view lib.r @ 30:4d6f4cd7c3ef draft

planemo upload for repository https://github.com/workflow4metabolomics/xcms commit e384d6dd5f410799ec211f73bca0b5d5d7bc651e
author lecorguille
date Thu, 01 Mar 2018 04:16:45 -0500
parents c013ed353a2f
children 281786a7b9a2
line wrap: on
line source

#@authors ABiMS TEAM, Y. Guitton
# lib.r for Galaxy Workflow4Metabolomics xcms tools

#@author G. Le Corguille
# solve an issue with batch if arguments are logical TRUE/FALSE
parseCommandArgs <- function(...) {
    args <- batch::parseCommandArgs(...)
    for (key in names(args)) {
        if (args[key] %in% c("TRUE","FALSE"))
            args[key] = as.logical(args[key])
    }
    return(args)
}

#@author G. Le Corguille
# This function will
# - load the packages
# - display the sessionInfo
loadAndDisplayPackages <- function(pkgs) {
    for(pkg in pkgs) suppressPackageStartupMessages( stopifnot( library(pkg, quietly=TRUE, logical.return=TRUE, character.only=TRUE)))

    sessioninfo = sessionInfo()
    cat(sessioninfo$R.version$version.string,"\n")
    cat("Main packages:\n")
    for (pkg in names(sessioninfo$otherPkgs)) { cat(paste(pkg,packageVersion(pkg)),"\t") }; cat("\n")
    cat("Other loaded packages:\n")
    for (pkg in names(sessioninfo$loadedOnly)) { cat(paste(pkg,packageVersion(pkg)),"\t") }; cat("\n")
}

#@author G. Le Corguille
# This function convert if it is required the Retention Time in minutes
RTSecondToMinute <- function(variableMetadata, convertRTMinute) {
    if (convertRTMinute){
        #converting the retention times (seconds) into minutes
        print("converting the retention times into minutes in the variableMetadata")
        variableMetadata[,"rt"] <- variableMetadata[,"rt"]/60
        variableMetadata[,"rtmin"] <- variableMetadata[,"rtmin"]/60
        variableMetadata[,"rtmax"] <- variableMetadata[,"rtmax"]/60
    }
    return (variableMetadata)
}

#@author G. Le Corguille
# This function format ions identifiers
formatIonIdentifiers <- function(variableMetadata, numDigitsRT=0, numDigitsMZ=0) {
    splitDeco <- strsplit(as.character(variableMetadata$name),"_")
    idsDeco <- sapply(splitDeco, function(x) { deco=unlist(x)[2]; if (is.na(deco)) return ("") else return(paste0("_",deco)) })
    namecustom <- make.unique(paste0("M",round(variableMetadata[,"mz"],numDigitsMZ),"T",round(variableMetadata[,"rt"],numDigitsRT),idsDeco))
    variableMetadata <- cbind(name=variableMetadata$name, namecustom=namecustom, variableMetadata[,!(colnames(variableMetadata) %in% c("name"))])
    return(variableMetadata)
}

#@author G. Le Corguille
# Draw the plotChromPeakDensity 3 per page in a pdf file
getPlotChromPeakDensity <- function(xdata) {
    pdf(file="plotChromPeakDensity.pdf", width=16, height=12)

    par(mfrow = c(3, 1), mar = c(4, 4, 1, 0.5))

    group_colors <- brewer.pal(3, "Set1")[1:length(unique(xdata$sample_group))]
    names(group_colors) <- unique(xdata$sample_group)

    xlim <- c(min(featureDefinitions(xdata)$rtmin), max(featureDefinitions(xdata)$rtmax))
    for (i in 1:nrow(featureDefinitions(xdata))) {
        plotChromPeakDensity(xdata, mz=c(featureDefinitions(xdata)[i,]$mzmin,featureDefinitions(xdata)[i,]$mzmax), col=group_colors, pch=16, xlim=xlim)
        legend("topright", legend=names(group_colors), col=group_colors, cex=0.8, lty=1)
    }

    dev.off()
}

#@author G. Le Corguille
# Draw the plotChromPeakDensity 3 per page in a pdf file
getPlotAdjustedRtime <- function(xdata) {
    pdf(file="raw_vs_adjusted_rt.pdf", width=16, height=12)
    # Color by group
    group_colors <- brewer.pal(3, "Set1")[1:length(unique(xdata$sample_group))]
    names(group_colors) <- unique(xdata$sample_group)
    plotAdjustedRtime(xdata, col = group_colors[xdata$sample_group])
    legend("topright", legend=names(group_colors), col=group_colors, cex=0.8, lty=1)
    # Color by sample
    plotAdjustedRtime(xdata, col = rainbow(length(xdata@phenoData@data$sample_name)))
    legend("topright", legend=xdata@phenoData@data$sample_name, col=rainbow(length(xdata@phenoData@data$sample_name)), cex=0.8, lty=1)
    dev.off()
}

