=TRUE,seq(0,1,0.1)))) | |
| 238 dec.names <- cbind(dec.names, t(matrix(paste((paste("D",seq(0,10,1),sep="")),classnames[j],sep="_")))) | |
| 239 if(j == nb_class){ | |
| 240 stat.res <- cbind(stat.res, dec.res) | |
| 241 names <- cbind(names, dec.names) | |
| 242 } | |
| 243 } | |
| 244 | |
| 245 # Missing values ------------ | |
| 246 | |
| 247 if("NA" %in% stat.list){ | |
| 248 | |
| 249 nb_NA <- apply(DM[which(DM$c_class==classnames[j]),-1],2,function(x) sum(is.na(x))) | |
| 250 pct_NA <- round(nb_NA/nrow(DM[which(DM$c_class==classnames[j]),-1])*100,digits=4) | |
| 251 NA.res <- cbind(NA.res,nb_NA) | |
| 252 pct_NA.res <- cbind(pct_NA.res,pct_NA) | |
| 253 NA.names <- cbind(NA.names, paste("NA",classnames[j], sep="_")) | |
| 254 pct_NA.names <- cbind(pct_NA.names,paste("Pct_NA", classnames[j], sep="_")) | |
| 255 if(j == nb_class){ | |
| 256 stat.res <- cbind(stat.res, NA.res,pct_NA.res) | |
| 257 names <- cbind(names, NA.names,pct_NA.names) | |
| 258 } | |
| 122 | 259 |
| 123 } | 260 #for barplots |
| 124 } | 261 Nb_NA_0_20 <- 0 |
| 125 } | 262 Nb_NA_20_40 <- 0 |
| 126 | 263 Nb_NA_40_60 <- 0 |
| 127 DM <- cbind(DM,c_class) | 264 Nb_NA_60_80 <- 0 |
| 128 | 265 Nb_NA_80_100 <- 0 |
| 129 | 266 |
| 130 | 267 for (i in 1:length(pct_NA)){ |
| 131 # fold calculation ------------------------------------------------------------------------------------------- | 268 |
| 132 | 269 if ((0<=pct_NA[i])&(pct_NA[i]<20)){ |
| 133 if(nb_class >= 2){ | 270 Nb_NA_0_20=Nb_NA_0_20+1} |
| 134 | 271 |
| 135 | 272 if ((20<=pct_NA[i])&(pct_NA[i]<40)){ |
| 136 fold <- data.frame() | 273 Nb_NA_20_40=Nb_NA_20_40+1} |
| 137 n <- 1 | 274 |
| 138 ratio1 <- NULL | 275 if ((40<=pct_NA[i])&(pct_NA[i]<60)){ |
| 139 ratio2 <- NULL | 276 Nb_NA_40_60=Nb_NA_40_60+1} |
| 140 | 277 |
| 141 if(type=="Each_class"){ | 278 if ((60<=pct_NA[i])&(pct_NA[i]<80)){ |
| 142 fold.frac <- "Top" | 279 Nb_NA_60_80=Nb_NA_60_80+1} |
| 143 } | 280 |
| 144 | 281 if ((80<=pct_NA[i])&(pct_NA[i]<=100)){ |
| 145 for(j in 1:(nb_class-1)){ | 282 Nb_NA_80_100=Nb_NA_80_100+1} |
| 146 for(k in (j+1):nb_class) { | 283 } |
| 284 data_bp[1,j] <- Nb_NA_0_20 | |
| 285 data_bp[2,j] <- Nb_NA_20_40 | |
| 286 data_bp[3,j] <- Nb_NA_40_60 | |
| 287 data_bp[4,j] <- Nb_NA_60_80 | |
| 288 data_bp[5,j] <- Nb_NA_80_100 | |
| 289 rownames(data_bp) <- c("0%-20%", "20%-40%", "40%-60%", "60%-80%", "80%-100%") | |
| 290 | |
| 291 if(j == nb_class){ | |
| 147 | 292 |
| 148 if(fold.frac=="Bottom"){ | 293 # Alert message if there is no missing value in data matrix |
| 149 ratio1 <- classnames[k] | 294 sum_total <- sum(NA.res) |
| 150 ratio2 <- classnames[j] | 295 alerte <- NULL |
| 151 }else{ | 296 if(sum_total==0){ |
| 152 ratio1 <- classnames[j] | 297 alerte <- c(alerte, "Data Matrix contains no NA.\n") |
| 153 ratio2 <- classnames[k] | 298 } |
| 299 if(length(alerte) != 0){ | |
| 300 cat(alerte,"\n") | |
