Mercurial > repos > jjohnson > gmap
view gmap_build.xml @ 6:4f358603ee12 draft default tip
Uploaded v3.0.1c with table fix
author | peterjc |
---|---|
date | Fri, 21 Oct 2016 11:15:09 -0400 |
parents | 14561eb803a5 |
children |
line wrap: on
line source
<tool id="gmap_build" name="GMAP Build" version="3.0.1"> <description>a database genome index for GMAP and GSNAP</description> <requirements> <requirement type="package" version="2013-05-09">gmap</requirement> </requirements> <version_command>gmap --version</version_command> <command detect_errors="exit_code"><![CDATA[ /bin/bash $shscript > $output ]]></command> <configfiles> <configfile name="shscript"> #!/bin/bash #set $ds = chr(36) #set $gt = chr(62) #set $lt = chr(60) #set $ad = chr(38) ## #set $ref_files = '' ## #for $i in $inputs: ## #set $ref_files = $ref_files $i.input ## #end for ## echo $ref_files #set circular = "" #if $circular_chroms.__str__.strip() != '': #set circular = ('').join([' -c ','"', $circular_chroms.__str__,'"']) #end if #import os.path #set $gmapdb = $output.extra_files_path #set $mapsdir = $os.path.join($os.path.join($gmapdb,str($refname)), str($refname) + '.maps') mkdir -p $gmapdb ## export GMAPDB required for cmetindex and atoiindex export GMAPDB=$gmapdb #if $kmer: #for $k in $kmer.__str__.split(','): gmap_build -D $gmapdb -d $refname -s $sort $circular -k $k #for i in $inputs# ${i.input}#end for# #end for #else: gmap_build -D $gmapdb -d $refname -s $sort $circular #for i in $inputs# ${i.input}#end for# #end if get-genome -D $gmapdb -d '?' | sed 's/^Available .*/gmap db: /' echo "kmers: " $kmer #if $splicesite.splice_source == 'refGeneTable': #if $splicesite.refGenes.__str__ != 'None': cat $splicesite.refGenes | psl_splicesites -s $splicesite.col_skip | iit_store -o $os.path.join($mapsdir,'splicesites') cat $splicesite.refGenes | psl_introns -s $splicesite.col_skip | iit_store -o $os.path.join($mapsdir,'introns') #end if #elif $splicesite.splice_source == 'gtf': #if $splicesite.gtfGenes.__str__ != 'None': cat $splicesite.gtfGenes | gtf_splicesites | iit_store -o $os.path.join($mapsdir,'splicesites') cat $splicesite.gtfGenes | gtf_introns | iit_store -o $os.path.join($mapsdir,'introns') #end if #elif $splicesite.splice_source == 'gff3': #if $splicesite.gff3Genes.__str__ != 'None': cat $splicesite.gff3Genes | gff3_splicesites | iit_store -o $os.path.join($mapsdir,'splicesites') cat $splicesite.gff3Genes | gff3_introns | iit_store -o $os.path.join($mapsdir,'introns') #end if #end if #if $dbsnp.snp_source != 'none' and $dbsnp.snps.__str__ != 'None': #if $dbsnp.snp_source == 'snpTable': #if $dbsnp.snpsex.__str__ != 'None': cat $dbsnp.snps | dbsnp_iit -w $dbsnp.weight -e $dbsnp.snpsex | iit_store -o $os.path.join($mapsdir,'snps') #else: cat $dbsnp.snps | dbsnp_iit -w $dbsnp.weight | iit_store -o $os.path.join($mapsdir,'snps') #end if #elif $dbsnp.snp_source == 'vcfFile': #if $dbsnp.vcf_version and len($dbsnp.vcf_version.__str__.strip()) > 0: cat $dbsnp.snps | vcf_iit -v $dbsnp.vcf_version.__str__.strip() | iit_store -o $os.path.join($mapsdir,'snps') #else: cat $dbsnp.snps | vcf_iit | iit_store -o $os.path.join($mapsdir,'snps') #end if #else: cat $dbsnp.snps | iit_store -o $os.path.join($mapsdir,'snps') #end if snpindex -d $refname -v snps echo "snpindex" -d $refname -v snps #end if #if $cmetindex.__str__ == 'yes': cmetindex -d $refname echo "cmetindex" -d $refname #end if #if $atoiindex.__str__ == 'yes': atoiindex -d $refname echo "atoiindex" -d $refname #end if get-genome -D $gmapdb -d $refname -m '?' | sed 's/^Available maps .*/maps: /' </configfile> </configfiles> <inputs> <!-- Name for this gmapdb --> <param name="refname" type="text" label="Name you want to give this gmap database" help=""> <validator type="empty_field" message="A database name is required."/> </param> <!