#@author G. Le Corguille
# value: intensity values to be used into, maxo or intb
getPeaklistW4M <- function(xdata, intval="into", convertRTMinute=F, numDigitsMZ=4, numDigitsRT=0, variableMetadataOutput, dataMatrixOutput) {
    dataMatrix <- featureValues(xdata, method="medret", value=intval)
    colnames(dataMatrix) <- tools::file_path_sans_ext(colnames(dataMatrix))
    dataMatrix = cbind(name=groupnamesW4M(xdata), dataMatrix)
    variableMetadata <- featureDefinitions(xdata)
    colnames(variableMetadata)[1] = "mz"; colnames(variableMetadata)[4] = "rt"
    variableMetadata = data.frame(name=groupnamesW4M(xdata), variableMetadata)

    variableMetadata <- RTSecondToMinute(variableMetadata, convertRTMinute)
    variableMetadata <- formatIonIdentifiers(variableMetadata, numDigitsRT=numDigitsRT, numDigitsMZ=numDigitsMZ)

    write.table(variableMetadata, file=variableMetadataOutput,sep="\t",quote=F,row.names=F)
    write.table(dataMatrix, file=dataMatrixOutput,sep="\t",quote=F,row.names=F)

}

#@author Y. Guitton
getBPC <- function(file,rtcor=NULL, ...) {
    object <- xcmsRaw(file)
    sel <- profRange(object, ...)
    cbind(if (is.null(rtcor)) object@scantime[sel$scanidx] else rtcor ,xcms:::colMax(object@env$profile[sel$massidx,sel$scanidx,drop=FALSE]))
    #plotChrom(xcmsRaw(file), base=T)
}

#@author Y. Guitton
getBPCs <- function (xcmsSet=NULL, pdfname="BPCs.pdf",rt=c("raw","corrected"), scanrange=NULL) {
    cat("Creating BIC pdf...\n")

    if (is.null(xcmsSet)) {
        cat("Enter an xcmsSet \n")
        stop()
    } else {
        files <- filepaths(xcmsSet)
    }

    phenoDataClass <- as.vector(levels(xcmsSet@phenoData[,"class"])) #sometime phenoData have more than 1 column use first as class

    classnames <- vector("list",length(phenoDataClass))
    for (i in 1:length(phenoDataClass)){
        classnames[[i]] <- which( xcmsSet@phenoData[,"class"]==phenoDataClass[i])
    }

    N <- dim(phenoData(xcmsSet))[1]

    TIC <- vector("list",N)


    for (j in 1:N) {

        TIC[[j]] <- getBPC(files[j])
        #good for raw
        # seems strange for corrected
        #errors if scanrange used in xcmsSetgeneration
        if (!is.null(xcmsSet) && rt == "corrected")
            rtcor <- xcmsSet@rt$corrected[[j]]
        else
            rtcor <- NULL

        TIC[[j]] <- getBPC(files[j],rtcor=rtcor)
        # TIC[[j]][,1]<-rtcor
    }



    pdf(pdfname,w=16,h=10)
    cols <- rainbow(N)
    lty <- 1:N
    pch <- 1:N
    #search for max x and max y in BPCs
    xlim <- range(sapply(TIC, function(x) range(x[,1])))
    ylim <- range(sapply(TIC, function(x) range(x[,2])))
    ylim <- c(-ylim[2], ylim[2])


