changeset 16:9a84f76db861 draft

Fixed RMOTIF_PATH env variable for toolshed deployment
author jeremyjliu
date Wed, 12 Nov 2014 15:19:37 -0500 (2014-11-12)
parents 81bd3a218c51
children 7afdfd4f4c1b
files region_motif_compare.r region_motif_compare.xml region_motif_db/pwms/jaspar.jolma.pwms.from.seq.RData region_motif_db/pwms/mm9.pwms.from.seq.RData region_motif_db/pwms/pouya.pwms.from.seq.RData region_motif_intersect.r region_motif_intersect.xml region_motif_lib/plotting.r tool_dependencies.xml upload/region_motif_compare.r upload/region_motif_compare.xml upload/region_motif_intersect.r upload/region_motif_intersect.xml upload/tool_dependencies.xml
diffstat 14 files changed, 355 insertions(+), 1168 deletions(-) [+]
line wrap: on
line diff
--- a/region_motif_compare.r	Wed Nov 12 15:10:51 2014 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,189 +0,0 @@
-# Name: region_motif_compare.r
-# Description: Reads in two count files and determines enriched and depleted
-# motifs (or any location based feature) based on poisson tests and gc
-# corrections. All enrichment ratios relative to overall count / gc ratios.
-# Author: Jeremy liu
-# Email: jeremy.liu@yale.edu
-# Date: 14/07/03
-# Note: This script is meant to be invoked with the following command
-# R --slave --vanilla -f ./region_motif_compare.r --args <workingdir> <db> <intab1> <intab2> 
-#   <enriched_tab> <depleted_tab> <plots_png>
-# <workingdir> is working directory of galaxy installation
-# <db> types: "t" test, "p" pouya, "j" jaspar jolma, "m" mouse, "c" combined
-# Dependencies: plotting.r
-
-# Auxiliary function to concatenate multiple strings
-concat <- function(...) {
-	input_list <- list(...)
-	return(paste(input_list, sep="", collapse=""))
-}
-
-# Supress all warning messages to prevent Galaxy treating warnings as errors
-options(warn=-1)
-
-# Set common and data directories
-args <- commandArgs()
-workingDir = args[7]
-commonDir = concat(workingDir, "/tools/my_tools")
-dbCode = args[8]
-# dbCode "c" implemented when pwmFile is loaded
-if (dbCode == "t" | dbCode == "p") {
-	pwmFile = concat(commonDir, "/region_motif_db/pwms/pouya.pwms.from.seq.RData")
-} else if (dbCode == "j") {
-	pwmFile = concat(commonDir, "/region_motif_db/pwms/jaspar.jolma.pwms.from.seq.RData")
-} else if (dbCode == "m") {
-	pwmFile = concat(commonDir, "/region_motif_db/pwms/mm9.pwms.from.seq.RData")
-} else if (dbCode == "c") { # rest of dbCode "c" implemeted when pwmFile loaded
-	pwmFile = concat(commonDir, "/region_motif_db/pwms/pouya.pwms.from.seq.RData")
-	pwmFile2 = concat(commonDir, "/region_motif_db/pwms/jaspar.jolma.pwms.from.seq.RData")
-} else {
-	pwmFile = concat(commonDir, "/region_motif_db/pwms/pouya.pwms.from.seq.RData")
-}
-
-# Set input and reference files
-inTab1 = args[9]
-inTab2 = args[10]
-enrichTab = args[11]
-depleteTab = args[12]
-plotsPng = args[13]
-
-# Load dependencies
-source(concat(commonDir, "/region_motif_lib/plotting.r"))
-
-# Auxiliary function to read in tab file and prepare the data
-read_tsv <- function(file) {
-	data = read.table(file, sep="\t", stringsAsFactors=FALSE)
-	names(data)[names(data) == "V1"] = "motif"
-	names(data)[names(data) == "V2"] = "counts"
-	return(data)
-}
-
-startTime = Sys.time()
-cat("Running ... Started at:", format(startTime, "%a %b %d %X %Y"), "...\n")
-
-# Loading motif position weight matrix (pwm) file and input tab file
-#cat("Loading and reading input region motif count files...\n")
-load(pwmFile) # pwms data structure
-if (dbCode == "c") { # Remaining implementation of dbCode "c" combined 
-	temp = pwms
-	load(pwmFile2)
-	pwms = append(temp, pwms)
-}
-region1DF = read_tsv(inTab1)
-region2DF = read_tsv(inTab2)
-region1Counts = region1DF$counts
-region2Counts = region2DF$counts
-names(region1Counts) = region1DF$motif
-names(region2Counts) = region2DF$motif
-
-# Processing count vectors to account for missing 0 count motifs, then sorting
-#cat("Performing 0 count correction and sorting...\n")
-allNames = union(names(region1Counts), names(region2Counts))
-region1Diff = setdiff(allNames, names(region1Counts))
-region2Diff = setdiff(allNames, names(region2Counts))
-addCounts1 = rep(0, length(region1Diff))
-addCounts2 = rep(0, length(region2Diff))
-names(addCounts1) = region1Diff
-names(addCounts2) = region2Diff
-newCounts1 = append(region1Counts, addCounts1)
-newCounts2 = append(region2Counts, addCounts2)
-region1Counts = newCounts1[sort.int(names(newCounts1), index.return=TRUE)$ix]
-region2Counts = newCounts2[sort.int(names(newCounts2), index.return=TRUE)$ix]