-- Input data --> <repeat name="inputs" title="Reference Sequence" min="1"> <param name="input" type="data" format="fasta" label="reference sequence fasta" /> </repeat> <param name="circular_chroms" type="text" value="" optional="true" label="Names of circular chromosomes" help="a list of chromosomes, separated by commas, allow GSNAP and GMAP to align reads across the ends of the chromosome"> </param> <param name="sort" type="select" label="Sort chromosomes" help=""> <option value="none">none - use chromosomes as found in FASTA file(s)</option> <option value="alpha">alpha - sort chromosomes alphabetically (chr10 before chr 1)</option> <option value="numeric-alpha">numeric-alpha - chr1, chr1U, chr2, chrM, chrU, chrX, chrY</option> <option value="chrom">chrom - chr1, chr2, chrM, chrX, chrY, chr1U, chrU</option> </param> <param name="cmetindex" type="boolean" checked="true" truevalue="yes" falsevalue="no" label="Create cmetindex to process reads from bisulfite-treated DNA"/> <param name="atoiindex" type="boolean" checked="true" truevalue="yes" falsevalue="no" label="Create atoiindex to process reads under RNA-editing tolerance"/> <conditional name="splicesite"> <param name="splice_source" type="select" label="Add splice and intron info from" > <option value="none"></option> <option value="refGeneTable">refGenes table from UCSC table browser</option> <option value="gtf">GTF</option> <option value="gff3">GFF3</option> </param> <when value="none"/> <when value="refGeneTable"> <param name="refGenes" type="data" format="tabular" optional="true" label="UCSC refGenes table" help="Example: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/refGene.txt.gz" /> <param name="col_skip" type="integer" value="1" label="Columns to skip before the id/name column (default 1)" help="Note that alignment tracks in UCSC sometimes have an extra column on the left."> <validator type="in_range" message="The number of colmumns to skip must >= 0." min="0."/> </param> </when> <when value="gtf"> <param name="gtfGenes" type="data" format="gtf" optional="true" label="Genes as GTF" help="" /> </when> <when value="gff3"> <param name="gff3Genes" type="data" format="gff3" optional="true" label="Genes in GFF3 format" help="" /> </when> </conditional> <conditional name="dbsnp"> <param name="snp_source" type="select" label="Add SNP info from" > <option value="none"></option> <option value="snpTable">UCSC SNP Table</option> <option value="snpFile">GMAP SNP File</option> <option value="vcfFile">VCF File</option> </param> <when value="none"/> <when value="snpTable"> <param name="snps" type="data" format="tabular" optional="true" label="UCSC SNPs table" help="Example: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/snp130.txt.gz" /> <param name="snpsex" type="data" format="tabular" optional="true" label="UCSC SNP Exceptions table" help="Example: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/snp130Exceptions.txt.gz" /> <param name="weight" type="select" label="Include SNPs with at least Confidence Level" help=""> <option value="1" selected="true">1 (High)</option> <option value="2">2 (Medium)</option> <option value="3">3 (All)</option> </param> </when> <when value="snpFile"> <param name="snps" type="data" format="gmap_snps" optional="true" label="GMAP SNPs file" help="Format (3 columns): <br>>rs62211261 21:14379270 CG <br>>rs62211262 21:14379281 CG <br>Each line must start with a > character, then be followed by an identifier (which may have duplicates). Then there should be the chromosomal coordinate of the SNP. (Coordinates are all 1-based, so the first character of a chromosome is number 1.) Finally, there should be the two possible alleles: ( AC AG AT CG CT GT or AN CN GN TN) <br>These alleles must correspond to the possible nucleotides on the plus strand of the genome. If the one of these two letters does not match the allele in the reference sequence, that SNP will be ignored in subsequent