    ##plot start

    if (length(phenoDataClass)>2){
        for (k in 1:(length(phenoDataClass)-1)){
            for (l in (k+1):length(phenoDataClass)){
                #print(paste(phenoDataClass[k],"vs",phenoDataClass[l],sep=" "))
                plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Base Peak Chromatograms \n","BPCs_",phenoDataClass[k]," vs ",phenoDataClass[l], sep=""), xlab="Retention Time (min)", ylab="BPC")
                colvect <- NULL
                for (j in 1:length(classnames[[k]])) {
                    tic <- TIC[[classnames[[k]][j]]]
                    # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l")
                    points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l")
                    colvect <- append(colvect,cols[classnames[[k]][j]])
                }
                for (j in 1:length(classnames[[l]])) {
                    # i <- class2names[j]
                    tic <- TIC[[classnames[[l]][j]]]
                    points(tic[,1]/60, -tic[,2], col=cols[classnames[[l]][j]], pch=pch[classnames[[l]][j]], type="l")
                    colvect <- append(colvect,cols[classnames[[l]][j]])
                }
                legend("topright",paste(basename(files[c(classnames[[k]],classnames[[l]])])), col=colvect, lty=lty, pch=pch)
            }
        }
    }#end if length >2

    if (length(phenoDataClass)==2){
        k <- 1
        l <- 2
        colvect <- NULL
        plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Base Peak Chromatograms \n","BPCs_",phenoDataClass[k],"vs",phenoDataClass[l], sep=""), xlab="Retention Time (min)", ylab="BPC")

        for (j in 1:length(classnames[[k]])) {

            tic <- TIC[[classnames[[k]][j]]]
            # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l")
            points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l")
            colvect<-append(colvect,cols[classnames[[k]][j]])
        }
        for (j in 1:length(classnames[[l]])) {
            # i <- class2names[j]
            tic <- TIC[[classnames[[l]][j]]]
            points(tic[,1]/60, -tic[,2], col=cols[classnames[[l]][j]], pch=pch[classnames[[l]][j]], type="l")
            colvect <- append(colvect,cols[classnames[[l]][j]])
        }
        legend("topright",paste(basename(files[c(classnames[[k]],classnames[[l]])])), col=colvect, lty=lty, pch=pch)

    }#end length ==2

    #case where only one class
    if (length(phenoDataClass)==1){
        k <- 1
        ylim <- range(sapply(TIC, function(x) range(x[,2])))
        colvect <- NULL
        plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Base Peak Chromatograms \n","BPCs_",phenoDataClass[k], sep=""), xlab="Retention Time (min)", ylab="BPC")

        for (j in 1:length(classnames[[k]])) {
            tic <- TIC[[classnames[[k]][j]]]
            # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l")
            points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l")
            colvect <- append(colvect,cols[classnames[[k]][j]])
        }

        legend("topright",paste(basename(files[c(classnames[[k]])])), col=colvect, lty=lty, pch=pch)

    }#end length ==1

    dev.off() #pdf(pdfname,w=16,h=10)

    invisible(TIC)
}



#@author Y. Guitton
getTIC <- function(file, rtcor=NULL) {
    object <- xcmsRaw(file)
    cbind(if (is.null(rtcor)) object@scantime else rtcor, rawEIC(object, mzrange=range(object@env$mz))$intensity)
}

#overlay TIC from all files in current folder or from xcmsSet, create pdf
#@author Y. Guitton
getTICs <- function(xcmsSet=NULL,files=NULL, pdfname="TICs.pdf", rt=c("raw","corrected")) {
    cat("Creating TIC pdf...\n")

    if (is.null(xcmsSet)) {
        filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]", "[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]")
        filepattern <- paste(paste("\\.", filepattern, "$", sep=""), collapse="|")
        if (is.null(files))
            files <- getwd()
        info <- file.info(files)
        listed <- list.files(files[info$isdir], pattern=filepattern, recursive=TRUE, full.names=TRUE)
        files <- c(files[!info$isdir], listed)
    } else {
        files <- filepaths(xcmsSet)
    }

    phenoDataClass <- as.vector(levels(xcmsSet@phenoData[,"class"])) #sometime phenoData have more than 1 column use first as class
    classnames <- vector("list",length(phenoDataClass))
    for (i in 1:length(phenoDataClass)){
        classnames[[i]] <- which( xcmsSet@phenoData[,"class"]==phenoDataClass[i])
    }

    N <- length(files)
    TIC <- vector("list",N)

    for (i in 1:N) {
        if (!is.null(xcmsSet) && rt == "corrected")
            rtcor <- xcmsSet@rt$corrected[[i]] else
        rtcor <- NULL
        TIC[[i]] <- getTIC(files[i], rtcor=rtcor)
    }

    pdf(pdfname, w=16, h=10)
    cols <- rainbow(N)
    lty <- 1:N
    pch <- 1:N
    #search for max x and max y in TICs
    xlim <- range(sapply(TIC, function(x) range(x[,1])))
    ylim <- range(sapply(TIC, function(x) range(x[,2])))
    ylim <- c(-ylim[2], ylim[2])


