Mercurial > repos > lecorguille > xcms_retcor
view lib.r @ 30:4d6f4cd7c3ef draft
planemo upload for repository https://github.com/workflow4metabolomics/xcms commit e384d6dd5f410799ec211f73bca0b5d5d7bc651e
author | lecorguille |
---|---|
date | Thu, 01 Mar 2018 04:16:45 -0500 |
parents | c013ed353a2f |
children | 281786a7b9a2 |
line wrap: on
line source
#@authors ABiMS TEAM, Y. Guitton # lib.r for Galaxy Workflow4Metabolomics xcms tools #@author G. Le Corguille # solve an issue with batch if arguments are logical TRUE/FALSE parseCommandArgs <- function(...) { args <- batch::parseCommandArgs(...) for (key in names(args)) { if (args[key] %in% c("TRUE","FALSE")) args[key] = as.logical(args[key]) } return(args) } #@author G. Le Corguille # This function will # - load the packages # - display the sessionInfo loadAndDisplayPackages <- function(pkgs) { for(pkg in pkgs) suppressPackageStartupMessages( stopifnot( library(pkg, quietly=TRUE, logical.return=TRUE, character.only=TRUE))) sessioninfo = sessionInfo() cat(sessioninfo$R.version$version.string,"\n") cat("Main packages:\n") for (pkg in names(sessioninfo$otherPkgs)) { cat(paste(pkg,packageVersion(pkg)),"\t") }; cat("\n") cat("Other loaded packages:\n") for (pkg in names(sessioninfo$loadedOnly)) { cat(paste(pkg,packageVersion(pkg)),"\t") }; cat("\n") } #@author G. Le Corguille # This function convert if it is required the Retention Time in minutes RTSecondToMinute <- function(variableMetadata, convertRTMinute) { if (convertRTMinute){ #converting the retention times (seconds) into minutes print("converting the retention times into minutes in the variableMetadata") variableMetadata[,"rt"] <- variableMetadata[,"rt"]/60 variableMetadata[,"rtmin"] <- variableMetadata[,"rtmin"]/60 variableMetadata[,"rtmax"] <- variableMetadata[,"rtmax"]/60 } return (variableMetadata) } #@author G. Le Corguille # This function format ions identifiers formatIonIdentifiers <- function(variableMetadata, numDigitsRT=0, numDigitsMZ=0) { splitDeco <- strsplit(as.character(variableMetadata$name),"_") idsDeco <- sapply(splitDeco, function(x) { deco=unlist(x)[2]; if (is.na(deco)) return ("") else return(paste0("_",deco)) }) namecustom <- make.unique(paste0("M",round(variableMetadata[,"mz"],numDigitsMZ),"T",round(variableMetadata[,"rt"],numDigitsRT),idsDeco)) variableMetadata <- cbind(name=variableMetadata$name, namecustom=namecustom, variableMetadata[,!(colnames(variableMetadata) %in% c("name"))]) return(variableMetadata) } #@author G. Le Corguille # Draw the plotChromPeakDensity 3 per page in a pdf file getPlotChromPeakDensity <- function(xdata) { pdf(file="plotChromPeakDensity.pdf", width=16, height=12) par(mfrow = c(3, 1), mar = c(4, 4, 1, 0.5)) group_colors <- brewer.pal(3, "Set1")[1:length(unique(xdata$sample_group))] names(group_colors) <- unique(xdata$sample_group) xlim <- c(min(featureDefinitions(xdata)$rtmin), max(featureDefinitions(xdata)$rtmax)) for (i in 1:nrow(featureDefinitions(xdata))) { plotChromPeakDensity(xdata, mz=c(featureDefinitions(xdata)[i,]$mzmin,featureDefinitions(xdata)[i,]$mzmax), col=group_colors, pch=16, xlim=xlim) legend("topright", legend=names(group_colors), col=group_colors, cex=0.8, lty=1) } dev.off() } #@author G. Le Corguille # Draw the plotChromPeakDensity 3 per page in a pdf file getPlotAdjustedRtime <- function(xdata) { pdf(file="raw_vs_adjusted_rt.pdf", width=16, height=12) # Color by group group_colors <- brewer.pal(3, "Set1")[1:length(unique(xdata$sample_group))] names(group_colors) <- unique(xdata$sample_group) plotAdjustedRtime(xdata, col = group_colors[xdata$sample_group]) legend("topright", legend=names(group_colors), col=group_colors, cex=0.8, lty=1) # Color by sample plotAdjustedRtime(xdata, col = rainbow(length(xdata@phenoData@data$sample_name))) legend("topright", legend=xdata@phenoData@data$sample_name, col=rainbow(length(xdata@phenoData@data$sample_name)), cex=0.8, lty=1) dev.off() } #@author G. Le Corguille # value: intensity values to be used into, maxo or intb getPeaklistW4M <- function(xdata, intval="into", convertRTMinute=F, numDigitsMZ=4, numDigitsRT=0, variableMetadataOutput, dataMatrixOutput) { dataMatrix <- featureValues(xdata, method="medret", value=intval) colnames(dataMatrix) <- tools::file_path_sans_ext(colnames(dataMatrix)) dataMatrix = cbind(name=groupnamesW4M(xdata), dataMatrix) variableMetadata <- featureDefinitions(xdata) colnames(variableMetadata)[1] = "mz"; colnames(variableMetadata)[4] = "rt" variableMetadata = data.frame(name=groupnamesW4M(xdata), variableMetadata) variableMetadata <- RTSecondToMinute(variableMetadata, convertRTMinute) variableMetadata <- formatIonIdentifiers(variableMetadata, numDigitsRT=numDigitsRT, numDigitsMZ=numDigitsMZ) write.table(variableMetadata, file=variableMetadataOutput,sep="\t",quote=F,row.names=F) write.table(dataMatrix, file=dataMatrixOutput,sep="\t",quote=F,row.names=F) } #@author Y. Guitton getBPC <- function(file,rtcor=NULL, ...) { object <- xcmsRaw(file) sel <- profRange(object, ...) cbind(if (is.null(rtcor)) object@scantime[sel$scanidx] else rtcor ,xcms:::colMax(object@env$profile[sel$massidx,sel$scanidx,drop=FALSE])) #plotChrom(xcmsRaw(file), base=T) } #@author Y. Guitton getBPCs <- function (xcmsSet=NULL, pdfname="BPCs.pdf",rt=c("raw","corrected"), scanrange=NULL) { cat("Creating BIC pdf...\n") if (is.null(xcmsSet)) { cat("Enter an xcmsSet \n") stop() } else { files <- filepaths(xcmsSet) } phenoDataClass <- as.vector(levels(xcmsSet@phenoData[,"class"])) #sometime phenoData have more than 1 column use first as class classnames <- vector("list",length(phenoDataClass)) for (i in 1:length(phenoDataClass)){ classnames[[i]] <- which( xcmsSet@phenoData[,"class"]==phenoDataClass[i]) } N <- dim(phenoData(xcmsSet))[1] TIC <- vector("list",N) for (j in 1:N) { TIC[[j]] <- getBPC(files[j]) #good for raw # seems strange for corrected #errors if scanrange used in xcmsSetgeneration if (!is.null(xcmsSet) && rt == "corrected") rtcor <- xcmsSet@rt$corrected[[j]] else rtcor <- NULL TIC[[j]] <- getBPC(files[j],rtcor=rtcor) # TIC[[j]][,1]<-rtcor } pdf(pdfname,w=16,h=10) cols <- rainbow(N) lty <- 1:N pch <- 1:N #search for max x and max y in BPCs xlim <- range(sapply(TIC, function(x) range(x[,1]))) ylim <- range(sapply(TIC, function(x) range(x[,2]))) ylim <- c(-ylim[2], ylim[2]) ##plot start if (length(phenoDataClass)>2){ for (k in 1:(length(phenoDataClass)-1)){ for (l in (k+1):length(phenoDataClass)){ #print(paste(phenoDataClass[k],"vs",phenoDataClass[l],sep=" ")) plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Base Peak Chromatograms \n","BPCs_",phenoDataClass[k]," vs ",phenoDataClass[l], sep=""), xlab="Retention Time (min)", ylab="BPC") colvect <- NULL for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l") points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l") colvect <- append(colvect,cols[classnames[[k]][j]]) } for (j in 1:length(classnames[[l]])) { # i <- class2names[j] tic <- TIC[[classnames[[l]][j]]] points(tic[,1]/60, -tic[,2], col=cols[classnames[[l]][j]], pch=pch[classnames[[l]][j]], type="l") colvect <- append(colvect,cols[classnames[[l]][j]]) } legend("topright",paste(basename(files[c(classnames[[k]],classnames[[l]])])), col=colvect, lty=lty, pch=pch) } } }#end if length >2 if (length(phenoDataClass)==2){ k <- 1 l <- 2 colvect <- NULL plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Base Peak Chromatograms \n","BPCs_",phenoDataClass[k],"vs",phenoDataClass[l], sep=""), xlab="Retention Time (min)", ylab="BPC") for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l") points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l") colvect<-append(colvect,cols[classnames[[k]][j]]) } for (j in 1:length(classnames[[l]])) { # i <- class2names[j] tic <- TIC[[classnames[[l]][j]]] points(tic[,1]/60, -tic[,2], col=cols[classnames[[l]][j]], pch=pch[classnames[[l]][j]], type="l") colvect <- append(colvect,cols[classnames[[l]][j]]) } legend("topright",paste(basename(files[c(classnames[[k]],classnames[[l]])])), col=colvect, lty=lty, pch=pch) }#end length ==2 #case where only one class if (length(phenoDataClass)==1){ k <- 1 ylim <- range(sapply(TIC, function(x) range(x[,2]))) colvect <- NULL plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Base Peak Chromatograms \n","BPCs_",phenoDataClass[k], sep=""), xlab="Retention Time (min)", ylab="BPC") for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l") points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l") colvect <- append(colvect,cols[classnames[[k]][j]]) } legend("topright",paste(basename(files[c(classnames[[k]])])), col=colvect, lty=lty, pch=pch) }#end length ==1 dev.off() #pdf(pdfname,w=16,h=10) invisible(TIC) } #@author Y. Guitton getTIC <- function(file, rtcor=NULL) { object <- xcmsRaw(file) cbind(if (is.null(rtcor)) object@scantime else rtcor, rawEIC(object, mzrange=range(object@env$mz))$intensity) } #overlay TIC from all files in current folder or from xcmsSet, create pdf #@author Y. Guitton getTICs <- function(xcmsSet=NULL,files=NULL, pdfname="TICs.pdf", rt=c("raw","corrected")) { cat("Creating TIC pdf...\n") if (is.null(xcmsSet)) { filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]", "[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]") filepattern <- paste(paste("\\.", filepattern, "$", sep=""), collapse="|") if (is.null(files)) files <- getwd() info <- file.info(files) listed <- list.files(files[info$isdir], pattern=filepattern, recursive=TRUE, full.names=TRUE) files <- c(files[!info$isdir], listed) } else { files <- filepaths(xcmsSet) } phenoDataClass <- as.vector(levels(xcmsSet@phenoData[,"class"])) #sometime phenoData have more than 1 column use first as class classnames <- vector("list",length(phenoDataClass)) for (i in 1:length(phenoDataClass)){ classnames[[i]] <- which( xcmsSet@phenoData[,"class"]==phenoDataClass[i]) } N <- length(files) TIC <- vector("list",N) for (i in 1:N) { if (!is.null(xcmsSet) && rt == "corrected") rtcor <- xcmsSet@rt$corrected[[i]] else rtcor <- NULL TIC[[i]] <- getTIC(files[i], rtcor=rtcor) } pdf(pdfname, w=16, h=10) cols <- rainbow(N) lty <- 1:N pch <- 1:N #search for max x and max y in TICs xlim <- range(sapply(TIC, function(x) range(x[,1]))) ylim <- range(sapply(TIC, function(x) range(x[,2]))) ylim <- c(-ylim[2], ylim[2]) ##plot start if (length(phenoDataClass)>2){ for (k in 1:(length(phenoDataClass)-1)){ for (l in (k+1):length(phenoDataClass)){ #print(paste(phenoDataClass[k],"vs",phenoDataClass[l],sep=" ")) plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Total Ion Chromatograms \n","TICs_",phenoDataClass[k]," vs ",phenoDataClass[l], sep=""), xlab="Retention Time (min)", ylab="TIC") colvect <- NULL for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l") points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l") colvect <- append(colvect,cols[classnames[[k]][j]]) } for (j in 1:length(classnames[[l]])) { # i=class2names[j] tic <- TIC[[classnames[[l]][j]]] points(tic[,1]/60, -tic[,2], col=cols[classnames[[l]][j]], pch=pch[classnames[[l]][j]], type="l") colvect <- append(colvect,cols[classnames[[l]][j]]) } legend("topright",paste(basename(files[c(classnames[[k]],classnames[[l]])])), col=colvect, lty=lty, pch=pch) } } }#end if length >2 if (length(phenoDataClass)==2){ k <- 1 l <- 2 plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Total Ion Chromatograms \n","TICs_",phenoDataClass[k],"vs",phenoDataClass[l], sep=""), xlab="Retention Time (min)", ylab="TIC") colvect <- NULL for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l") points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l") colvect <- append(colvect,cols[classnames[[k]][j]]) } for (j in 1:length(classnames[[l]])) { # i <- class2names[j] tic <- TIC[[classnames[[l]][j]]] points(tic[,1]/60, -tic[,2], col=cols[classnames[[l]][j]], pch=pch[classnames[[l]][j]], type="l") colvect <- append(colvect,cols[classnames[[l]][j]]) } legend("topright",paste(basename(files[c(classnames[[k]],classnames[[l]])])), col=colvect, lty=lty, pch=pch) }#end length ==2 #case where only one class if (length(phenoDataClass)==1){ k <- 1 ylim <- range(sapply(TIC, function(x) range(x[,2]))) plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Total Ion Chromatograms \n","TICs_",phenoDataClass[k], sep=""), xlab="Retention Time (min)", ylab="TIC") colvect <- NULL for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l") points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l") colvect <- append(colvect,cols[classnames[[k]][j]]) } legend("topright",paste(basename(files[c(classnames[[k]])])), col=colvect, lty=lty, pch=pch) }#end length ==1 dev.off() #pdf(pdfname,w=16,h=10) invisible(TIC) } # Get the polarities from all the samples of a condition #@author Misharl Monsoor misharl.monsoor@sb-roscoff.fr ABiMS TEAM #@author Gildas Le Corguille lecorguille@sb-roscoff.fr ABiMS TEAM getSampleMetadata <- function(xdata=NULL, sampleMetadataOutput="sampleMetadata.tsv") { cat("Creating the sampleMetadata file...\n") #Create the sampleMetada dataframe sampleMetadata <- xdata@phenoData@data rownames(sampleMetadata) <- NULL colnames(sampleMetadata) <- c("sampleMetadata", "class") sampleNamesOrigin <- sampleMetadata$sampleMetadata sampleNamesMakeNames <- make.names(sampleNamesOrigin) if (any(duplicated(sampleNamesMakeNames))) { write("\n\nERROR: Usually, R has trouble to deal with special characters in its column names, so it rename them using make.names().