-
-# Generate gc content matrix
-gc = sapply(pwms, function(i) mean(i[2:3,3:18]))
-
-# Apply poisson test, calculate p and q values, and filter significant results
-#cat("Applying poisson test...\n")
-rValue = sum(region2Counts) / sum(region1Counts)
-pValue = sapply(seq(along=region1Counts), function(i) {
-	poisson.test(c(region1Counts[i], region2Counts[i]), r=1/rValue)$p.value
-})
-qValue = p.adjust(pValue, "fdr")
-indices = which(qValue<0.1 & abs(log2(region1Counts/region2Counts/rValue))>log2(1.5))
-
-# Setting up output diagnostic plots, 4 in 1 png image
-png(plotsPng, width=800, height=800)
-xlab = "region1_count"
-ylab = "region2_count"
-lim = c(0.5, 5000)
-layout(matrix(1:4, ncol=2))
-par(mar=c(5, 5, 5, 1))
-
-# Plot all motif counts along the linear correlation coefficient
-plot.scatter(region1Counts+0.5, region2Counts+0.5, log="xy", xlab=xlab, ylab=ylab,
-						 cex.lab=2.2, cex.axis=1.8, xlim=lim, ylim=lim*rValue)
-abline(0, rValue, untf=T)
-abline(0, rValue*2, untf=T, lty=2)
-abline(0, rValue/2, untf=T, lty=2)
-	
-# Plot enriched and depleted motifs in red, housed in second plot    
-plot.scatter(region1Counts+0.5, region2Counts+0.5, log="xy", xlab=xlab, ylab=ylab,
-						 cex.lab=2.2, cex.axis=1.8, xlim=lim, ylim=lim*rValue)
-points(region1Counts[indices]+0.5, region2Counts[indices]+0.5, col="red")
-abline(0, rValue, untf=T)
-abline(0, rValue*2, untf=T, lty=2)
-abline(0, rValue/2, untf=T, lty=2)
-
-# Apply and plot gc correction and loess curve
-#cat("Applying gc correction, rerunning poisson test...\n")
-ind = which(region1Counts>5)
-gc = gc[names(region2Counts)] # Reorder the indices of pwms to match input data
-lo = plot.scatter(gc,log2(region2Counts/region1Counts),draw.loess=T, 
-								xlab="gc content of motif",ylab=paste("log2(",ylab,"/",xlab,")"),
-								cex.lab=2.2,cex.axis=1.8,ind=ind) # This function is in plotting.r
-gcCorrection = 2^approx(lo$loess,xout=gc,rule=2)$y
-save(gc, file="gc.RData")
-
-# Recalculate p and q values, and filter for significant entries
-pValueGC = sapply(seq(along=region1Counts),function(i) {
-	poisson.test(c(region1Counts[i],region2Counts[i]),r=1/gcCorrection[i])$p.value
-})
-qValueGC=p.adjust(pValueGC,"fdr")
-indicesGC = which(qValueGC<0.1 & abs(log2(region1Counts/region2Counts*gcCorrection))>log2(1.5))
-
-# Plot gc corrected motif counts 
-plot.scatter(region1Counts+0.5, (region2Counts+0.5)/gcCorrection, log="xy", 
-						 xlab=xlab, ylab=paste(ylab,"(normalized)"), cex.lab=2.2, cex.axis=1.8,
-						 xlim=lim, ylim=lim)
-points(region1Counts[indicesGC]+0.5, 
-			 (region2Counts[indicesGC]+0.5)/gcCorrection[indicesGC], col="red")
-abline(0,1)
-abline(0,1*2,untf=T,lty=2)
-abline(0,1/2,untf=T,lty=2)
-
-# Trim results, compile statistics and output to file
-# Only does so if significant results are computed
-if(length(indicesGC) > 0) {
-	# Calculate expected counts and enrichment ratios
-	#cat("Calculating statistics...\n")
-	nullExpect = region1Counts * gcCorrection
-	enrichment = region2Counts / nullExpect
-
-	# Reorder selected indices in ascending pvalue
-	#cat("Reordering by ascending pvalue...\n")
-	indicesReorder = indicesGC[order(pValueGC[indicesGC])]
-
-	# Combine data into one data frame and output to two files
-	#cat("Splitting and outputting data...\n")
-	outDF = data.frame(motif=names(pValueGC), p=as.numeric(pValueGC), q=qValueGC, 
-										 stringsAsFactors=F, region_1_count=region1Counts, 
-										 null_expectation=round(nullExpect,2), region_2_count=region2Counts,
-										 enrichment=enrichment)[indicesReorder,]
-	names(outDF)[which(names(outDF)=="region_1_count")]=xlab
-	names(outDF)[which(names(outDF)=="region_2_count")]=ylab
-	indicesEnrich = which(outDF$enrichment>1)
-	indicesDeplete = which(outDF$enrichment<1)
-	outDF$enrichment = ifelse(outDF$enrichment>1,
-														round(outDF$enrichment,3),
-														paste("1/",round(1/outDF$enrichment,3)))
-	write.table(outDF[indicesEnrich,], file=enrichTab, quote=FALSE, 
-							sep="\t", append=FALSE, row.names=FALSE, col.names=TRUE)
-	write.table(outDF[indicesDeplete,], file=depleteTab, quote=FALSE, 
-							sep="\t", append=FALSE, row.names=FALSE, col.names=TRUE)
-}
-
-# Catch display messages and output timing information 
-catchMessage = dev.off()
-cat("Done. Job started at:", format(startTime, "%a %b %d %X %Y."),
-		"Job ended at:", format(Sys.time(), "%a %b %d %X %Y."), "\n")
--- a/region_motif_compare.xml	Wed Nov 12 15:10:51 2014 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,29 +0,0 @@
-<tool id="region_motif_compare" name="Region Motif Count Compare">