    ##plot start
    if (length(phenoDataClass)>2){
        for (k in 1:(length(phenoDataClass)-1)){
            for (l in (k+1):length(phenoDataClass)){
                #print(paste(phenoDataClass[k],"vs",phenoDataClass[l],sep=" "))
                plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Total Ion Chromatograms \n","TICs_",phenoDataClass[k]," vs ",phenoDataClass[l], sep=""), xlab="Retention Time (min)", ylab="TIC")
                colvect <- NULL
                for (j in 1:length(classnames[[k]])) {
                    tic <- TIC[[classnames[[k]][j]]]
                    # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l")
                    points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l")
                    colvect <- append(colvect,cols[classnames[[k]][j]])
                }
                for (j in 1:length(classnames[[l]])) {
                    # i=class2names[j]
                    tic <- TIC[[classnames[[l]][j]]]
                    points(tic[,1]/60, -tic[,2], col=cols[classnames[[l]][j]], pch=pch[classnames[[l]][j]], type="l")
                    colvect <- append(colvect,cols[classnames[[l]][j]])
                }
                legend("topright",paste(basename(files[c(classnames[[k]],classnames[[l]])])), col=colvect, lty=lty, pch=pch)
            }
        }
    }#end if length >2
    if (length(phenoDataClass)==2){
        k <- 1
        l <- 2

        plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Total Ion Chromatograms \n","TICs_",phenoDataClass[k],"vs",phenoDataClass[l], sep=""), xlab="Retention Time (min)", ylab="TIC")
        colvect <- NULL
        for (j in 1:length(classnames[[k]])) {
            tic <- TIC[[classnames[[k]][j]]]
            # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l")
            points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l")
            colvect <- append(colvect,cols[classnames[[k]][j]])
        }
        for (j in 1:length(classnames[[l]])) {
            # i <- class2names[j]
            tic <- TIC[[classnames[[l]][j]]]
            points(tic[,1]/60, -tic[,2], col=cols[classnames[[l]][j]], pch=pch[classnames[[l]][j]], type="l")
            colvect <- append(colvect,cols[classnames[[l]][j]])
        }
        legend("topright",paste(basename(files[c(classnames[[k]],classnames[[l]])])), col=colvect, lty=lty, pch=pch)

    }#end length ==2

    #case where only one class
    if (length(phenoDataClass)==1){
        k <- 1
        ylim <- range(sapply(TIC, function(x) range(x[,2])))

        plot(0, 0, type="n", xlim=xlim/60, ylim=ylim, main=paste("Total Ion Chromatograms \n","TICs_",phenoDataClass[k], sep=""), xlab="Retention Time (min)", ylab="TIC")
        colvect <- NULL
        for (j in 1:length(classnames[[k]])) {
            tic <- TIC[[classnames[[k]][j]]]
            # points(tic[,1]/60, tic[,2], col=cols[i], pch=pch[i], type="l")
            points(tic[,1]/60, tic[,2], col=cols[classnames[[k]][j]], pch=pch[classnames[[k]][j]], type="l")
            colvect <- append(colvect,cols[classnames[[k]][j]])
        }

        legend("topright",paste(basename(files[c(classnames[[k]])])), col=colvect, lty=lty, pch=pch)

    }#end length ==1

    dev.off() #pdf(pdfname,w=16,h=10)

    invisible(TIC)
}



# Get the polarities from all the samples of a condition
#@author Misharl Monsoor misharl.monsoor@sb-roscoff.fr ABiMS TEAM
#@author Gildas Le Corguille lecorguille@sb-roscoff.fr ABiMS TEAM
getSampleMetadata <- function(xdata=NULL, sampleMetadataOutput="sampleMetadata.tsv") {
    cat("Creating the sampleMetadata file...\n")