processing as a probable error. The N stands for any other allele." /> </when> <when value="vcfFile"> <param name="snps" type="data" format="vcf" optional="true" label="VCF SNPs file" help="Example: ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-All.vcf.gz The VCF file contains multiple versions of dbSNP, so if you want a particular version, such as 135. The vcf_iit program tries to pick a subset of SNPs that somewhat parallel the ones without exceptions in the UCSC dbSNP file. It keeps all SNPs that have been validated (marked in the VCF file as "VLD") or have a submitter link-out ("SLO"). Otherwise, it excludes SNPs that are individual genotypes ("GNO"). If none of these conditions hold, then the SNP is allowed. "/> <param name="vcf_version" type="text" value="" optional="true" label="dbSNP version" help="The VCF file contains multiple versions of dbSNP, so if you want a particular version, such as 135"/> </when> </conditional> <param name="kmer" type="select" multiple="true" force_select="true" label="kmer size" help="Use smaller values when building indexes on machines with limited RAM"> <option value="12">12 (64MB RAM)</option> <option value="13">13 (256MB RAM)</option> <option value="14">14 (1GB RAM)</option> <option value="15" selected="true">15 (4GB RAM)</option> </param> </inputs> <outputs> <!-- <data format="txt" name="log" label="${tool.name} on ${on_string}: log"/> --> <data format="gmapdb" name="output" label="${tool.name} on ${on_string} gmapdb ${refname}" /> </outputs> <tests> </tests> <help> **GMAP Build** GMAP Build creates an index of a genomic sequence for mapping and alignment using GMAP_ (Genomic Mapping and Alignment Program for mRNA and EST sequences) and GSNAP_ (Genomic Short-read Nucleotide Alignment Program). (GMAP Build uses GMAP commands: gmap_build, iit_store, psl_splicesites, psl_introns, gtf_splicesites, gtf_introns, gff3_splicesites, gff3_introns, dbsnp_iit, snpindex, cmetindex, and atoiindex.) You will want to read the README_ Publication_ citation: Thomas D. Wu, Colin K. Watanabe Bioinformatics 2005 21(9):1859-1875; doi:10.1093/bioinformatics/bti310 .. _GMAP: http://research-pub.gene.com/gmap/ .. _GSNAP: http://research-pub.gene.com/gmap/ .. _README: http://research-pub.gene.com/gmap/src/README .. _Publication: http://bioinformatics.oxfordjournals.org/cgi/content/full/21/9/1859 **circular chromosomes** Finally, you can provide information to gmap_build that certain chromosomes are circular, with the -c or -\-circular flag. The value for these flags is a list of chromosomes, separated by commas. The gmap_build program will then allow GSNAP and GMAP to align reads across the ends of the chromosome. For example, the mitochondrial genome in human beings is circular. **Detecting known and novel splice sites in GSNAP** GSNAP can detect splice junctions in individual reads. GSNAP allows for known splicing at two levels: at the level of known splice sites and at the level of known introns. At the site level, GSNAP finds splicing between arbitrary combinations of donor and acceptor splice sites, meaning that it can find alternative splicing events. At the intron level, GSNAP finds splicing only between the set of given donor-acceptor pairs, so it is constrained not to find alternative splicing events, only introns included in the given list. For most purposes, I would recommend using known splice sites, rather than known introns, unless you are certain that all alternative splicing events are known are represented in your file. Splice site files can be generated from a GTF file or from refGenes table from UCSC. **SNP-tolerant alignment in GSNAP** GSNAP has the ability to align to a reference space of all possible major and minor alleles in a set of known SNPs provided by the user. Process known SNP data, either from older dbSNP files or from newer files in VCF format. The older dbSNP