Mercurial > repos > matthias > dada2_learnerrors
view data2.R @ 1:e4ecd5306895 draft
planemo upload for repository https://github.com/bernt-matthias/mb-galaxy-tools/tree/topic/dada2/tools/dada2 commit d63c84012410608b3b5d23e130f0beff475ce1f8-dirty
author | matthias |
---|---|
date | Fri, 08 Mar 2019 08:31:24 -0500 |
parents | 56d5be6c03b9 |
children |
line wrap: on
line source
library(dada2) # library(DBI) # library(ggplot2) library(optparse) # library(RSQLite) # library(stringr) ## source required R functions source('user_input_functions.R') # print dada2 version print(paste("dada2 version: ", packageVersion("dada2"))) # # R function to create fasta file from dada2 output data # outdir is directory to output fasta file # taxa is taxonomy file generated by dada2 # prefix is string for desired prefix attached to output file names dada2fasta <- function(outdir, seqtab.nochim, prefix){ seq <- colnames(seqtab.nochim) n <- 0 ASVs <- c() for(i in seq){ n <- n + 1 ASV <- paste('ASV', as.character(n), sep = '_') ASVs <- c(ASVs, ASV) line1 <- paste('>',ASV,sep='') write(line1, file.path(outdir,sprintf('%s.fasta',prefix)), append=T) write(i, file.path(outdir,sprintf('%s.fasta',prefix)), append=T) } return(ASVs) } # # R DADA2 workflow # wd is path to fastq files # r_path is path to user_input_functions.R # outdir is path to output directory # prefix is string for desired prefix attached to output file names dada2run <- function(wd, r_path, outdir, prefix){ # read-in files------------------------------------------------------- ## obtain vectors of forward and reverse reads based on 'R1' and 'R2' in file names ## additionally obtain the coressponding sample names for these files p1 <- c() p2 <- c() sample.names <- c() for(f in list.files(wd, full.names=T)){ if(grepl('_1.fq', f)){ sample <- gsub('^.*[/](.*?)_1\\.fq\\.gz', '\\1', f) sample.names <- c(sample.names, sample) p1 <- c(p1, f) } if(grepl('_2.fq', f)){ p2 <- c(p2, f) } } fnFs <- sort(p1) fnRs <- sort(p2) sample.names <- sort(sample.names) save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_test.Rdata'))) #load(file = file.path(outdir, paste0(prefix, 'state_test.Rdata'))) ## print for review to_view <- data.frame(sample.names, fnFs, fnRs) cat("The following fastq files were found:\n") print(to_view) # Perform quality filtering and trimming--------------------------------- ## assign new names to samples filtFs <- file.path(outdir, paste0(sample.names, 'F_filt.fastq.gz')) filtRs <- file.path(outdir, paste0(sample.names, 'R_filt.fastq.gz')) ## plot forward and reverse quality so that user can decide on filtering parameters cat('Plotting quality profile of forward reads...\n') Fqp1 <- plotQualityProfile(fnFs[1]) #print(Fqp1) ggsave(sprintf('%s_forward_1_qualityprofile.pdf',prefix), Fqp1, path = outdir, width = 20,height = 15,units = c("cm")) #ggsave(sprintf('%s_forward_1_qualityprofile.emf',prefix), Fqp1, path = outdir, width = 20,height = 15,units = c("cm")) Fqp2 <- plotQualityProfile(fnFs[2]) #print(Fqp2) ggsave(sprintf('%s_forward_2_qualityprofile.pdf',prefix),Fqp2, path = outdir, width = 20,height = 15,units = c("cm")) #ggsave(sprintf('%s_forward_2_qualityprofile.emf',prefix), Fqp2, path = outdir, width = 20,height = 15,units = c("cm")) #cat('Which position would you like to truncate the forward reads at?\nPlease use the red-dashed lines as a guide, where they stop appearing indicates good quality.\nNOTE: Do NOT over-trim! You still require overlap between your forward and reverse reads in order to merge them later!\n') len1 <- 240 cat('Plotting quality profile of reverse reads...\n') Rqp1 <- plotQualityProfile(fnRs[1]) #print(Rqp1) ggsave(sprintf('%s_reverse_1_qualityprofile.pdf',prefix),Rqp1, path = outdir, width = 20,height = 15,units = c("cm")) #ggsave(sprintf('%s_reverse_1_qualityprofile.emf',prefix), Rqp1, path = outdir, width = 20,height = 15,units = c("cm")) Rqp2 <- plotQualityProfile(fnRs[2]) #print(Rqp2) ggsave(sprintf('%s_reverse_2_qualityprofile.pdf',prefix), Rqp2, path = outdir, width = 20,height = 15,units = c("cm")) #ggsave(sprintf('%s_reverse_2_qualityprofile.emf',prefix), Rqp2, path = outdir, width = 20,height = 15,units = c("cm")) #cat('Which position would you like to truncate the forward reads at?\nPlease use the red-dashed lines as a guide, where they stop appearing indicates good quality.\nNOTE: Do NOT over-trim! You still require overlap between your forward and reverse reads in order to merge them later!