    #Create the sampleMetada dataframe
    sampleMetadata <- xdata@phenoData@data
    rownames(sampleMetadata) <- NULL
    colnames(sampleMetadata) <-  c("sampleMetadata", "class")

    sampleNamesOrigin <- sampleMetadata$sampleMetadata
    sampleNamesMakeNames <- make.names(sampleNamesOrigin)

    if (any(duplicated(sampleNamesMakeNames))) {
        write("\n\nERROR: Usually, R has trouble to deal with special characters in its column names, so it rename them using make.names().\nIn your case, at least two columns after the renaming obtain the same name, thus XCMS will collapse those columns per name.", stderr())
        for (sampleName in sampleNamesOrigin) {
            write(paste(sampleName,"\t->\t",make.names(sampleName)),stderr())
        }
        stop("\n\nERROR: One or more of your files will not be import by xcmsSet. It may due to bad characters in their filenames.")
    }

    if (!all(sampleNamesOrigin == sampleNamesMakeNames)) {
        cat("\n\nWARNING: Usually, R has trouble to deal with special characters in its column names, so it rename them using make.names()\nIn your case, one or more sample names will be renamed in the sampleMetadata and dataMatrix files:\n")
        for (sampleName in sampleNamesOrigin) {
            cat(paste(sampleName,"\t->\t",make.names(sampleName),"\n"))
        }
    }

    sampleMetadata$sampleMetadata <- sampleNamesMakeNames


    #For each sample file, the following actions are done
    for (fileIdx in 1:length(fileNames(xdata))) {
        #Check if the file is in the CDF format
        if (!mzR:::netCDFIsFile(fileNames(xdata))) {

            # If the column isn't exist, with add one filled with NA
            if (is.null(sampleMetadata$polarity)) sampleMetadata$polarity <- NA

            #Extract the polarity (a list of polarities)
            polarity <- fData(xdata)[fData(xdata)$fileIdx == fileIdx,"polarity"]
            #Verify if all the scans have the same polarity
            uniq_list <- unique(polarity)
            if (length(uniq_list)>1){
                polarity <- "mixed"
            } else {
                polarity <- as.character(uniq_list)
            }

            #Set the polarity attribute
            sampleMetadata$polarity[fileIdx] <- polarity
        }

    }

    write.table(sampleMetadata, sep="\t", quote=FALSE, row.names=FALSE, file=sampleMetadataOutput)

    return(list("sampleNamesOrigin"=sampleNamesOrigin, "sampleNamesMakeNames"=sampleNamesMakeNames))

}


# This function check if xcms will found all the files
#@author Gildas Le Corguille lecorguille@sb-roscoff.fr ABiMS TEAM
checkFilesCompatibilityWithXcms <- function(directory) {
    cat("Checking files filenames compatibilities with xmcs...\n")
    # WHAT XCMS WILL FIND
    filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]","[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]")
    filepattern <- paste(paste("\\.", filepattern, "$", sep=""),collapse="|")
    info <- file.info(directory)
    listed <- list.files(directory[info$isdir], pattern=filepattern, recursive=TRUE, full.names=TRUE)
    files <- c(directory[!info$isdir], listed)
    files_abs <- file.path(getwd(), files)
    exists <- file.exists(files_abs)
    files[exists] <- files_abs[exists]
    files[exists] <- sub("//","/",files[exists])

    # WHAT IS ON THE FILESYSTEM
    filesystem_filepaths <- system(paste("find $PWD/",directory," -not -name '\\.*' -not -path '*conda-env*' -type f -name \"*\"", sep=""), intern=T)
    filesystem_filepaths <- filesystem_filepaths[grep(filepattern, filesystem_filepaths, perl=T)]

    # COMPARISON
    if (!is.na(table(filesystem_filepaths %in% files)["FALSE"])) {
        write("\n\nERROR: List of the files which will not be imported by xcmsSet",stderr())
        write(filesystem_filepaths[!(filesystem_filepaths %in% files)],stderr())
        stop("\n\nERROR: One or more of your files will not be import by xcmsSet. It may due to bad characters in their filenames.")
    }
}


#This function list the compatible files within the directory as xcms did
#@author Gildas Le Corguille lecorguille@sb-roscoff.fr ABiMS TEAM
getMSFiles <- function (directory) {
    filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]","[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]")
    filepattern <- paste(paste("\\.", filepattern, "$", sep=""),collapse="|")
    info <- file.info(directory)
    listed <- list.files(directory[info$isdir], pattern=filepattern,recursive=TRUE, full.names=TRUE)
    files <- c(directory[!info$isdir], listed)
    exists <- file.exists(files)
    files <- files[exists]
    return(files)
}