-  <description>for comparing the motif counts in different region sets</description>
-  <command interpreter="bash">
-    /usr/bin/R --slave --vanilla -f $GALAXY_ROOT_DIR/tools/my_tools/region_motif_compare.r --args $GALAXY_ROOT_DIR $db_type $in_tab_1 $in_tab_2 $out_enriched $out_depleted $out_plots
-  </command>
-  <inputs>
-    <param name="in_tab_1" type="data" format="tabular" label="Region Set 1 Motif Count File"/>
-    <param name="in_tab_2" type="data" format="tabular" label="Region Set 2 Motif Count File"/>
-    <param name="db_type" type="select" label="Select Motif Database" >
-      <option value="t">Test Pouya Subset (hg19)</option>
-      <option value="p">Pouya Encode Motifs (hg19)</option>
-      <option value="j">Jaspar and Jolma Motifs (hg19)</option>
-      <option value="m">Mouse Motifs (mm9)</option>
-      <option value="c">Pouya, Jaspar, and Jolma Combined (hg19)</option>
-    </param>
-  </inputs>
-  <outputs>
-    <data name="out_enriched" format="tabular" label="Enriched Motifs"/>
-    <data name="out_depleted" format="tabular" label="Depleted Motifs"/>
-    <data name="out_plots" format="png" label="Motif Count Comparison Plots"/>
-  </outputs>
-
-  <help>
-    This tools reads in two counts file and determines enriched and depleted
-    motifs in two different region sets based on poisson calculation with
-    gc correction.
-  </help>
- 
-</tool>
\ No newline at end of file
Binary file region_motif_db/pwms/jaspar.jolma.pwms.from.seq.RData has changed
Binary file region_motif_db/pwms/mm9.pwms.from.seq.RData has changed
Binary file region_motif_db/pwms/pouya.pwms.from.seq.RData has changed
--- a/region_motif_intersect.r	Wed Nov 12 15:10:51 2014 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,102 +0,0 @@
-# Name: region_motif_intersect.r
-# Description: Takes a bed file of target regions and counts intersections
-# of each motif (built in rdata database) and target regions.
-# Author: Jeremy liu
-# Email: jeremy.liu@yale.edu
-# Date: 14/07/02
-# Note: This script is meant to be invoked with the following command
-# R --slave --vanilla -f ./region_motif_intersect.r --args <workingdir> <db> <inbed> <outtab>
-# <workingdir> is working directory of galaxy installation
-# <db> types: "t" test, "p" pouya, "j" jaspar jolma, "m" mouse
-# Dependencies: none
-
-# Auxiliary function to concatenate multiple strings
-concat <- function(...) {
-  input_list <- list(...)
-  return(paste(input_list, sep="", collapse=""))
-}
-
-# Set common and data directories
-args <- commandArgs()
-workingDir = args[7]
-dbDir = concat(workingDir, "/region_motif_db")
-dbCode = args[8]
-if (dbCode == "t") {
-  motifDB = concat(dbDir, "/pouya_test_motifs.bed.bgz")
-} else if (dbCode == "p") {
-  motifDB = concat(dbDir, "/pouya_motifs.bed.bgz")
-} else if (dbCode == "j") {
-  motifDB = concat(dbDir, "/jaspar_jolma_motifs.bed.bgz")
-} else if (dbCode == "m") {
-  motifDB = concat(dbDir, "/mm9_motifs.bed.bgz")
-} else {
-  motifDB = concat(dbDir, "/pouya_motifs.bed.bgz")
-}
-
-# Set input and reference files, comment to toggle commmand line arguments
-inBed = args[9]
-outTab = args[10]
-
-# Auxiliary function to read in BED file
-read_bed <- function(file) {
-  return(read.table(file, sep="\t", stringsAsFactors=FALSE))
-}
-
-startTime = Sys.time()
-cat("Running ... Started at:", format(startTime, "%a %b %d %X %Y"), "...\n")
-
-# Load dependencies
-cat("Loading dependencies...\n")
-suppressPackageStartupMessages(library(Rsamtools, quietly=TRUE))
-
-# Initializing hash table (as env) with motif names and loading tabix file
-cat("Loading motif database and initializing hash table...\n")
-motifTable = new.env()
-motifTbx <- TabixFile(motifDB)
-
-# Loading input bed file, convert integer columns to numeric, name columns
-cat("Loading region file...\n")
-regionsDF = read_bed(inBed)
-dfTemp = sapply(regionsDF, is.integer)
-regionsDF[dfTemp] = lapply(regionsDF[dfTemp], as.numeric)
-names(regionsDF)[names(regionsDF) == "V1"] = "chr"
-names(regionsDF)[names(regionsDF) == "V2"] = "start"
-names(regionsDF)[names(regionsDF) == "V3"] = "end"
-
-# Filtering regions to exclude chromosomes not in motif database
-cat("Determining intersection counts...\n")
-motifTbxChrs = seqnamesTabix(motifTbx)
-regionsDFFilter = subset(regionsDF, chr %in% motifTbxChrs)
-
-# Loading regions into GRanges object and scanning motif tabix database
-# Region end is incremented by 1 since scanTabix querying is inclusive for
-# position start but exclusive for position end.