\n') len2 <- 240 ## filter and trim ## remaining parameters set to recommended defaults ## maxN must be set to 0 (DADA2 requries no Ns) ## The maxEE parameter sets the maximum number of "expected errors" allowed in a read, which is a better filter than simply averaging quality scores. ## If not using Windows, you may set multithread to TRUE ## NOTE: Do not use the truncLen parameter for ITS sequencing ## trimLeft needs to be varied based on the size of your primers (i.e. it is used to trim your primer sequences)!! cat('Filtering and trimming sequences...\n') out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(len1,len2), maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=T, compress=T, multithread=threads, trimLeft=15) ## have user review read count changes, and relax error rate if too many reads are lost ## for example, you may especially want to relax the number of expected errors on the reverse reads (i.e. maxEE=c(2,5)), as the reverse is prone to error on the Illumina sequencing platform print(head(out)) check2 <- T while(check2 == F){ maxF <- numeric_input("What would you like the maximum number of expected errors in the forward reads to be?\nDefault 2:", 2) maxR <- numeric_input("What would you like the maximum number of expected errors in the reverse reads to be?\nDefault 5:", 5) out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(len1,len2), maxN=0, maxEE=c(maxF,maxR), truncQ=2, rm.phix=T, compress=T, multithread=threads) print(head(out)) check2 <- yn_input('Proceed? If you lost too many reads, you can choose to not proceed and you will have the option to relax the error rate. Default yes:',T) } # Have DADA2 learn the error rates----------------------------------------------- ## If not using Windows, you may set multithread to TRUE read.subset <- 1e6 cat('Learning error rate of forward reads...\n') errF <- learnErrors(filtFs, nreads=read.subset, multithread=threads) ## have user check estimated error rates ## note the calculations are done with a subset of the total reads, as it is computationally intensive ## if the fit is poor, the user has the option to try again with an increased subset number of reads Error_f <- plotErrors(errF, nominalQ = T) #print(Error_f) ggsave(sprintf('%s_forward_Error_plot.pdf',prefix), Error_f, path = outdir, width = 20,height = 15,units = c("cm")) #ggsave(sprintf('%s_forward_Error_plot.emf',prefix), Error_f, path = outdir, width = 20,height = 15,units = c("cm")) check3a <- T while(check3a == F){ read.subset <- numeric_input('Please specify the number of reads you would like dada2 to utilize to calculate the error rate.\nThe default previously used was 1e6.\nThe newly recommended default is 10-fold greater,\n1e7:',1e7) errF <- learnErrors(filtFs, nreads=read.subset, multithread=threads) print(Error_f) ggsave(sprintf('%s_forward_Error_plot.pdf',prefix), path = outdir, width = 20,height = 15,units = c("cm")) ggsave(sprintf('%s_forward_Error_plot.emf',prefix), path = outdir, width = 20,height = 15,units = c("cm")) check3a <- yn_input('Proceed?\nThe estimated error rate (black line) should fit to the observed error rates for each consensus quality score (black points).\nAdditionally, the error rates expected under the nominal definition of the Q-value (quality score) should decrease as the quality score increases (or flat-line).\nIf you do not have a good fit, you may want dada2 to re-learn the error rates with a higher number of reads in the utilized subset.\nA subset of reads is always used as the algorithm is computationally intensive.\nDefault yes:',T) } ## also do for reverseL cat('Learning error rate of reverse reads...\n') errR <- learnErrors(filtRs, nreads=read.subset, multithread=threads) Error_r <- plotErrors(errR, nominalQ=T) #print(Error_r) ggsave(sprintf('%s_reverse_Error_plot.pdf',prefix), Error_r, path = outdir, width = 20,height = 15,units = c("cm")) #ggsave(sprintf('%s_reverse_Error_plot.emf',prefix), Error_r, path = outdir, width = 20,height = 15,units = c("cm")) check3b <- T while(check3b == F){ read.subset <- numeric_input('Please specify the number of reads you would like dada2 to utilize to calculate the error rate.\nThe default previously used was 1e6.\nThe newly recommended default is 10-fold greater,\n1e7:',1e7) errR <- learnErrors(filtRs, nreads=read.subset, multithread=threads) print(Error_r) ggsave(sprintf('%s_reverse_Error_plot.pdf',prefix), path = outdir, width = 20,height = 15,units = c("cm")) #ggsave(sprintf('%s_reverse_Error_plot.emf',prefix), path = outdir, width = 20,height = 15,units = c("cm")) check3b <- yn_input('Proceed?