comparison minfi_ppquantile.xml @ 0:41ab8ba3a901 draft default tip

planemo upload for repository https://github.com/kpbioteam/minfi_ppquantile commit 93ac44e4428f7560ef032adcf5749ada58d15f57-dirty
author kpbioteam
date Sun, 11 Feb 2018 07:35:45 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:41ab8ba3a901
1 <tool id="minfi_ppquantile" name="minfi_ppquantile" version="0.1.0">
2 <description>implements stratified quantile normalization preprocessing</description>
3 <requirements>
4 <requirement type="package" version="1.24.0">bioconductor-minfi</requirement>
5 <requirement type="package" version="0.4.0">bioconductor-illuminahumanmethylation450kmanifest</requirement>
6 <requirement type="package" version="0.6.0">bioconductor-illuminahumanmethylation450kanno.ilmn12.hg19</requirement>
7 </requirements>
8 <command detect_errors="exit_code"><![CDATA[
9 Rscript ${__tool_directory__}/minfi_ppquantile.R "$input1" "$output1"
10 ]]></command>
11 <inputs>
12 <param type="data" name="input1" format="rdata" />
13 </inputs>
14 <outputs>
15 <data name="output1" format="rdata" />
16 </outputs>
17 <tests>
18 <test>
19 <param name="input1" value="RGSet.rdata"/>
20 <output name="output1" file="quantile.rdata"/>
21 </test>
22 </tests>
23 <help><![CDATA[
24 The normalization procedure is applied to the Meth and Unmeth intensities separately. The distribution of type I and type II signals is forced to be the same by first quantile normalizing the type II probes across samples and then interpolating a reference distribution to which we normalize the type I probes. Since probe types and probe regions are confounded and we know that DNAm distributions vary across regions we stratify the probes by region before applying this interpolation.
25 ]]></help>
26 <citations>
27 <citation type="doi">10.1093/bioinformatics/btu049</citation>
28 </citations>
29 </tool>