Mercurial > repos > jjohnson > mzsqlite_psm_align
view profmt.py @ 3:ce4174c80be5 draft
planemo upload for repository https://github.com/jj-umn/galaxytools/tree/master/mzsqlite_psm_align commit 3a37749e711a57ed1ca14b7d23a7ce14f630e6fe-dirty
author | jjohnson |
---|---|
date | Tue, 10 Apr 2018 10:48:42 -0400 |
parents | 492f98d89e26 |
children |
line wrap: on
line source
#!/usr/bin/env python """ # #------------------------------------------------------------------------------ # University of Minnesota # Copyright 2016, Regents of the University of Minnesota #------------------------------------------------------------------------------ # Author: # # James E Johnson # #------------------------------------------------------------------------------ """ import sys,re from operator import itemgetter, attrgetter from twobitreader import TwoBitFile """ 1 QNAME string spectrum name * 2 FLAG int bitwise FLAG (see further) * 3 RNAME string reference sequence name * 4 POS int 1-based lefmost mapping position 0 5 MAPQ int unused in proBAM 255 6 CIGAR string extended cigar string (see further) * 7 RNEXT string unused in proBAM * 8 PNEXT int unused in proBAM 0 9 TLEN int unused in proBAM 0 10 SEQ string coding sequence * 11 QUAL string unused in proBAM * """ """ bit description FLAG 0x00 peptide maps to the forward strand 0 0x10 peptide maps to the reverse strand 16 0x100 peptide is not the rank=1 peptide for the spectrum 256 0x400 decoy peptide 1024 0x4 unmapped peptide 4 """ """ tag type description --- ---- ----------- NH int number of genomic locations to which the peptide sequence maps XL int number of peptides to which the spectrum maps XP string peptide sequence XR string reference peptide sequence XS float PSM score XQ float PSM q-value PSM FDR (i.e. q-value or 1-PEP). XC int peptide charge XA int Whether the peptide is annotated 0:yes; 1:parially unknown; 2:totally unknown; XM string Modification(s): semicolon seperated list of position,modName XN int number of missed cleavages XT int tryptic state: 0:non-tryptic 1:semi-tryptic 2:tryptic XG string peptide type: N:normal peptide V:variant peptide J:novel junction peptide D:decoy peptide U:unmappped XB string Semicolon-separated list of mass in the following format: massdiff; experimental mass; calculated mass massdiff can be calculated by experimental mass - calculated mass. If any number is unavailable, the value should be left blank (such as 0.01;;). XE int XF string Reading frame of the peptide (0, 1, 2) (See section 4.4.6). XG char Peptide type (see Table 6 and Figure 1) XI float Peptide intensity XO string This field indicates the uniqueness of the peptide mapping XU string NH i NH:i:1 XO Z XO:Z:unique XL i XL:i:1 XP Z XP:Z:ATLELTHNWGTEDDATQSYHNGNSDPR YP Z YP:Z:ENSP00000362463_rs4746:E111A XF Z XF:Z:1,1 XI f XI:f:* XB f XB:f:0.70082940064 XR Z XR:Z:ATLELTHNWGTEDDETQSYHNGNSDPR YB Z YB:Z:RK YA Z YA:Z:GF XS f XS:f:73.1426 XQ f XQ:f:0 XC i XC:i:3 XA i XA:i:0 XM Z XM:Z:* XN i XN:i:0 XT i XT:i:2 XE i XE:i:1 XG Z XG:Z:V XU Z klc_070108x_PH_P7_COLO_205_D13.pepXML NH:i:1 XO:Z:unique XL:i:1 XP:Z:ATLELTHNWGTEDDATQSYHNGNSDPR YP:Z:ENSP00000362463_rs4746:E111A XF:Z:1,1 XI:f:* XB:f:0.70082940064 XR:Z:ATLELTHNWGTEDDETQSYHNGNSDPR YB:Z:RK YA:Z:GF XS:f:73.1426 XQ:f:0 XC:i:3 XA:i:0 XM:Z:* XN:i:0 XT:i:2 XE:i:1 XG:Z:V XU:Z:klc_070108x_PH_P7_COLO_205_D13.pepXML NH:i:* XO:Z:unique XL:i:1 XP:Z:ATLELTHNWGTEDDATQSYHNGNSDPR YP:Z:ENSP00000362463_rs4746:E111A XF:Z:1,1 XI:f:* XB:f:0.70082940064 XR:Z:ATLELTHNWGTEDDETQSYHNGNSDPR YB:Z:RK YA:Z:GF XS:f:73.1426 XQ:f:0 XC:i:3 XA:i:0 XM:Z:* XN:i:0 XT:i:2 XE:i:1 XG:Z:V XU:Z:klc_070108x_PH_P7_COLO_205_D13.pepXML """ PROBAM_TAGS = ['NH', 'XO', 'XL', 'XP', 'YP', 'XF', 'XI', 'XB', 'XR', 'YB', 'YA', 'XS', 'XQ', 'XC', 'XA', 'XM', 'XN', 'XT', 'XE', 'XG', 'XU'] PROBAM_TYTPES = { 'NH' : 'i', #number of genomic locations to which the peptide sequence maps 'XO' : 'Z', #uniqueness of the peptide mapping 'XL' : 'i', #number of peptides to which the spectrum maps 'XP' : 'Z', #peptide sequence 'YP' : 'Z', #Protein accession ID from the original search result 'XF' : 'Z', #Reading frame of the peptide (0, 1, 2) 'XI' : 'f', #Peptide intensity 'XB' : 'Z', #massdiff; experimental mass; calculated mass massdiff can be calculated by experimental mass - calculated mass. If any number is unavailable, the value should be left blank (such as 0.01;;). 