| 154 } | 301 } |
| 155 | 302 |
| 156 for (i in 1:(length(DM)-1)){ | 303 |
| 157 fold[i,n] <- mean(DM[which(DM$c_class==ratio1),i], na.rm=TRUE)/ | 304 colnames(data_bp) <- classnames |
| 158 mean(DM[which(DM$c_class==ratio2),i], na.rm=TRUE) | 305 data_bp <- as.matrix(data_bp) |
| 159 if(logarithm=="log2"){ | 306 } |
| 160 fold[i,n] <- log2(fold[i,n]) | 307 } |
| 161 }else if(logarithm=="log10"){ | 308 |
| 162 fold[i,n] <- log10(fold[i,n]) | 309 |
| 310 # Mean fold change ------------ | |
| 311 | |
| 312 if(test.fold=="Yes"){ | |
| 313 if(nb_class >= 2){ | |
| 314 if(j!=nb_class){ | |
| 315 ratio1 <- NULL | |
| 316 ratio2 <- NULL | |
| 317 if(method=="each_class"){ | |
| 318 fold.frac <- "Top" | |
| 163 } | 319 } |
| 320 for(k in (j+1):nb_class) { | |
| 321 if(fold.frac=="Bottom"){ | |
| 322 ratio1 <- classnames[k] | |
| 323 ratio2 <- classnames[j] | |
| 324 }else{ | |
| 325 ratio1 <- classnames[j] | |
| 326 ratio2 <- classnames[k] | |
| 327 } | |
| 328 fold <- colMeans(DM[which(DM$c_class==ratio1),-1],na.rm=TRUE)/ | |
| 329 colMeans(DM[which(DM$c_class==ratio2),-1],na.rm=TRUE) | |
| 330 if(logarithm=="log2"){ | |
| 331 fold.res <- cbind(fold.res,log2(fold)) | |
| 332 }else if(logarithm=="log10"){ | |
| 333 fold.res <- cbind(fold.res,log10(fold)) | |
| 334 }else{ | |
| 335 fold.res <- cbind(fold.res, fold) | |
| 336 } | |
| 337 if(logarithm == "none"){ | |
| 338 fold.names <- cbind(fold.names,paste("fold",ratio1,"VS", ratio2, sep="_")) | |
| 339 }else{ | |
| 340 fold.names <- cbind(fold.names,paste(logarithm, "fold", ratio1, "VS", ratio2, sep="_")) | |
| 341 } | |
| 342 } | |
| 343 | |
| 344 }else{ | |
| 345 stat.res <- cbind(stat.res,fold.res) | |
| 346 names <- cbind(names, fold.names) | |
| 164 } | 347 } |
| 165 names(fold)[n] <- paste("fold",ratio1,"VS", ratio2, sep="_") | 348 } |
| 166 if(logarithm != "none"){ | 349 } |
| 167 names(fold)[n] <- paste(logarithm,names(fold)[n], sep="_") | 350 |
| 168 } | 351 } |
| 169 n <- n + 1} | 352 |
| 170 } | 353 ############ |
| 171 | 354 |
| 172 } | 355 |
| 173 | 356 # check columns names in variableMetadata |
| 174 # number and proportion of NA --------------------------------------------------------------------------------- | 357 |
| 175 | |
| 176 calcul_NA <- data.frame() | |
| 177 pct_NA <- data.frame() | |
| 178 for (i in 1:(length(DM)-1)){ | |
| 179 for (j in 1:nb_class){ | |
| 180 n <- 0 | |
| 181 new_DM <- DM[which(DM$c_class==classnames[j]),i] | |
| 182 for(k in 1:length(new_DM)){ | |
| 183 if (is.na(new_DM[k])){ | |
| 184 n <- n + 1} | |
| 185 calcul_NA[i,j] <- n | |
| 186 pct_NA[i,j] <- (calcul_NA[i,j]/length(new_DM))*100} | |
| 187 } | |
| 188 } | |
| 189 names(calcul_NA) <- paste("NA",classnames, sep="_") | |
| 190 names(pct_NA) <- paste("Pct_NA", classnames, sep="_") | |
| 191 | |
| 192 # Alert message if there is no NA in data matrix | |
| 193 | |
| 194 sumNA <- colSums(calcul_NA) | |
