Mercurial > repos > melissacline > ucsc_cancer_browser_stats
view ttest/stats.py @ 5:6f8ed2a7fd7a
Changed the tool_dependencies file to try to clean up that dependency for scipy
author | melissacline |
---|---|
date | Mon, 13 Oct 2014 18:06:43 -0700 |
parents | f1929875b1b3 |
children | 6ca836b7e0b4 |
line wrap: on
line source
#!/usr/bin/env python import argparse import math import re import sys try: import numpy except: from galaxy import eggs eggs.require("numpy") import numpy try: import scipy except: from galaxy import eggs eggs.require( "scipy" ) import scipy import scipy.stats def main(): parser = argparse.ArgumentParser() parser.add_argument("genomicData", type=str) parser.add_argument("clinicalVector", type=str) parser.add_argument("outfile", type=str) parser.add_argument('-a', type=str, default=None) parser.add_argument('-b', type=str, default=None) args = parser.parse_args() clinicalVector = readClinicalFile(args.clinicalVector) genomicFp = open(args.genomicData) headerTokens = genomicFp.readline().rstrip().split("\t") (columnsGroupA, columnsGroupB) = headerLineToGroups(headerTokens, clinicalVector, args.a, args.b) print columnsGroupA, columnsGroupB outfile = open(args.outfile, "w") outfile.write("%s\tStatistic\tpValue\tMedian1\tMedian2\tDelta\n" % (headerTokens[0])) for row in genomicFp: tokens = row.rstrip().split("\t") symbol = tokens[0] groupATokens = [tokens[ii] for ii in columnsGroupA] groupBTokens = [tokens[ii] for ii in columnsGroupB] groupAValues = [float(xx) for xx in groupATokens if xx != "NA"] groupBValues = [float(xx) for xx in groupBTokens if xx != "NA"] (ttest, pvalue) = performTTest(groupAValues, groupBValues) if ttest == None or pvalue == None: outputLine = "%s\tNA\tNA" % (symbol) else: outputLine= "%s\t%f\t%f" % (symbol, ttest, pvalue) if len(groupAValues) == 0: outputLine = outputLine + "\tNA" else: medianA = numpy.median(groupAValues) outputLine = "%s\t%f" % (outputLine, medianA) if len(groupBValues) == 0: outputLine = outputLine + "\tNA" else: medianB = numpy.median(groupBValues) outputLine = "%s\t%f" % (outputLine, medianB) if len(groupAValues) == 0 or len(groupBValues) == 0: outputLine = outputLine + "\tNA" else: outputLine = "%s\t%f" % (outputLine, medianA - medianB) outfile.write("%s\n" % (outputLine)) outfile.close() def readClinicalFile(clinicalFile): clinicalVector = dict() fp = open(clinicalFile) fp.readline() for row in fp: tokens = row.rstrip().split("\t") if len(tokens) > 1: clinicalVector[tokens[0]] = tokens[1] else: clinicalVector[tokens[0]] = None fp.close() return(clinicalVector) def headerLineToGroups(headerTokens, clinicalVector, optionA, optionB): columnsGroupA = list() columnsGroupB = list() for ii in range(len(headerTokens)): id = headerTokens[ii] if clinicalVector.has_key(id): if clinicalVector[id] == optionA: columnsGroupA.append(ii) elif clinicalVector[id] == optionB: columnsGroupB.append(ii) return((columnsGroupA, columnsGroupB)) def performTTest(groupA, groupB): from scipy import special epsilon = 1E-06 countA = len(groupA) countB = len(groupB) meanA = numpy.mean(groupA) meanB = numpy.mean(groupB) varA = numpy.var(groupA) varB = numpy.var(groupB) degreesOfFreedom = countA + countB - 2 sVar = ((countA - 1) * varA + (countB - 1) * varB) / degreesOfFreedom if sVar == 0: tStat = None prob = None else: tStat = (meanA - meanB)/math.sqrt(sVar * (1.0/(countA + epsilon) + 1.0/(countB + epsilon))) bottom = degreesOfFreedom + tStat * tStat prob = special.betainc(0.5*degreesOfFreedom, 0.5, degreesOfFreedom/bottom) return(tStat, prob) if __name__ == "__main__": main()