-param = GRanges(regionsDFFilter$chr, IRanges(regionsDFFilter$start, 
-                end=regionsDFFilter$end + 1))
-regionsIntersects = scanTabix(motifTbx, param=param)
-
-# Parsing result list and updating motif count hash table
-cat("Parsing result list...\n")
-for(regionIntersects in regionsIntersects) {
-  for(regionIntersect in strsplit(regionIntersects, " ")) {
-    intersectMotif = strsplit(regionIntersect, "\t")[[1]][4]
-    if(is.null(motifTable[[intersectMotif]])) {
-      motifTable[[intersectMotif]] = 1
-    } else {
-      motifTable[[intersectMotif]] = motifTable[[intersectMotif]] + 1
-    }
-  }
-}
-
-# Converting motif count hash table to an integer vector for output
-counts = integer(length = length(ls(motifTable)))
-names(counts) = ls(motifTable)
-for(motifName in ls(motifTable)) {
-  counts[motifName] = as.integer(motifTable[[motifName]])
-}
-
-# Outputting intersection counts to tab delineated file
-cat("Outputting to file...\n")
-write.table(counts, outTab, quote=FALSE, sep="\t", row.names=TRUE, col.names=FALSE)
-cat("Done. Job started at:", format(startTime, "%a %b %d %X %Y."),
-    "Job ended at:", format(Sys.time(), "%a %b %d %X %Y."), "\n")
--- a/region_motif_intersect.xml	Wed Nov 12 15:10:51 2014 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,27 +0,0 @@
-<tool id="region_motif_intersect" name="Region Motif Intersect">
-  <description>for computing the motifs that lie inside a region set</description>
-  <requirements>
-    <requirement type="set_environment">R_SCRIPT_PATH</requirement>
-  </requirements>
-  <command interpreter="Rscript">
-    region_motif_intersect.r --args \$R_SCRIPT_PATH $db_type $in_bed $out_tab
-  </command>
-  <inputs>
-    <param name="in_bed" type="data" format="bed" label="Input BED File" />
-    <param name="db_type" type="select" label="Select Motif Database" >
-      <option value="t">Test Pouya Subset (hg19)</option>
-      <option value="p">Pouya Encode Motifs (hg19)</option>
-      <option value="j">Jaspar and Jolma Motifs (hg19)</option>
-      <option value="m">Mouse Motifs (mm9)</option>
-    </param>
-  </inputs>
-  <outputs>
-    <data name="out_tab" format="tabular" />
-  </outputs>
-
-  <help>
-    This tool computes the motifs and the number of motifs that intersect
-    any region in a input set of regions.
-  </help>
- 
-</tool>
\ No newline at end of file
--- a/region_motif_lib/plotting.r	Wed Nov 12 15:10:51 2014 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,815 +0,0 @@
-library(graphics, quietly=TRUE)
-
-plot.verbose=F
-name.cleaner<-function(...,sep="",replace="_") {
-  plot.name=gsub(" ",replace,paste(...,sep=sep))
-  plot.name=gsub("/",replace,plot.name)
-  plot.name=gsub(",",replace,plot.name)
-  plot.name=gsub("'",replace,plot.name)
-  plot.name=gsub("\\+","plus",plot.name)
-  plot.name=gsub("\\(","",plot.name)
-  plot.name=gsub("\\)","",plot.name)
-  return(plot.name)
-}
-plot.namer <- function(..., date=0, fig.dir=0, format="png",sep="") {
-  plot.name=name.cleaner(...,sep=sep)
-  if(date==0) date=gsub("-","",as.character(Sys.Date()))
-  if(fig.dir==0) fig.dir="/Users/alver/allplots"
-  plot.name=paste(fig.dir,"/",date,plot.name,".",format,sep="")
-  if(plot.verbose) cat("  saving figure: ",plot.name,"\n")
-  return(plot.name)
-}
-
-plot.scatter <- function(x,y=NULL,f=0.1,same=FALSE,n.points=-1,draw.lowess=FALSE,write.r=TRUE,cex.r=1,col=NULL,col.line=NULL,lwd.line=1,
-                         draw.loess=FALSE,span=0.5,bandwidth=bandwidth,draw.prof=FALSE,xlog=FALSE,ylog=FALSE,cor.method="pearson",log="",ind=NULL,
-                         draw.spread=FALSE,...) {
-
-  ## if col is the same length as x, use col for each point matching x.
-  ## if col is the same length as ind, use col for each point matching x[ind].
-  ## else use densCols function based on col.