| 195 sum_total <- sum(sumNA) | |
| 196 alerte <- NULL | |
| 197 if(sum_total==0){ | |
| 198 alerte <- c(alerte, "Data Matrix contains no NA.\n") | |
| 199 } | |
| 200 | |
| 201 if(length(alerte) != 0){ | |
| 202 cat(alerte,"\n") | |
| 203 } | |
| 204 table_NA <- cbind(calcul_NA, pct_NA) | |
| 205 | |
| 206 | |
| 207 | |
| 208 # check columns names --------------------------------------------------------------------------------------- | |
| 209 | |
| 210 | |
| 211 VM.names <- colnames(VM) | 358 VM.names <- colnames(VM) |
| 212 | |
| 213 # Fold | |
| 214 | |
| 215 if(nb_class >=2){ | |
| 216 fold.names <- colnames(fold) | |
| 217 | |
| 218 for (i in 1:length(VM.names)){ | |
| 219 for (j in 1:length(fold.names)){ | |
| 220 if (VM.names[i]==fold.names[j]){ | |
| 221 fold.names[j] <- paste(fold.names[j],"2", sep="_") | |
| 222 } | |
| 223 } | |
| 224 } | |
| 225 colnames(fold) <- fold.names | |
| 226 | |
| 227 VM <- cbind(VM,fold) | |
| 228 } | |
| 229 | |
| 230 # NA | |
| 231 NA.names <- colnames(table_NA) | |
| 232 | |
| 233 for (i in 1:length(VM.names)){ | 359 for (i in 1:length(VM.names)){ |
| 234 for (j in 1:length(NA.names)){ | 360 for (j in 1:length(names)){ |
| 235 if (VM.names[i]==NA.names[j]){ | 361 if (VM.names[i]==names[j]){ |
| 236 NA.names[j] <- paste(NA.names[j],"2", sep="_") | 362 names[j] <- paste(names[j], "2", sep="_") |
| 237 } | 363 } |
| 238 } | 364 } |
| 239 } | 365 } |
| 240 colnames(table_NA) <- NA.names | 366 |
| 241 VM <- cbind(VM,table_NA) | 367 colnames(stat.res) <- names |
| 242 | 368 |
| 243 | 369 |
| 244 #for NA barplots ------------------------------------------------------------------------------------------- | 370 |
| 245 | 371 |
| 246 data_bp <- data.frame() | 372 |
| 247 | |
| 248 for (j in 1:ncol(pct_NA)){ | |
| 249 Nb_NA_0_20 <- 0 | |
| 250 Nb_NA_20_40 <- 0 | |
| 251 Nb_NA_40_60 <- 0 | |
| 252 Nb_NA_60_80 <- 0 | |
| 253 Nb_NA_80_100 <- 0 | |
| 254 for (i in 1:nrow(pct_NA)){ | |
| 255 | |
| 256 if ((0<=pct_NA[i,j])&(pct_NA[i,j]<20)){ | |
| 257 Nb_NA_0_20=Nb_NA_0_20+1 | |
| 258 } | |
| 259 | |
| 260 if ((20<=pct_NA[i,j])&(pct_NA[i,j]<40)){ | |
| 261 Nb_NA_20_40=Nb_NA_20_40+1} | |
| 262 | |
| 263 if ((40<=pct_NA[i,j])&(pct_NA[i,j]<60)){ | |
| 264 Nb_NA_40_60=Nb_NA_40_60+1} | |
| 265 | |
| 266 if ((60<=pct_NA[i,j])&(pct_NA[i,j]<80)){ | |
| 267 Nb_NA_60_80=Nb_NA_60_80+1} | |
| 268 | |
| 269 if ((80<=pct_NA[i,j])&(pct_NA[i,j]<=100)){ | |
| 270 Nb_NA_80_100=Nb_NA_80_100+1} | |
| 271 } | |
| 272 data_bp[1,j] <- Nb_NA_0_20 | |
| 273 data_bp[2,j] <- Nb_NA_20_40 | |
| 274 data_bp[3,j] <- Nb_NA_40_60 | |
| 275 data_bp[4,j] <- Nb_NA_60_80 | |
| 276 data_bp[5,j] <- Nb_NA_80_100 | |
| 277 } | |
| 278 rownames(data_bp) <- c("0%-20%", "20%-40%", "40%-60%", "60%-80%", "80%-100%") | |
| 279 colnames(data_bp) <- classnames | |
| 280 data_bp <- as.matrix(data_bp) | |
| 281 | |
| 282 | 373 |