\nThe estimated error rate (black line) should fit to the observed error rates for each consensus quality score (black points).\nAdditionally, the error rates expected under the nominal definition of the Q-value (quality score) should decrease as the quality score increases (or flat-line).\nIf you do not have a good fit, you may want dada2 to re-learn the error rates with a higher number of reads in the utilized subset.\nA subset of reads is always used as the algorithm is computationally intensive.\nDefault yes:',T) } save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_learning.Rdata'))) #load(file = file.path(outdir, paste0(prefix, 'state_post_learning.Rdata'))) # Dereplicate sequences to generate unique sequence fastq files with corresponding count tables------------------------- ## NOTE: if your dataset is huge, you may run out of RAM. Please see https://benjjneb.github.io/dada2/bigdata.html for details. cat('Dereplicating forward reads...\n') derepFs <- derepFastq(filtFs, verbose=T) cat('Dereplicating reverse reads...\n') derepRs <- derepFastq(filtRs, verbose=T) ## name the derep-class objects by sample names names(derepFs) <- sample.names names(derepRs) <- sample.names save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_derep.Rdata'))) #load(file = file.path(outdir, paste0(prefix, 'state_post_derep.Rdata'))) # Infer sequence variants using learned error rates--------------------------------- ## If not using Windows, you may set multithread to TRUE ## NOTE: if your dataset is huge, you may run out of RAM. Please see https://benjjneb.github.io/dada2/bigdata.html for details. ## NOTE2: you can use DADA2 for 454 or IonTorrent data as well. Please see https://benjjneb.github.io/dada2/tutorial.html. s.pool = F cat('Inferring sequence variants of forward reads...\n') dadaFs <- dada(derepFs, err=errF, pool=s.pool, multithread=threads) ## have user inspect detected number of sequence variants, to ensure it is logical based on the biological context of their samples ## if you have low sampling depths, you may not want to process each sample independently as per default, but set pool=T. It gives better results at increased computation time. The user will have the option to do this if the number of sequence variants doesn't make sense. print(dadaFs[[1]]) check4 <- T if(check4 == F){ s.pool = T dadaFs <- dada(derepFs, err=errF, pool=s.pool, multithread=threads) print(dadaFs[[1]]) cat('Hopefully, these results make more sense.\nOtherwise, there is not much more you can do except start over!\n') check <- yn_input('Proceed? Default yes, no to quit:',T) if(check == F){ stop() } } ## also do for reverse, but don't need to re-check as you need to keep the pool consistent between the forward and reverse! cat('Inferring sequence variants of reversed reads...\n') dadaRs <- dada(derepRs, err=errR, pool=s.pool, multithread=threads) save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_dada.Rdata'))) #load(file = file.path(outdir, paste0(prefix, 'state_post_dada.Rdata'))) # Merge forward and reverse reads------------------------------------------------- cat('Merging paired-end reads...\n') mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose=T) #cat('Most of your reads should have been retained (i.e. were able to merge, see above).\nOtherwise, there is not much more you can do except start over (i.e. did you over-trim your sequences??)!\n') check <- T if(check == F){ stop() } # Construct sequences table------------------------------------------------------- cat('Constructing sequence table...\n') seqtab <- makeSequenceTable(mergers) save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_merge.Rdata'))) #load(file = file.path(outdir, paste0(prefix, 'state_post_merge.Rdata'))) ## inspect distribution of sequence lengths ## give user the option to filter out overly long or short sequneces cat('Sequence length distribution listed below:\n') print(table(nchar(getSequences(seqtab)))) check5 <- T if(check5 == F){ min.cutoff <- numeric_input('Please input desired minimum length of sequences:',NULL) max.cutoff <- numeric_input('Please input desired maximum length of sequences:',NULL) seqtab <- seqtab[,nchar(colnames(seqtab)) %in% seq(min.cutoff,max.cutoff)] } # Remove chimeras------------------------------------------------------------------ ## If not using Windows, you may set multithread to TRUE cat('Removing chimeras...