\nIn your case, at least two columns after the renaming obtain the same name, thus XCMS will collapse those columns per name.", stderr()) for (sampleName in sampleNamesOrigin) { write(paste(sampleName,"\t->\t",make.names(sampleName)),stderr()) } stop("\n\nERROR: One or more of your files will not be import by xcmsSet. It may due to bad characters in their filenames.") } if (!all(sampleNamesOrigin == sampleNamesMakeNames)) { cat("\n\nWARNING: Usually, R has trouble to deal with special characters in its column names, so it rename them using make.names()\nIn your case, one or more sample names will be renamed in the sampleMetadata and dataMatrix files:\n") for (sampleName in sampleNamesOrigin) { cat(paste(sampleName,"\t->\t",make.names(sampleName),"\n")) } } sampleMetadata$sampleMetadata <- sampleNamesMakeNames #For each sample file, the following actions are done for (fileIdx in 1:length(fileNames(xdata))) { #Check if the file is in the CDF format if (!mzR:::netCDFIsFile(fileNames(xdata))) { # If the column isn't exist, with add one filled with NA if (is.null(sampleMetadata$polarity)) sampleMetadata$polarity <- NA #Extract the polarity (a list of polarities) polarity <- fData(xdata)[fData(xdata)$fileIdx == fileIdx,"polarity"] #Verify if all the scans have the same polarity uniq_list <- unique(polarity) if (length(uniq_list)>1){ polarity <- "mixed" } else { polarity <- as.character(uniq_list) } #Set the polarity attribute sampleMetadata$polarity[fileIdx] <- polarity } } write.table(sampleMetadata, sep="\t", quote=FALSE, row.names=FALSE, file=sampleMetadataOutput) return(list("sampleNamesOrigin"=sampleNamesOrigin, "sampleNamesMakeNames"=sampleNamesMakeNames)) } # This function check if xcms will found all the files #@author Gildas Le Corguille lecorguille@sb-roscoff.fr ABiMS TEAM checkFilesCompatibilityWithXcms <- function(directory) { cat("Checking files filenames compatibilities with xmcs...\n") # WHAT XCMS WILL FIND filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]","[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]") filepattern <- paste(paste("\\.", filepattern, "$", sep=""),collapse="|") info <- file.info(directory) listed <- list.files(directory[info$isdir], pattern=filepattern, recursive=TRUE, full.names=TRUE) files <- c(directory[!info$isdir], listed) files_abs <- file.path(getwd(), files) exists <- file.exists(files_abs) files[exists] <- files_abs[exists] files[exists] <- sub("//","/",files[exists]) # WHAT IS ON THE FILESYSTEM filesystem_filepaths <- system(paste("find $PWD/",directory," -not -name '\\.*' -not -path '*conda-env*' -type f -name \"*\"", sep=""), intern=T) filesystem_filepaths <- filesystem_filepaths[grep(filepattern, filesystem_filepaths, perl=T)] # COMPARISON if (!is.na(table(filesystem_filepaths %in% files)["FALSE"])) { write("\n\nERROR: List of the files which will not be imported by xcmsSet",stderr()) write(filesystem_filepaths[!(filesystem_filepaths %in% files)],stderr()) stop("\n\nERROR: One or more of your files will not be import by xcmsSet. It may due to bad characters in their filenames.") } } #This function list the compatible files within the directory as xcms did #@author Gildas Le Corguille lecorguille@sb-roscoff.fr ABiMS TEAM getMSFiles <- function (directory) { filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]","[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]") filepattern <- paste(paste("\\.", filepattern, "$", sep=""),collapse="|") info <- file.info(directory) listed <- list.files(directory[info$isdir], pattern=filepattern,recursive=TRUE, full.names=TRUE) files <- c(directory[!info$isdir], listed) exists <- file.exists(files) files <- files[exists] return(files) } # This function check if XML contains special caracters. It also checks integrity and completness. #@author Misharl Monsoor misharl.monsoor@sb-roscoff.fr ABiMS TEAM checkXmlStructure <- function (directory) { cat("Checking XML structure...