'XR' : 'Z', #reference peptide sequence 'YB' : 'Z', #Preceding amino acids (2 AA, B stands for before). 'YA' : 'Z', #Following amino acids (2 AA, A stands for after). 'XS' : 'f', #PSM score 'XQ' : 'f', #PSM FDR (i.e. q-value or 1-PEP). 'XC' : 'i', #peptide charge 'XA' : 'i', #Whether the peptide is annotated 0:yes; 1:parially unknown; 2:totally unknown; 'XM' : 'Z', #Modifications 'XN' : 'i', #Number of missed cleavages in the peptide (XP) 'XT' : 'i', #Enzyme specificity 'XE' : 'i', #Enzyme used in the experiment 'XG' : 'A', #Peptide type 'XU' : 'Z', #URI } PROBAM_DEFAULTS = { 'NH' : -1, #number of genomic locations to which the peptide sequence maps 'XO' : '*', #uniqueness of the peptide mapping 'XL' : -1, #number of peptides to which the spectrum maps 'XP' : '*', #peptide sequence 'YP' : '*', #Protein accession ID from the original search result 'XF' : '*', #Reading frame of the peptide (0, 1, 2) 'XI' : -1, #Peptide intensity 'XB' : '*', #massdiff; experimental mass; calculated mass massdiff can be calculated by experimental mass - calculated mass. If any number is unavailable, the value should be left blank (such as 0.01;;). 'XR' : '*', #reference peptide sequence 'YB' : '*', #Preceding amino acids (2 AA, B stands for before). 'YA' : '*', #Following amino acids (2 AA, A stands for after). 'XS' : -1, #PSM score 'XQ' : -1, #PSM FDR (i.e. q-value or 1-PEP). 'XC' : -1, #peptide charge 'XA' : -1, #Whether the peptide is annotated 0:yes; 1:parially unknown; 2:totally unknown; 'XM' : '*', #Modifications 'XN' : -1, #Number of missed cleavages in the peptide (XP) 'XT' : -1, #Enzyme specificity 'XE' : -1, #Enzyme used in the experiment 'XG' : '*', #Peptide type 'XU' : '*', #URI } def cmp_alphanumeric(s1,s2): if s1 == s2: return 0 a1 = re.findall("\d+|[a-zA-Z]+",s1) a2 = re.findall("\d+|[a-zA-Z]+",s2) for i in range(min(len(a1),len(a2))): if a1[i] == a2[i]: continue if a1[i].isdigit() and a2[i].isdigit(): return int(a1[i]) - int(a2[i]) return 1 if a1[i] > a2[i] else -1 return len(a1) - len(a2) def sort_chrom_names(names): rnames = sorted(names,cmp=cmp_alphanumeric) if 'chrM' in rnames: rnames.remove('chrM') rnames.insert(0,'chrM') if 'MT' in rnames: rnames.remove('MT') rnames.append('MT') return rnames def as_int_list(obj): if obj is None: return None if isinstance(obj, list): return [int(x) for x in obj] elif isinstance(obj, str): return [int(x) for x in obj.split(',')] else: # python2 unicode? return [int(x) for x in str(obj).split(',')] class ProBEDEntry (object): def __init__(self, chrom, chromStart, chromEnd, name, score, strand, blockCount, blockSizes, blockStarts, protacc, peptide, uniqueness, genomeReference, psmScore='.', fdr='.', mods='.', charge='.', expMassToCharge='.', calcMassToCharge='.', psmRank='.', datasetID='.', uri='.'): self.chrom = chrom self.chromStart = int(chromStart) self.chromEnd = int(chromEnd) self.name = name self.score = int(score) if score is not None else 0 self.strand = '-' if str(strand).startswith('-') else '+' self.thickStart = self.chromStart self.thickEnd = self.chromEnd self.itemRgb = '0' self.blockCount = int(blockCount) self.blockSizes = as_int_list(blockSizes) self.blockStarts = as_int_list(blockStarts) self.protacc = protacc self.peptide = peptide self.uniqueness = uniqueness self.genomeReference = genomeReference self.psmScore = psmScore self.fdr = fdr self.mods = mods self.charge = charge self.expMassToCharge = expMassToCharge self.calcMassToCharge = calcMassToCharge self.psmRank = psmRank self.datasetID = datasetID self.uri = uri def __str__(self): return '%s\t%d\t%d\t%s\t%d\t%s\t%d\t%d\t%s\t%d\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % \ (self.chrom, self.chromStart, self.chromEnd, self.name, self.score, self.strand, self.thickStart, self.thickEnd, self.itemRgb, self.blockCount, self.blockSizes, self.blockStarts, self.protacc, self.peptide, self.uniqueness, self.genomeReference, self.psmScore, self.fdr, self.mods, self.charge, self.expMassToCharge, self.calcMassToCharge, self.psmRank, self.datasetID, self.uri) class ProBED ( object ): def __init__(self,species=None,assembly=None,comments=[]): self.species = species self.assembly = assembly self.comments = comments self.entries = dict() def add_entry(self,entry): if not entry.chrom in self.entries: self.entries[entry.chrom] = [] self.entries[entry.chrom].append(entry) def write(self,fh): rnames = sort_chrom_names(self.entries.keys()) for sn in rnames: if sn not in self.entries: continue ##for pbe in sorted(self.entries[sn], key=lambda probam_entry: probam_entry.pos): for pbe in sorted(self.entries[sn], key=attrgetter('chromStart','chromEnd')): fh.write('%s\n' % str(pbe)) class ProBAMEntry (object): def __init__(self, qname='', flag=0, rname='', pos=0, mapq=255, cigar='', rnext='*', pnext='0', tlen='0', seq='*', qual='*', optional=PROBAM_DEFAULTS): self.qname = qname self.flag = flag self.rname = rname self.pos = pos self.mapq = mapq self.cigar = cigar self.rnext = rnext self.pnext = pnext self.tlen = tlen self.seq = seq self.qual = qual self.optional = optional def __str__(self): opt_cols = '\t%s' % '\t'.join(['%s:%s:%s' % (t,PROBAM_TYTPES[t],self.optional[t]) for t in PROBAM_TAGS]) if self.optional else '' return '%s\t%d\t%s\t%d\t%d\t%s\t%s\t%s\t%s\t%s\t%s%s' % ( self.qname,self.flag,self.rname,self.pos,self.mapq,self.cigar, str(self.rnext) if self.rnext else '', str(self.pnext) if self.pnext else '', str(self.tlen) if self.tlen else '', self.seq, self.qual, opt_cols) def add_optional(self,tag,value): self.optional[tag] = value class ProBAM ( object ): def __init__(self,species=None,assembly=None,seqlens={},comments=[]): self.species = species self.assembly = assembly self.seqlens = seqlens self.comments = comments self.entries = dict() self.opt_columns = set() self.rg = [] def add_entry(self,pb_entry): if not pb_entry.rname in self.entries: self.entries[pb_entry.rname] = [] self.entries[pb_entry.rname].append(pb_entry) if pb_entry.optional: self.opt_columns | set(pb_entry.optional.keys()) def add_entry_from_bed(self,bed_entry,optional=dict()): if bed_entry.pep: optional['XP:Z'] = bed_entry.pep qname=bed_entry.name flag = 0 if bed_entry.strand == '+' else 16 rname = bed_entry.chrom pos = bed_entry.chromStart + 1 cigar = bed_entry.get_cigar() seq = bed_entry.get_spliced_seq(strand='+') if bed_entry.seq else '*' pb_entry = ProBAMEntry(qname=qname, flag=flag, rname=rname, pos=pos,cigar=cigar,seq=seq,optional=optional) self.add_entry(pb_entry) ## print >> sys.stderr,('add_entry_from_bed:%s\n %s\n %s' % (self.entries.keys(),bed_entry,pb_entry)) def write(self,fh): fh.write('@HD VN:1.0 SO:coordinate\n') rnames = sort_chrom_names(self.seqlens.keys()) for sn in rnames: fh.write('@SQ\tSN:%s\tLN:%d\n' % (sn,self.seqlens[sn])) for rg in self.rg: fh.write('@RG\tID:%s\n' % (rg)) fh.write('@PG\tID:SampleSpecificGenerator\n') for comment in self.comments: fh.write('@CO\t%s\n' % comment) for sn in rnames: if sn not in self.entries: continue ##for pbe in sorted(self.entries[sn], key=lambda probam_entry: probam_entry.pos): for pbe in sorted(self.entries[sn], key=attrgetter('pos')): fh.write('%s\n' % str(pbe))