-  ## if col is null, densCols is used with bluetone for first plot and redtone for same=T.
-    
-    #print(length(x))
-    #print(length(y))
-
-    xy <- xy.coords(x, y)
-    x=xy$x
-    y=xy$y
-    
-    output=list()
-    col.use = col
-
-    if(!is.null(ind)) {
-        if(length(col.use)==length(x)) {
-            col.use=col.use[ind]
-        }
-        x=x[ind]
-        y=y[ind]
-    }
-    
-    if(length(col.use)!=length(x)) {
-        col.use=rep(NA,length(x))
-    }
-  
-  
-  take=which(is.finite(x) & is.finite(y))
-  x=x[take]
-  y=y[take]
-  col.use=col.use[take]
-  
-  if(grepl("x",log)) xlog=TRUE
-  if(grepl("y",log)) ylog=TRUE
-  if(xlog) log="x"
-  if(ylog) log=paste(log,"y",sep="")
-  
-  if(draw.lowess) {
-    lo = lowess(x,y,f)
-    output$lowess=lo
-  }
-  if(draw.loess | draw.spread) {
-      px=x;py=y
-      if(xlog)  px=log(x)
-      if(ylog)  py=log(y)
-      ind = which(is.finite(px+py))
-      px=px[ind]
-      py=py[ind]
-      lo = loess(py ~ px,span=span,iterations=5)
-      lo.y=as.numeric(lo$fitted)
-      lo.x=as.numeric(lo$x)
-      if(draw.spread) lo.sd = loess((lo.y-py)^2 ~ lo.x,span=span*1.5,iterations=5)
-      if(xlog) lo.x=exp(lo.x)
-      if(ylog) lo.y=exp(lo.y)
-      lo =data.frame(x=lo.x,y=lo.y)
-      if(draw.spread) {
-          lo.sd=lo.sd$fitted
-          if(ylog) lo.sd=lo.sd*lo.y*lo.y
-          lo$sd=sqrt(pmax(0,lo.sd))
-      }
-      lo=unique(lo)
-      lo = lo[order(lo$x),]
-      output$loess=lo
-  }
-  
-  if(draw.prof) {
-    px=x;py=y
-    if(xlog)  px=log(x)
-    p=prof(px,py,50)
-    if(xlog)  p$x=exp(p$x)
-    output$prof=p
-  }     
-
-  r=cor(x,y,method=cor.method)
-  output$cor=r
-  output$cor.method=cor.method
-  
-  len=length(x)
-  if(n.points>0 & n.points<len) {
-    take=sample(1:len,n.points)
-    x=x[take]
-    y=y[take]
-    col.use=col.use[take]
-  }
-
-  if(xlog) {
-    ind = which(x>0)
-    x=x[ind]
-    y=y[ind]
-    col.use=col.use[ind]    
-  }
-  xcol=x
-  if(xlog) xcol=log(xcol)
-  if(ylog) {
-    ind = which(y>0)
-    x=x[ind]
-    xcol=xcol[ind]
-    y=y[ind]
-    col.use=col.use[ind]
-  }
-  ycol=y
-  if(ylog) ycol=log(ycol)
-
-  if(is.null(col)) {
-    if(!same) {
-      col=colorRampPalette(blues9[-(1:3)])
-    } else {
-      col=colorRampPalette(c("lightpink","red","darkred"))
-    }
-  }
-  if(!is.na(col.use[1])) {
-    col=col.use
-  } else {
-    col= suppressPackageStartupMessages(densCols(xcol,ycol,col =col,bandwidth=bandwidth,nbin=500))
-  }
-  if(!same) {
-    plot(x,y,col=col,log=log,...)
-  } else {
-    points(x,y,col=col,...)
-  }
-
-  if(is.null(col.line)) {
-    col.line="darkblue"
-    if(same) col.line="darkred"
-  }
-  if(draw.lowess | draw.loess) lines(lo,col=col.line,lwd=lwd.line)
-  if(draw.spread) {
-      lines(lo$x,lo$y+lo$sd,col=col.line,lwd=lwd.line)
-      lines(lo$x,lo$y-lo$sd,col=col.line,lwd=lwd.line)
-  }
-  if(draw.prof) {
-    points(p)
-    plot.prof(p)
-  }
-  if(write.r & !same) mtext(paste("r=",round(r,3),sep=""),cex=cex.r)
-  return(invisible(output))
-}
-
-#color.int=c(144,586,465,257,490,100,74,24)
-#coli=1
-#cols = integer()
-colramp.bwr = vector()
-colramp.byr = vector()
-colramp.bw = vector()
-colramp.bw2 = vector()
-
-plot.save=F
-
-setup.plotting <- function() {
-  pdf.options(useDingbats = FALSE)
-#  cols<<-colors()[color.int]
-#  cols<<-rep(cols,100)
-  colramp.bwr <<- colorRampPalette(c("blue","white","red"),space="Lab")(100);
-  colramp.byr <<- colorRampPalette(c("blue","yellow","red"),space="Lab")(100);
-  colramp.bw  <<- colorRampPalette(c("white","black"),space="Lab")(100)
-  colramp.bw2  <<- colorRampPalette(c("grey92","grey5"),space="Lab")(100)
-}
-
-
-plot.cluster <- function(x,k, max.points.cl=-1, image.sep=-1,col=NULL, reorder=FALSE) {
-    x[which(is.na(x))]=0
-    if(reorder) {
-        o=hclust(dist(t(x)))$order