# This function check if XML contains special caracters. It also checks integrity and completness.
#@author Misharl Monsoor misharl.monsoor@sb-roscoff.fr ABiMS TEAM
checkXmlStructure <- function (directory) {
    cat("Checking XML structure...\n")

    cmd <- paste("IFS=$'\n'; for xml in $(find",directory,"-not -name '\\.*' -not -path '*conda-env*' -type f -iname '*.*ml*'); do if [ $(xmllint --nonet --noout \"$xml\" 2> /dev/null; echo $?) -gt 0 ]; then echo $xml;fi; done;")
    capture <- system(cmd, intern=TRUE)

    if (length(capture)>0){
        #message=paste("The following mzXML or mzML file is incorrect, please check these files first:",capture)
        write("\n\nERROR: The following mzXML or mzML file(s) are incorrect, please check these files first:", stderr())
        write(capture, stderr())
        stop("ERROR: xcmsSet cannot continue with incorrect mzXML or mzML files")
    }

}


# This function check if XML contain special characters
#@author Misharl Monsoor misharl.monsoor@sb-roscoff.fr ABiMS TEAM
deleteXmlBadCharacters<- function (directory) {
    cat("Checking Non ASCII characters in the XML...\n")

    processed <- F
    l <- system( paste("find",directory, "-not -name '\\.*' -not -path '*conda-env*' -type f -iname '*.*ml*'"), intern=TRUE)
    for (i in l){
        cmd <- paste("LC_ALL=C grep '[^ -~]' \"", i, "\"", sep="")
        capture <- suppressWarnings(system(cmd, intern=TRUE))
        if (length(capture)>0){
            cmd <- paste("perl -i -pe 's/[^[:ascii:]]//g;'",i)
            print( paste("WARNING: Non ASCII characters have been removed from the ",i,"file") )
            c <- system(cmd, intern=TRUE)
            capture <- ""
            processed <- T
        }
    }
    if (processed) cat("\n\n")
    return(processed)
}


# This function will compute MD5 checksum to check the data integrity
#@author Gildas Le Corguille lecorguille@sb-roscoff.fr
getMd5sum <- function (directory) {
    cat("Compute md5 checksum...\n")
    # WHAT XCMS WILL FIND
    filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]","[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]")
    filepattern <- paste(paste("\\.", filepattern, "$", sep=""),collapse="|")
    info <- file.info(directory)
    listed <- list.files(directory[info$isdir], pattern=filepattern, recursive=TRUE, full.names=TRUE)
    files <- c(directory[!info$isdir], listed)
    exists <- file.exists(files)
    files <- files[exists]

    library(tools)

    #cat("\n\n")

    return(as.matrix(md5sum(files)))
}


# This function get the raw file path from the arguments
#@author Gildas Le Corguille lecorguille@sb-roscoff.fr
getRawfilePathFromArguments <- function(singlefile, zipfile, args) {
    if (!is.null(args$zipfile))           zipfile <- args$zipfile
    if (!is.null(args$zipfilePositive))   zipfile <- args$zipfilePositive
    if (!is.null(args$zipfileNegative))   zipfile <- args$zipfileNegative

    if (!is.null(args$singlefile_galaxyPath)) {
        singlefile_galaxyPaths <- args$singlefile_galaxyPath;
        singlefile_sampleNames <- args$singlefile_sampleName
    }
    if (!is.null(args$singlefile_galaxyPathPositive)) {
        singlefile_galaxyPaths <- args$singlefile_galaxyPathPositive;
        singlefile_sampleNames <- args$singlefile_sampleNamePositive
    }
    if (!is.null(args$singlefile_galaxyPathNegative)) {
        singlefile_galaxyPaths <- args$singlefile_galaxyPathNegative;
        singlefile_sampleNames <- args$singlefile_sampleNameNegative
    }
    if (exists("singlefile_galaxyPaths")){
        singlefile_galaxyPaths <- unlist(strsplit(singlefile_galaxyPaths,","))
        singlefile_sampleNames <- unlist(strsplit(singlefile_sampleNames,","))

        singlefile <- NULL
        for (singlefile_galaxyPath_i in seq(1:length(singlefile_galaxyPaths))) {
            singlefile_galaxyPath <- singlefile_galaxyPaths[singlefile_galaxyPath_i]
            singlefile_sampleName <- singlefile_sampleNames[singlefile_galaxyPath_i]
            singlefile[[singlefile_sampleName]] <- singlefile_galaxyPath
        }
    }
    for (argument in c("zipfile","zipfilePositive","zipfileNegative","singlefile_galaxyPath","singlefile_sampleName","singlefile_galaxyPathPositive","singlefile_sampleNamePositive","singlefile_galaxyPathNegative","singlefile_sampleNameNegative")) {
        args[[argument]] <- NULL
    }
    return(list(zipfile=zipfile, singlefile=singlefile, args=args))
}