\n") cmd <- paste("IFS=$'\n'; for xml in $(find",directory,"-not -name '\\.*' -not -path '*conda-env*' -type f -iname '*.*ml*'); do if [ $(xmllint --nonet --noout \"$xml\" 2> /dev/null; echo $?) -gt 0 ]; then echo $xml;fi; done;") capture <- system(cmd, intern=TRUE) if (length(capture)>0){ #message=paste("The following mzXML or mzML file is incorrect, please check these files first:",capture) write("\n\nERROR: The following mzXML or mzML file(s) are incorrect, please check these files first:", stderr()) write(capture, stderr()) stop("ERROR: xcmsSet cannot continue with incorrect mzXML or mzML files") } } # This function check if XML contain special characters #@author Misharl Monsoor misharl.monsoor@sb-roscoff.fr ABiMS TEAM deleteXmlBadCharacters<- function (directory) { cat("Checking Non ASCII characters in the XML...\n") processed <- F l <- system( paste("find",directory, "-not -name '\\.*' -not -path '*conda-env*' -type f -iname '*.*ml*'"), intern=TRUE) for (i in l){ cmd <- paste("LC_ALL=C grep '[^ -~]' \"", i, "\"", sep="") capture <- suppressWarnings(system(cmd, intern=TRUE)) if (length(capture)>0){ cmd <- paste("perl -i -pe 's/[^[:ascii:]]//g;'",i) print( paste("WARNING: Non ASCII characters have been removed from the ",i,"file") ) c <- system(cmd, intern=TRUE) capture <- "" processed <- T } } if (processed) cat("\n\n") return(processed) } # This function will compute MD5 checksum to check the data integrity #@author Gildas Le Corguille lecorguille@sb-roscoff.fr getMd5sum <- function (directory) { cat("Compute md5 checksum...\n") # WHAT XCMS WILL FIND filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]","[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]") filepattern <- paste(paste("\\.", filepattern, "$", sep=""),collapse="|") info <- file.info(directory) listed <- list.files(directory[info$isdir], pattern=filepattern, recursive=TRUE, full.names=TRUE) files <- c(directory[!info$isdir], listed) exists <- file.exists(files) files <- files[exists] library(tools) #cat("\n\n") return(as.matrix(md5sum(files))) } # This function get the raw file path from the arguments #@author Gildas Le Corguille lecorguille@sb-roscoff.fr getRawfilePathFromArguments <- function(singlefile, zipfile, args) { if (!is.null(args$zipfile)) zipfile <- args$zipfile if (!is.null(args$zipfilePositive)) zipfile <- args$zipfilePositive if (!is.null(args$zipfileNegative)) zipfile <- args$zipfileNegative if (!is.null(args$singlefile_galaxyPath)) { singlefile_galaxyPaths <- args$singlefile_galaxyPath; singlefile_sampleNames <- args$singlefile_sampleName } if (!is.null(args$singlefile_galaxyPathPositive)) { singlefile_galaxyPaths <- args$singlefile_galaxyPathPositive; singlefile_sampleNames <- args$singlefile_sampleNamePositive } if (!is.null(args$singlefile_galaxyPathNegative)) { singlefile_galaxyPaths <- args$singlefile_galaxyPathNegative; singlefile_sampleNames <- args$singlefile_sampleNameNegative } if (exists("singlefile_galaxyPaths")){ singlefile_galaxyPaths <- unlist(strsplit(singlefile_galaxyPaths,",")) singlefile_sampleNames <- unlist(strsplit(singlefile_sampleNames,",")) singlefile <- NULL for (singlefile_galaxyPath_i in seq(1:length(singlefile_galaxyPaths))) { singlefile_galaxyPath <- singlefile_galaxyPaths[singlefile_galaxyPath_i] singlefile_sampleName <- singlefile_sampleNames[singlefile_galaxyPath_i] singlefile[[singlefile_sampleName]] <- singlefile_galaxyPath } } for (argument in c("zipfile","zipfilePositive","zipfileNegative","singlefile_galaxyPath","singlefile_sampleName","singlefile_galaxyPathPositive","singlefile_sampleNamePositive","singlefile_galaxyPathNegative","singlefile_sampleNameNegative")) { args[[argument]] <- NULL } return(list(zipfile=zipfile, singlefile=singlefile, args=args)) } # This function retrieve the raw file in the working directory # - if zipfile: unzip the file with its directory tree # - if singlefiles: set symlink with the good filename #@author Gildas Le Corguille lecorguille@sb-roscoff.fr retrieveRawfileInTheWorkingDirectory <- function(singlefile, zipfile) { if(!is.null(singlefile) && (length("singlefile")>0)) { for (singlefile_sampleName in names(singlefile)) { singlefile_galaxyPath <- singlefile[[singlefile_sampleName]] if(!file.exists(singlefile_galaxyPath)){ error_message <- paste("Cannot access the sample:",singlefile_sampleName,"located:",singlefile_galaxyPath,". Please, contact your administrator ... if you have one!") print(error_message); stop(error_message) } if (!suppressWarnings( try (file.link(singlefile_galaxyPath, singlefile_sampleName), silent=T))) file.copy(singlefile_galaxyPath, singlefile_sampleName) } directory <- "." } if(!is.null(zipfile) && (zipfile != "")) { if(!file.exists(zipfile)){ error_message <- paste("Cannot access the Zip file:",zipfile,". Please, contact your administrator ... if you have one!") print(error_message) stop(error_message) } #list all file in the zip file #zip_files <- unzip(zipfile,list=T)[,"Name"] #unzip suppressWarnings(unzip(zipfile, unzip="unzip")) #get the directory name suppressWarnings(filesInZip <- unzip(zipfile, list=T)) directories <- unique(unlist(lapply(strsplit(filesInZip$Name,"/"), function(x) x[1]))) directories <- directories[!(directories %in% c("__MACOSX")) & file.info(directories)$isdir] directory <- "." if (length(directories) == 1) directory <- directories cat("files_root_directory\t",directory,"\n") } return (directory) } # This function retrieve a xset like object #@author Gildas Le Corguille lecorguille@sb-roscoff.fr getxcmsSetObject <- function(xobject) { # XCMS 1.x if (class(xobject) == "xcmsSet") return (xobject) # XCMS 3.x if (class(xobject) == "XCMSnExp") { # Get the legacy xcmsSet object suppressWarnings(xset <- as(xobject, 'xcmsSet')) sampclass(xset) <- xset@phenoData$sample_group return (xset) } } #@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7 # https://github.com/sneumann/xcms/issues/250 groupnamesW4M <- function(xdata, mzdec = 0, rtdec = 0) { mzfmt <- paste("%.", mzdec, "f", sep = "") rtfmt <- paste("%.", rtdec, "f", sep = "") gnames <- paste("M", sprintf(mzfmt, featureDefinitions(xdata)[,"mzmed"]), "T", sprintf(rtfmt, featureDefinitions(xdata)[,"rtmed"]), sep = "") if (any(dup <- duplicated(gnames))) for (dupname in unique(gnames[dup])) { dupidx <- which(gnames == dupname) gnames[dupidx] <- paste(gnames[dupidx], seq(along = dupidx), sep = "_") } return (gnames) } #@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7 # https://github.com/sneumann/xcms/issues/247 .concatenate_XCMSnExp <- function(...) { x <- list(...) if (length(x) == 0) return(NULL) if (length(x) == 1) return(x[[1]]) ## Check that all are XCMSnExp objects. if (!all(unlist(lapply(x, function(z) is(z, "XCMSnExp"))))) stop("All passed objects should be 'XCMSnExp' objects") new_x <- as(.concatenate_OnDiskMSnExp(...), "XCMSnExp") ## If any of the XCMSnExp has alignment results or detected features drop ## them! x <- lapply(x, function(z) { if (hasAdjustedRtime(z)) { z <- dropAdjustedRtime(z) warning("Adjusted retention times found, had to drop them.") } if (hasFeatures(z)) { z <- dropFeatureDefinitions(z) warning("Feature definitions found, had to drop them.") } z }) ## Combine peaks fls <- lapply(x, fileNames) startidx <- cumsum(lengths(fls)) pks <- lapply(x, chromPeaks) procH <- lapply(x, processHistory) for (i in 2:length(fls)) { pks[[i]][, "sample"] <- pks[[i]][, "sample"] + startidx[i - 1] procH[[i]] <- lapply(procH[[i]], function(z) { z@fileIndex <- as.integer(z@fileIndex + startidx[i - 1]) z }) } pks <- do.call(rbind, pks) new_x@.processHistory <- unlist(procH) chromPeaks(new_x) <- pks if (validObject(new_x)) new_x } #@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7 # https://github.com/sneumann/xcms/issues/247 .concatenate_OnDiskMSnExp <- function(...) { x <- list(...) if (length(x) == 0) return(NULL) if (length(x) == 1) return(x[[1]]) ## Check that all are XCMSnExp objects. if (!all(unlist(lapply(x, function(z) is(z, "OnDiskMSnExp"))))) stop("All passed objects should be 'OnDiskMSnExp' objects") ## Check processingQueue procQ <- lapply(x, function(z) z@spectraProcessingQueue) new_procQ <- procQ[[1]] is_ok <- unlist(lapply(procQ, function(z) !is.character(all.equal(new_procQ, z)) )) if (any(!is_ok)) { warning("Processing queues from the submitted objects differ! ", "Dropping the processing queue.") new_procQ <- list() } ## processingData fls <- lapply(x, function(z) z@processingData@files) startidx <- cumsum(lengths(fls)) ## featureData featd <- lapply(x, fData) ## Have to update the file index and the spectrum names. for (i in 2:length(featd)) { featd[[i]]$fileIdx <- featd[[i]]$fileIdx + startidx[i - 1] rownames(featd[[i]]) <- MSnbase:::formatFileSpectrumNames( fileIds = featd[[i]]$fileIdx, spectrumIds = featd[[i]]$spIdx, nSpectra = nrow(featd[[i]]), nFiles = length(unlist(fls)) ) } featd <- do.call(rbind, featd) featd$spectrum <- 1:nrow(featd) ## experimentData expdata <- lapply(x, function(z) { ed <- z@experimentData data.frame(instrumentManufacturer = ed@instrumentManufacturer, instrumentModel = ed@instrumentModel, ionSource = ed@ionSource, analyser = ed@analyser, detectorType = ed@detectorType, stringsAsFactors = FALSE) }) expdata <- do.call(rbind, expdata) expdata <- new("MIAPE", instrumentManufacturer = expdata$instrumentManufacturer, instrumentModel = expdata$instrumentModel, ionSource = expdata$ionSource, analyser = expdata$analyser, detectorType = expdata$detectorType) ## protocolData protodata <- lapply(x, function(z) z@protocolData) if (any(unlist(lapply(protodata, nrow)) > 0)) warning("Found non-empty protocol data, but merging protocol data is", " currently not supported. Skipped.") ## phenoData pdata <- do.call(rbind, lapply(x, pData)) res <- new( "OnDiskMSnExp", phenoData = new("NAnnotatedDataFrame", data = pdata), featureData = new("AnnotatedDataFrame", featd), processingData = new("MSnProcess", processing = paste0("Concatenated [", date(), "]"), files = unlist(fls), smoothed = NA), experimentData = expdata, spectraProcessingQueue = new_procQ) if (validObject(res)) res } #@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7 # https://github.com/sneumann/xcms/issues/247 c.XCMSnExp <- function(...) { .concatenate_XCMSnExp(...) }