files can be obtained from UCSC, either from the Galaxy UCSC table browser or downloaded: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/snp130.txt.gz For versions before snp132, you may also want to exclude exceptions, which will require this file: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/snp130Exceptions.txt.gz The option "-w weight" makes use of the dbSNP item weight, a value from 1 to 3, where lower weight means higher confidence. Items will be included if the item weight is the given value weight or less. The default value of -w is 1, which is the criterion UCSC uses to build its ambiguous version of the genome. To allow all item weights, specify "-w 3". The more recent SNP data are provided in VCF format, and can be retrieved like this: ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-All.vcf.gz The VCF file contains multiple versions of dbSNP, so if you want a particular version, such as 135, you would use the flag "-v 135". The vcf_iit program tries to pick a subset of SNPs that somewhat parallel the ones without exceptions in the UCSC dbSNP file. It keeps all SNPs that have been validated (marked in the VCF file as "VLD") or have a submitter link-out ("SLO"). Otherwise, it excludes SNPs that are individual genotypes ("GNO"). If none of these conditions hold, then the SNP is allowed. These rules might not be the best ones; I made them up by trying to compare version 135 of the VCF data with version 135 of the UCSC dbSNP data. **Alignment of reads from bisulfite-treated DNA in GSNAP** GSNAP has the ability to align reads from bisulfite-treated DNA, which converts unmethylated cytosines to uracils that appear as thymines in reads. GSNAP is able to identify genomic-T to read-C mismatches, if a cmetindex is generated. **RNA-editing tolerance in GSNAP** Just as GSNAP has a program cmetindex and a mode called "cmet" for tolerance to C-to-T changes, it can be tolerant to A-to-G changes using the program atoiindex and a mode called "atoi". This mode is designed to facilitate alignments that are tolerant to RNA editing where A's are converted to I's, which appear as G's to a sequencer. To process reads under RNA-editing tolerance, you will first need to create th atoi index. **K-mer size** You can control the k-mer size for the genomic index with the -k flag, which can range from 12 to 15. The default value for -k is 15, but this requires your machine to have 4 GB of RAM to build the indices. If you do not have 4 GB of RAM, then you will need to reduce the value of -k or find another machine. Here are the RAM requirements for building various indices:: k-mer of 12: 64 MB k-mer of 13: 256 MB k-mer of 14: 1 GB k-mer of 15: 4 GB These are the RAM requirements for building indices, but not to run the GMAP/GSNAP programs once the indices are built, because the genomic indices are compressed. For example, the genomic index for a k-mer of 15 gives a gammaptrs file of 64 MB and an offsetscomp file of about 350 MB, much smaller than the 4 GB that would otherwise be required. Therefore, you may want to build your genomic index on a computer with sufficient RAM, and distribute that index to be used by computers with less RAM. The amount of compression can be controlled using the -b or -\-basesize parameter to gmap_build. By default, the value for k-mer size is 15, and the value for basesize is 12. If you select a different value for k-mer size, then basesize is made by default to be equal to that k-mer size. If you want to build your genomic databases with more than one k-mer size, you can re-run gmap_build with different values of -k. This will overwrite only the identical files from the previous runs. You can then choose the k-mer size at run-time by using the -k flag for either GMAP or GSNAP. </help> <citations> <citation type="doi">10.1093/bioinformatics/bti310</citation> </citations> </tool>