| 283 # Output --------------------------------------------------------------------------------------------------- | 374 # Output --------------------------------------------------------------------------------------------------- |
| 284 | 375 |
| 376 VM <-cbind(VM,stat.res) | |
| 285 | 377 |
| 286 write.table(VM, VM.output,sep="\t", quote=FALSE, row.names=FALSE) | 378 write.table(VM, VM.output,sep="\t", quote=FALSE, row.names=FALSE) |
| 287 | 379 |
| 288 #graphics pdf | 380 |
| 381 ### graphics pdf | |
| 382 | |
| 383 if(graphs == 1){ | |
| 289 | 384 |
| 290 pdf(graphs.output) | 385 pdf(graphs.output) |
| 386 | |
| 291 | 387 |
| 292 #Barplots for NA | 388 #Barplots for NA |
| 389 if("NA" %in% stat.list){ | |
| 390 graph.colors <- c("green3","palegreen3","lightblue","orangered","red") | |
| 293 par(mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE) | 391 par(mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE) |
| 294 | 392 |
| 295 bp=barplot(data_bp, col=rainbow(nrow(data_bp)), main="Proportion of NA", xlab="Classes", ylab="Variables") | 393 bp=barplot(data_bp, col=graph.colors, main="Proportion of NA", xlab="Classes", ylab="Variables") |
| 296 legend("topright", fill=rainbow(nrow(data_bp)),rownames(data_bp), inset=c(-0.3,0)) | 394 legend("topright", fill=graph.colors,rownames(data_bp), inset=c(-0.3,0)) |
| 297 | 395 |
| 298 stock=0 | 396 stock=0 |
| 299 for (i in 1:nrow(data_bp)){ | 397 for (i in 1:nrow(data_bp)){ |
| 300 text(bp, stock+data_bp[i,]/2, data_bp[i,], col="white", cex=0.7) | 398 text(bp, stock+data_bp[i,]/2, data_bp[i,], col="white", cex=0.7) |
| 301 stock <- stock+data_bp[i,] | 399 stock <- stock+data_bp[i,] |
| 302 } | 400 } |
| 303 | 401 |
| 304 | 402 } |
| 305 #Boxplots for fold test | 403 |
| 306 | 404 # Boxplots for fold test |
| 307 if(nb_class >= 2){ | 405 |
| 308 | 406 if((test.fold=="Yes")&&(nb_class >= 2)){ |
| 309 clean_fold <- fold | 407 |
| 408 clean_fold <- fold.res | |
| 310 for(i in 1:nrow(clean_fold)){ | 409 for(i in 1:nrow(clean_fold)){ |
| 311 for(j in 1:ncol(clean_fold)){ | 410 for(j in 1:ncol(clean_fold)){ |
| 312 if(is.infinite(clean_fold[i,j])){ | 411 if(is.infinite(clean_fold[i,j])){ |
| 313 clean_fold[i,j] <- NA | 412 clean_fold[i,j] <- NA |
| 314 } | 413 } |
| 315 } | 414 } |
| 316 } | 415 } |
| 317 for (j in 1:ncol(clean_fold)){ | 416 for (j in 1:ncol(clean_fold)){ |
| 318 title <- paste(fold.names[j]) | 417 title <- paste(fold.names[j]) |
| 319 boxplot(clean_fold[j], main=title) | 418 boxplot(clean_fold[,j], main=title) |
| 320 } | 419 } |
| 321 } | 420 } |
| 322 | 421 |
| 323 dev.off() | 422 dev.off() |
| 324 | 423 |
| 325 } | 424 }else{ |
| 326 | 425 pdf(graphs.output) |
| 327 | 426 plot.new() |
| 427 legend("center","You did not select any option with graphical output.") | |
| 428 dev.off() | |
| 429 } | |
| 430 | |
| 431 } | |
| 432 | |
| 433 | |
| 434 | |
| 435 | |
| 436 | |
| 437 |