\n') seqtab.nochim <- removeBimeraDenovo(seqtab, method='consensus', multithread=threads, verbose=T) ## display percentage of chimeras removed ## this number should be small (<5%), otherwise some processing parameters need to be revisited percent.nochim <- (sum(seqtab.nochim)/sum(seqtab))*100 percent.nochim <- paste(as.character(percent.nochim),'of reads retained after chimera removal.\n',sep=' ') cat(percent.nochim) #cat('Most of your reads should have been retained.\nOtherwise, there is not much more you can do except start over!\n') check <- T if(check == F){ stop() } # Final sanity check-------------------------------------------------------------- ## track reads removed throughout the pipeline ## If processing a single sample, remove the sapply calls: e.g. replace sapply(dadaFs, getN) with getN(dadaFs) getN <- function(x) sum(getUniques(x)) track <- cbind(out, sapply(dadaFs, getN), sapply(mergers, getN), rowSums(seqtab), rowSums(seqtab.nochim)) colnames(track) <- c("input", "filtered", "denoised", "merged", "tabled", "nonchim") rownames(track) <- sample.names print(head(track)) #cat('Most of your reads should have been retained.\nOtherwise, there is not much more you can do except start over!\n') check <- T if(check == F){ stop() } write.csv(track,file=file.path(outdir, sprintf('%s_read_count-quality_control.csv',prefix))) save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_chimera.Rdata'))) # load(file = file.path(outdir, paste0(prefix, 'state_post_chimera.Rdata'))) # Assign taxonomy----------------------------------------------------------------- ## require silva database files ## If not using Windows, you may set multithread to TRUE ## Minimum boot strap should be 80, but for sequnce length =< 250 Minimum bootstrap set to 50 (which is also the default) ## SILVA cat('Assigning taxonomy to genus level using SILVA...\n') taxa_silva <- assignTaxonomy(seqtab.nochim, file.path(wd,"silva_nr_v132_train_set.fa.gz"), multithread=threads, minBoot=80, tryRC=T) cat('Assigning taxonomy at species level using SILVA...\n') taxa_silva <- addSpecies(taxa_silva, file.path(wd,"silva_species_assignment_v132.fa.gz"), allowMultiple=T, tryRC=T) write.csv(taxa_silva,file=file.path(outdir, sprintf('%s_taxonomy_silva.csv',prefix))) ## RDP - used for copy number correction cat('Assigning taxonomy to genus level using RDP...\n') taxa_rdp <- assignTaxonomy(seqtab.nochim, file.path(wd,"rdp_train_set_16.fa.gz"), multithread=threads, minBoot=80, tryRC=T) cat('Assigning taxonomy at species level using RDP...\n') taxa_rdp <- addSpecies(taxa_rdp, file.path(wd,"rdp_species_assignment_16.fa.gz"), allowMultiple=T, tryRC=T) write.csv(taxa_rdp,file=file.path(outdir, sprintf('%s_taxonomy_rdp.csv',prefix))) save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_tax.Rdata'))) #load(file = file.path(outdir, paste0(prefix, 'state_post_tax.Rdata'))) # Return data---------------------------------------------------------------------- cat('Returning data...\n') ## create fasta file ASVs <- dada2fasta(outdir, seqtab.nochim, prefix) ## create master dataframe for each classification ## Assigning ASVs to count table sequences <- colnames(seqtab.nochim) colnames(seqtab.nochim) <- ASVs seqtab.nochim <- t(seqtab.nochim) ## silva taxa_silva <- taxa_silva[match(sequences, rownames(taxa_silva)),] rownames(taxa_silva) <- ASVs d <- merge(seqtab.nochim, taxa_silva, by='row.names') colnames(d)[1] <- 'ASV' ## create database of all information db <- dbConnect(RSQLite::SQLite(), file.path(outdir, sprintf('%s.sqlite',prefix))) dbWriteTable(db, 'dada2_results_silva', d) ## write master dataframe for user, and return it write.table(d, file.path(outdir, sprintf('%s_dada2_results_silva.txt',prefix)), sep='\t', quote=F, row.names=F) ## rdp taxa_rdp <- taxa_rdp[match(sequences, rownames(taxa_rdp)),] rownames(taxa_rdp) <- ASVs d <- merge(seqtab.nochim, taxa_rdp, by='row.names') colnames(d)[1] <- 'ASV' ## create database of all information dbWriteTable(db, 'dada2_results_rdp', d) dbDisconnect(db) ## write master dataframe for user, and return it write.table(d, file.path(outdir, sprintf('%s_dada2_results_rdp.txt',prefix)), sep='\t', quote=F, row.names=F) return(d) cat('DADA2 processing completed!\n') } option_list = list( make_option(c("-t", "--threads"), type = "integer", default = 1, help = "number of threads to use", metavar = "THREADS") ); opt_parser = OptionParser(option_list=option_list); opt = parse_args(opt_parser); print(opt) threads = as.integer(Sys.getenv("NSLOTS", "1")) exit(1) dada2run(wd='/work/haange/Leaky_gut/', r_path='/work/haange/Leaky_gut', outdir='/work/haange/Leaky_gut/results', prefix='Leaky_gut')