view ttest/stats.py @ 5:6f8ed2a7fd7a

Changed the tool_dependencies file to try to clean up that dependency for scipy
author melissacline
date Mon, 13 Oct 2014 18:06:43 -0700
parents f1929875b1b3
children 6ca836b7e0b4
line wrap: on
line source

#!/usr/bin/env python



import argparse
import math
import re
import sys
try:
    import numpy
except:
    from galaxy import eggs
    eggs.require("numpy")
    import numpy
try:
    import scipy
except:
    from galaxy import eggs
    eggs.require( "scipy" )
    import scipy
    import scipy.stats

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("genomicData", type=str)
    parser.add_argument("clinicalVector", type=str)
    parser.add_argument("outfile", type=str)
    parser.add_argument('-a', type=str, default=None)
    parser.add_argument('-b', type=str, default=None)
    args = parser.parse_args()
    clinicalVector = readClinicalFile(args.clinicalVector)
    genomicFp = open(args.genomicData)
    headerTokens = genomicFp.readline().rstrip().split("\t")
    (columnsGroupA, columnsGroupB) = headerLineToGroups(headerTokens, 
                                                        clinicalVector,
                                                        args.a, args.b)
    print columnsGroupA, columnsGroupB
    outfile = open(args.outfile, "w")
    outfile.write("%s\tStatistic\tpValue\tMedian1\tMedian2\tDelta\n" % (headerTokens[0]))
    for row in genomicFp:
        tokens = row.rstrip().split("\t")
        symbol = tokens[0]
        groupATokens = [tokens[ii] for ii in columnsGroupA]
        groupBTokens = [tokens[ii] for ii in columnsGroupB]
        groupAValues = [float(xx) for xx in groupATokens if xx != "NA"]
        groupBValues = [float(xx) for xx in groupBTokens if xx != "NA"]
        (ttest, pvalue) = performTTest(groupAValues, groupBValues)
        if ttest == None or pvalue == None:
            outputLine = "%s\tNA\tNA" % (symbol)
        else:
            outputLine= "%s\t%f\t%f" % (symbol, ttest, pvalue)
        if len(groupAValues) == 0:
            outputLine = outputLine + "\tNA"
        else:
            medianA = numpy.median(groupAValues)
            outputLine = "%s\t%f" % (outputLine, medianA)
        if len(groupBValues) == 0:
            outputLine = outputLine + "\tNA"
        else:
            medianB = numpy.median(groupBValues)
            outputLine = "%s\t%f" % (outputLine, medianB)
        if len(groupAValues) == 0 or len(groupBValues) == 0:
            outputLine = outputLine + "\tNA"
        else:
            outputLine = "%s\t%f" % (outputLine, medianA - medianB)
        outfile.write("%s\n" % (outputLine))
    outfile.close()

def readClinicalFile(clinicalFile):
    clinicalVector = dict()
    fp = open(clinicalFile)
    fp.readline()
    for row in fp:
        tokens = row.rstrip().split("\t")
        if len(tokens) > 1:
            clinicalVector[tokens[0]] = tokens[1]
        else:
            clinicalVector[tokens[0]] = None
    fp.close()
    return(clinicalVector)

def headerLineToGroups(headerTokens, clinicalVector, optionA, optionB):
    columnsGroupA = list()
    columnsGroupB = list()
    for ii in range(len(headerTokens)):
        id = headerTokens[ii]
        if clinicalVector.has_key(id):
            if clinicalVector[id] == optionA:
                columnsGroupA.append(ii)
            elif clinicalVector[id] == optionB:
                columnsGroupB.append(ii)
    return((columnsGroupA, columnsGroupB))

def performTTest(groupA, groupB):
    from scipy import special
    
    epsilon = 1E-06
    countA = len(groupA)
    countB = len(groupB)
    meanA = numpy.mean(groupA)
    meanB = numpy.mean(groupB)
    varA = numpy.var(groupA)
    varB = numpy.var(groupB)
    degreesOfFreedom = countA + countB - 2
    sVar = ((countA - 1) * varA + (countB - 1) * varB) / degreesOfFreedom
    if sVar == 0:
        tStat = None
        prob = None
    else:
        tStat = (meanA - meanB)/math.sqrt(sVar * (1.0/(countA + epsilon)     
                                                  + 1.0/(countB + epsilon)))  
        bottom = degreesOfFreedom + tStat * tStat
        prob = special.betainc(0.5*degreesOfFreedom, 0.5, 
                               degreesOfFreedom/bottom)
    return(tStat, prob)

    


if __name__ == "__main__":
    main()