# This function retrieve the raw file in the working directory
#   - if zipfile: unzip the file with its directory tree
#   - if singlefiles: set symlink with the good filename
#@author Gildas Le Corguille lecorguille@sb-roscoff.fr
retrieveRawfileInTheWorkingDirectory <- function(singlefile, zipfile) {
    if(!is.null(singlefile) && (length("singlefile")>0)) {
        for (singlefile_sampleName in names(singlefile)) {
            singlefile_galaxyPath <- singlefile[[singlefile_sampleName]]
            if(!file.exists(singlefile_galaxyPath)){
                error_message <- paste("Cannot access the sample:",singlefile_sampleName,"located:",singlefile_galaxyPath,". Please, contact your administrator ... if you have one!")
                print(error_message); stop(error_message)
            }

            if (!suppressWarnings( try (file.link(singlefile_galaxyPath, singlefile_sampleName), silent=T)))
                file.copy(singlefile_galaxyPath, singlefile_sampleName)

        }
        directory <- "."

    }
    if(!is.null(zipfile) && (zipfile != "")) {
        if(!file.exists(zipfile)){
            error_message <- paste("Cannot access the Zip file:",zipfile,". Please, contact your administrator ... if you have one!")
            print(error_message)
            stop(error_message)
        }

        #list all file in the zip file
        #zip_files <- unzip(zipfile,list=T)[,"Name"]

        #unzip
        suppressWarnings(unzip(zipfile, unzip="unzip"))

        #get the directory name
        suppressWarnings(filesInZip <- unzip(zipfile, list=T))
        directories <- unique(unlist(lapply(strsplit(filesInZip$Name,"/"), function(x) x[1])))
        directories <- directories[!(directories %in% c("__MACOSX")) & file.info(directories)$isdir]
        directory <- "."
        if (length(directories) == 1) directory <- directories

        cat("files_root_directory\t",directory,"\n")

    }
    return (directory)
}


# This function retrieve a xset like object
#@author Gildas Le Corguille lecorguille@sb-roscoff.fr
getxcmsSetObject <- function(xobject) {
    # XCMS 1.x
    if (class(xobject) == "xcmsSet")
        return (xobject)
    # XCMS 3.x
    if (class(xobject) == "XCMSnExp") {
        # Get the legacy xcmsSet object
        suppressWarnings(xset <- as(xobject, 'xcmsSet'))
        sampclass(xset) <- xset@phenoData$sample_group
        return (xset)
    }
}


#@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7
# https://github.com/sneumann/xcms/issues/250
groupnamesW4M <- function(xdata, mzdec = 0, rtdec = 0) {
    mzfmt <- paste("%.", mzdec, "f", sep = "")
    rtfmt <- paste("%.", rtdec, "f", sep = "")

    gnames <- paste("M", sprintf(mzfmt, featureDefinitions(xdata)[,"mzmed"]), "T",
                    sprintf(rtfmt, featureDefinitions(xdata)[,"rtmed"]), sep = "")

    if (any(dup <- duplicated(gnames)))
        for (dupname in unique(gnames[dup])) {
            dupidx <- which(gnames == dupname)
            gnames[dupidx] <- paste(gnames[dupidx], seq(along = dupidx), sep = "_")
        }

