comparison minfi_ppquantile.xml @ 0:bb6c8d38fad1 draft default tip

planemo upload for repository https://github.com/kpbioteam/ewas_galaxy commit 945cecdba6528d35c6dfa866f785f182c5dd22ed
author kpbioteam
date Fri, 07 Jun 2019 14:14:49 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:bb6c8d38fad1
1 <tool id="minfi_ppquantile" name="Minfi Preprocess Quantile" version="@MINFI_VERSION@">
2 <description>implements stratified quantile normalization preprocessing</description>
3 <macros>
4 <import>macros.xml</import>
5 </macros>
6 <expand macro="requirements">
7 <requirement type="package" version="0.6.0">bioconductor-illuminahumanmethylation450kanno.ilmn12.hg19</requirement>
8 </expand>
9 <command detect_errors="exit_code">
10 <![CDATA[
11 Rscript '$minfi_pp_script'
12 ]]>
13 </command>
14 <configfiles>
15 <configfile name="minfi_pp_script"><![CDATA[
16 require("minfi", quietly = TRUE)
17 RGSet <- get(load('$rgset'))
18
19 GRSet <- preprocessQuantile(RGSet, fixOutliers = TRUE,
20 removeBadSamples = TRUE, badSampleCutoff = 10.5,
21 quantileNormalize = TRUE, stratified = TRUE,
22 mergeManifest = FALSE, sex = NULL)
23
24 save(GRSet,file = '$grset')
25
26 ]]>
27 </configfile>
28 </configfiles>
29 <inputs>
30 <param type="data" name="rgset" format="rdata" label="RGChannelSet"
31 help="These classes represents raw (unprocessed) data from a two color micro array; specifically an Illumina methylation array." />
32 </inputs>
33 <outputs>
34 <data name="grset" format="rdata" label="GenomicRatioSet"/>
35 </outputs>
36 <tests>
37 <test>
38 <param name="rgset" value="RGChannelSet.rdata"/>
39 <output name="grset" file="QuantileGenomicRatioSet.rdata"/>
40 </test>
41 </tests>
42 <help><![CDATA[
43 The normalization procedure is applied to the Meth and Unmeth intensities separately. The distribution of type I and type II signals is forced to be the same by first quantile normalizing the type II probes across samples and then interpolating a reference distribution to which we normalize the type I probes. Since probe types and probe regions are confounded and we know that DNAm distributions vary across regions we stratify the probes by region before applying this interpolation.
44 ]]></help>
45 <expand macro="citations" />
46 </tool>
47