-        x=x[,o]
-    }
-    if(image.sep<0) {
-        if(max.points.cl>0) {
-            image.sep=ceiling(0.2*max.points.cl)
-        }    else {
-            image.sep=ceiling(0.2 * nrow(x) / nrow(k$centers))
-        }
-    }
-    
-    distances<-dist(k$centers)
-    hcl=hclust(distances)
-
-    adjust.branch.sep <-function(ddr,lengths) {
-        assign.branch.sep <- function(d,i.leaf) {
-            if(is.leaf(d)) {
-                attr(d,"members")<-lengths[i.leaf]
-                i.leaf=i.leaf+1
-                output=list(d=d,i.leaf=i.leaf)
-                return(output)
-            }
-            else{
-                input=assign.branch.sep(d[[1]],i.leaf)
-                i.leaf=input$i.leaf
-                d[[1]]=input$d
-                
-                input=assign.branch.sep(d[[2]],i.leaf)
-                i.leaf=input$i.leaf
-                d[[2]]=input$d
-                
-                attr(d,"members")<-attr(d[[1]],"members")+attr(d[[2]],"members")
-                output=list(d=d,i.leaf=i.leaf)
-                return(output)      
-            }
-        }
-        ddr<-as.dendrogram(ddr)
-        ddr=assign.branch.sep(ddr,1)$d
-        return(ddr)
-    }
-    
-    n.points.actual=k$size
-    if(max.points.cl>0) {
-    k$size[which(k$size>max.points.cl)] = max.points.cl
-}
-
-    ddr<-adjust.branch.sep(hcl,k$size[hcl$order]+image.sep)
-    centers=length(hcl$order)
-    
-    n.points=sum(k$size)
-    n.dims=ncol(x)
-    z=matrix(numeric((n.points+(centers-1)*image.sep)*n.dims),ncol=n.dims)
-
-
-  last.row=0
-  cluster.y.pos=numeric(centers)
-  for(i.c in hcl$order) {
-    n.p=k$size[i.c]
-    z[last.row+1:n.p,] = x[which(k$cluster==i.c)[1:n.p],]
-    cluster.y.pos[i.c]=last.row+n.p/2
-    last.row=last.row+n.p+image.sep
-  }
-  
-  zlim=c(0,max(z))
-  if(min(z)<0) {
-    m=max(c(z,-z))
-    zlim=c(-m,m)
-  }
-  if(is.null(col)) {
-    if(min(z)>=0) {
-      col= colramp.bw
-    } else {
-      col= colorRampPalette(c("blue","yellow","red"),space="Lab")(100);
-    }
-  }
-  x.pl=seq1(n.dims+1)-0.5
-  y.pl=seq1(nrow(z)+1)-0.5
-  l <- layout(matrix(1:2,ncol=2),widths=c(1,5))
-  par(mar = c(6,0.5,6,0))
-  my.plot.dendrogram(ddr,horiz=T,axes=F,yaxs="i",xaxs="i",leaflab="none",center=T,lwd=10)
-  par(mar = c(6,0.1,6,2.1))
-  image(x=x.pl,y=y.pl,z=t(z),zlim=zlim,axes=FALSE,xlab="",col=col)   
-  mtext("cluster",side=4,adj=1.1)
-  mtext("points",side=4,adj=1.1,line=1)
-  mtext(seq1(centers),side=4,at=cluster.y.pos)
-  mtext(n.points.actual,side=4,at=cluster.y.pos,line=1)
-
-  if(!is.null(dimnames(x)[[2]])) {
-    mtext(dimnames(x)[[2]],side=1,at=seq1(n.dims),las=2)
-  }
-}
-
-plot.cluster2 <- function(k, n.clusters=-1, n.clusters.per.panel=4, cols=c("black","red","blue","darkgreen","orange"),f=0,xshift=0,...) {
-  if(n.clusters<=0) n.clusters=nrow(k$centers)
-
-  n.elements=as.numeric(unlist(lapply(seq1(n.clusters), function(cl) length(which(abs(k$cluster)==cl)))))
-  
-  distances<-dist(k$centers)
-  n.panels = ceiling(n.clusters/n.clusters.per.panel)
-  n.rows=ceiling(sqrt(n.panels))
-  n.cols=ceiling(n.panels/n.rows)
-  n.panels.layout=n.rows*n.cols
-
-  layout(matrix(seq1(n.panels.layout),nrow=n.rows,byrow=TRUE))
-  
-  min=min(k$centers)
-  max=max(k$centers)
-
-  if(f>0) {
-    for(i.cluster in seq1(n.clusters)) {
-      k$centers[i.cluster,]=lowess(k$centers[i.cluster,],f=f)$y
-    }
-  }
-  
-  ##  hcl=hclust(distances)
-  hcl=list()
-  hcl$order=1:n.clusters
-  
-  for(i.cluster in seq1(n.clusters)) {
-    if(i.cluster %% n.clusters.per.panel == 1 ) {
-      clusters.of.panel=i.cluster:(i.cluster+n.clusters.per.panel-1)
-      clusters.of.panel=clusters.of.panel[which(clusters.of.panel<=n.clusters)]
-      clusters.of.panel=hcl$order[clusters.of.panel]
-      plot(c(0,length(k$centers[1,]))+xshift,c(min,max),type="n",...)