    return (gnames)
}

#@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7
# https://github.com/sneumann/xcms/issues/247
.concatenate_XCMSnExp <- function(...) {
    x <- list(...)
    if (length(x) == 0)
        return(NULL)
    if (length(x) == 1)
        return(x[[1]])
    ## Check that all are XCMSnExp objects.
    if (!all(unlist(lapply(x, function(z) is(z, "XCMSnExp")))))
        stop("All passed objects should be 'XCMSnExp' objects")
    new_x <- as(.concatenate_OnDiskMSnExp(...), "XCMSnExp")
    ## If any of the XCMSnExp has alignment results or detected features drop
    ## them!
    x <- lapply(x, function(z) {
        if (hasAdjustedRtime(z)) {
            z <- dropAdjustedRtime(z)
            warning("Adjusted retention times found, had to drop them.")
        }
        if (hasFeatures(z)) {
            z <- dropFeatureDefinitions(z)
            warning("Feature definitions found, had to drop them.")
        }
        z
    })
    ## Combine peaks
    fls <- lapply(x, fileNames)
    startidx <- cumsum(lengths(fls))
    pks <- lapply(x, chromPeaks)
    procH <- lapply(x, processHistory)
    for (i in 2:length(fls)) {
        pks[[i]][, "sample"] <- pks[[i]][, "sample"] + startidx[i - 1]
        procH[[i]] <- lapply(procH[[i]], function(z) {
            z@fileIndex <- as.integer(z@fileIndex + startidx[i - 1])
            z
            })
    }
    pks <- do.call(rbind, pks)
    new_x@.processHistory <- unlist(procH)
    chromPeaks(new_x) <- pks
    if (validObject(new_x))
        new_x
}

#@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7
# https://github.com/sneumann/xcms/issues/247
.concatenate_OnDiskMSnExp <- function(...) {
    x <- list(...)
    if (length(x) == 0)
        return(NULL)
    if (length(x) == 1)
        return(x[[1]])
    ## Check that all are XCMSnExp objects.
    if (!all(unlist(lapply(x, function(z) is(z, "OnDiskMSnExp")))))
        stop("All passed objects should be 'OnDiskMSnExp' objects")
    ## Check processingQueue
    procQ <- lapply(x, function(z) z@spectraProcessingQueue)
    new_procQ <- procQ[[1]]
    is_ok <- unlist(lapply(procQ, function(z)
        !is.character(all.equal(new_procQ, z))
        ))
    if (any(!is_ok)) {
        warning("Processing queues from the submitted objects differ! ",
                "Dropping the processing queue.")
        new_procQ <- list()
    }
    ## processingData
    fls <- lapply(x, function(z) z@processingData@files)
    startidx <- cumsum(lengths(fls))
    ## featureData
    featd <- lapply(x, fData)
    ## Have to update the file index and the spectrum names.
    for (i in 2:length(featd)) {
        featd[[i]]$fileIdx <- featd[[i]]$fileIdx + startidx[i - 1]
        rownames(featd[[i]]) <- MSnbase:::formatFileSpectrumNames(
                                              fileIds = featd[[i]]$fileIdx,
                                              spectrumIds = featd[[i]]$spIdx,
                                              nSpectra = nrow(featd[[i]]),
                                              nFiles = length(unlist(fls))
                                          )
    }
    featd <- do.call(rbind, featd)
    featd$spectrum <- 1:nrow(featd)
    ## experimentData
    expdata <- lapply(x, function(z) {
        ed <- z@experimentData
        data.frame(instrumentManufacturer = ed@instrumentManufacturer,
                   instrumentModel = ed@instrumentModel,
                   ionSource = ed@ionSource,
                   analyser = ed@analyser,
                   detectorType = ed@detectorType,
                   stringsAsFactors = FALSE)
    })
    expdata <- do.call(rbind, expdata)
    expdata <- new("MIAPE",
                   instrumentManufacturer = expdata$instrumentManufacturer,
                   instrumentModel = expdata$instrumentModel,
                   ionSource = expdata$ionSource,
                   analyser = expdata$analyser,
                   detectorType = expdata$detectorType)

    ## protocolData
    protodata <- lapply(x, function(z) z@protocolData)
    if (any(unlist(lapply(protodata, nrow)) > 0))
        warning("Found non-empty protocol data, but merging protocol data is",
                " currently not supported. Skipped.")
    ## phenoData
    pdata <- do.call(rbind, lapply(x, pData))
    res <- new(
        "OnDiskMSnExp",
        phenoData = new("NAnnotatedDataFrame", data = pdata),
        featureData = new("AnnotatedDataFrame", featd),
        processingData = new("MSnProcess",
                             processing = paste0("Concatenated [", date(), "]"),
                             files = unlist(fls), smoothed = NA),
        experimentData = expdata,
        spectraProcessingQueue = new_procQ)
    if (validObject(res))
        res
}

#@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7
# https://github.com/sneumann/xcms/issues/247
c.XCMSnExp <- function(...) {
    .concatenate_XCMSnExp(...)
}