-      mtext(paste(clusters.of.panel," (",n.elements[clusters.of.panel],")",sep=""),line=length(clusters.of.panel)-seq1(length(clusters.of.panel)),col=cols[seq1(length(clusters.of.panel)) %% n.clusters.per.panel+1] )
-    }
-   # lines(k$centers[hcl$order[i.cluster],],col=cols[i.cluster %% n.clusters.per.panel+1])
-     lines(seq1(length(k$centers[1,]))+xshift,k$centers[hcl$order[i.cluster],],col=cols[i.cluster %% n.clusters.per.panel+1])
-  }
-}
-
-my.colors <- function(n) {
-  few.colors=c("black","red","blue","green3","mediumorchid3","gold2","darkcyan","sienna2")
-  if(n<=length(few.colors)) return(few.colors [seq1(n)])
-  col=integer(n)
-  n.families=7
-  n.members=ceiling(n/n.families)
-  for(i in seq1(n)) {
-    member=ceiling(i/n.families)
-    ratio=(member-1)/(n.members-1)
-    c2=0+0.8*ratio
-    if(member %% 2 == 1) ratio=-ratio
-    c1=0.8-0.2*ratio
-    c3=0.75-0.2*ratio
-    if(i %% n.families == 1) {col[i]=rgb(c2,c2,c2)}
-    if(i %% n.families == 2) {col[i]=rgb(c1,c1/2,c1/2)}
-    if(i %% n.families == 3) {col[i]=rgb(c1/2,0.9*c1,c1/2)}
-    if(i %% n.families == 4) {col[i]=rgb(c1/2,c1/2,c1)}
-    if(i %% n.families == 5) {col[i]=rgb(c3,c3,c3/2)}
-    if(i %% n.families == 6) {col[i]=rgb(c3,c3/2,c3)}
-    if(i %% n.families == 0) {col[i]=rgb(c3/2,c3,c3)}
-  }
-  return(col)
-}
-
-plot.my.colors <-function(n) {
-  x11()
-  col=my.colors(n)
-  plot(x=c(0,n),y=c(0,1),type="n")
-  segments(seq1(n)-1,runif(n),seq1(n),runif(n),col=col)
-}
-
-
-plot.colors <-function() {
-  x11(width=10,height=10)
-  plot(c(0,26),c(0,26),type="n")
-  c=colors()
-  n=length(c)
-  i=1:n
-  x=i%%26
-  y=floor(i/26)
-  rect(x,y,x+1,y+1,col=c[i],border=c[i])
-  text(x+0.5,y+0.5,i)
-}
-
-
-adjust.branch.sep <-function(ddr,lengths) {
-  assign.branch.sep <- function(d,i.leaf) {
-    if(is.leaf(d)) {
-      attr(d,"members")<-lengths[i.leaf]
-      i.leaf=i.leaf+1
-      output=list(d=d,i.leaf=i.leaf)
-      return(output)
-    }
-    else{
-      input=assign.branch.sep(d[[1]],i.leaf)
-      i.leaf=input$i.leaf
-      d[[1]]=input$d
-      
-      input=assign.branch.sep(d[[2]],i.leaf)
-      i.leaf=input$i.leaf
-      d[[2]]=input$d
-      
-      attr(d,"members")<-attr(d[[1]],"members")+attr(d[[2]],"members")
-      output=list(d=d,i.leaf=i.leaf)
-      return(output)      
-    }
-  }
-  ddr<-as.dendrogram(ddr)
-  ddr=assign.branch.sep(ddr,1)$d
-  return(ddr)
-}
-t.dhcol <- function(dr,h,cols=c(1)) {
-                                        # check child heights
-  if(attr(dr[[1]],"height")<h) {
-                                        # color
-    ecol <- cols[coli];
-    coli <<- coli+1;
-    dr[[1]] <- dendrapply(dr[[1]],function(e) { attr(e,"edgePar") <- list(col=ecol); e});
-    attr(dr[[1]],"edgePar") <- list(col=ecol,p.border=NA,p.col=NA,t.col=1,t.cex=1.3);
-  } else {
-    dr[[1]] <- t.dhcol(dr[[1]],h,cols);
-  }
-  
-  if(attr(dr[[2]],"height")<h) {
-                                        # color
-    ecol <- cols[coli];
-    coli <<- coli+1;
-    dr[[2]] <- dendrapply(dr[[2]],function(e) { attr(e,"edgePar") <- list(col=ecol); e});
-    attr(dr[[2]],"edgePar") <- list(col=ecol,p.border=NA,p.col=NA,t.col=1,t.cex=1.3);
-  } else {
-    dr[[2]] <- t.dhcol(dr[[2]],h,cols);
-  }
-  return(dr);
-}
-
-
-
-### The rest is PeterK's my.plot.dendogram
-
-## FIXME: need larger par("mar")[1] or [4] for longish labels !
-## {probably don't change, just print a warning ..}
-my.plot.dendrogram <-
-    function (x, type = c("rectangle", "triangle"), center = FALSE,
-          edge.root = is.leaf(x) || !is.null(attr(x, "edgetext")),
-          nodePar = NULL, edgePar = list(),
-          leaflab = c("perpendicular", "textlike", "none"), dLeaf = NULL,
-          xlab = "", ylab = "", xaxt="n", yaxt="s",
-          horiz = FALSE, frame.plot = FALSE, ...)
-{
-    type <- match.arg(type)
-    leaflab <- match.arg(leaflab)
-    hgt <- attr(x, "height")
-    if (edge.root && is.logical(edge.root))
-    edge.root <- 0.0625 * if(is.leaf(x)) 1 else hgt
-    mem.x <- .my.memberDend(x)
-    yTop <- hgt + edge.root
-    if(center) { x1 <- 0.5 ; x2 <- mem.x + 0.5 }
-    else       { x1 <- 1   ; x2 <- mem.x }
-    xlim <- c(x1 - 1/2, x2 + 1/2)
-    ylim <- c(0, yTop)
-    if (horiz) {## swap and reverse direction on `x':
-    xl <- xlim; xlim <- rev(ylim); ylim <- xl
-    tmp <- xaxt; xaxt <- yaxt; yaxt <- tmp
-    }
-    plot(0, xlim = xlim, ylim = ylim, type = "n", xlab = xlab, ylab = ylab,
-     xaxt = xaxt, yaxt = yaxt, frame.plot = frame.plot, ...)
-    if(is.null(dLeaf))
-        dLeaf <- .75*(if(horiz) strwidth("w") else strheight("x"))
-
-    if (edge.root) {
-### FIXME: the first edge + edgetext is drawn here, all others in plotNode()
-### -----  maybe use trick with adding a single parent node to the top ?
-    x0 <- my.plotNodeLimit(x1, x2, x, center)$x
-    if (horiz)
-        segments(hgt, x0, yTop, x0)
-    else segments(x0, hgt, x0, yTop)
-    if (!is.null(et <- attr(x, "edgetext"))) {
-        my <- mean(hgt, yTop)
-        if (horiz)
-        text(my, x0, et)
-        else text(x0, my, et)
-    }
-    }
-    my.plotNode(x1, x2, x, type = type, center = center, leaflab = leaflab,
-             dLeaf = dLeaf, nodePar = nodePar, edgePar = edgePar, horiz = horiz)
-}
-
-### the work horse: plot node (if pch) and lines to all children
-my.plotNode <-
-    function(x1, x2, subtree, type, center, leaflab, dLeaf,
-         nodePar, edgePar, horiz = FALSE)
-{
-    inner <- !is.leaf(subtree) && x1 != x2
-    yTop <- attr(subtree, "height")
-    bx <- my.plotNodeLimit(x1, x2, subtree, center)
-    xTop <- bx$x
-    usrpar <- par("usr");
-
-    ## handle node specific parameters in "nodePar":
-    hasP <- !is.null(nPar <- attr(subtree, "nodePar"))
-    if(!hasP) nPar <- nodePar
-
-    if(getOption("verbose")) {
-    cat(if(inner)"inner node" else "leaf", ":")
-    if(!is.null(nPar)) { cat(" with node pars\n"); str(nPar) }
-    cat(if(inner)paste(" height", formatC(yTop),"; "),
-        "(x1,x2)= (",formatC(x1,wid=4),",",formatC(x2,wid=4),")",
-        "--> xTop=", formatC(xTop, wid=8),"\n", sep="")
-    }
-
-    Xtract <- function(nam, L, default, indx)
-    rep(if(nam %in% names(L)) L[[nam]] else default,
-        length.out = indx)[indx]
-    asTxt <- function(x) # to allow 'plotmath' labels:
-    if(is.character(x) || is.expression(x) || is.null(x)) x else as.character(x)
-
-    i <- if(inner || hasP) 1 else 2 # only 1 node specific par
-
-    if(!is.null(nPar)) { ## draw this node
-    pch <- Xtract("pch", nPar, default = 1:2,    i)
-    cex <- Xtract("cex", nPar, default = c(1,1),     i)
-    col <- Xtract("col", nPar, default = par("col"), i)
-    bg <- Xtract("bg", nPar, default = par("bg"), i)
-    points(if (horiz) cbind(yTop, xTop) else cbind(xTop, yTop),
-           pch = pch, bg = bg, col = col, cex = cex)
-    }
-
-    if(leaflab == "textlike")
-        p.col <- Xtract("p.col", nPar, default = "white", i)
-    lab.col <- Xtract("lab.col", nPar, default = par("col"), i)
-    lab.cex <- Xtract("lab.cex", nPar, default = c(1,1), i)
-    lab.font <- Xtract("lab.font", nPar, default = par("font"), i)
-    if (is.leaf(subtree)) {
-    ## label leaf
-    if (leaflab == "perpendicular") { # somewhat like plot.hclust
-        if(horiz) {
-                X <- yTop + dLeaf * lab.cex
-                Y <- xTop; srt <- 0; adj <- c(0, 0.5)
-        }
-        else {
-                Y <- yTop - dLeaf * lab.cex
-                X <- xTop; srt <- 90; adj <- 1
-        }
-            nodeText <- asTxt(attr(subtree,"label"))
-        text(X, Y, nodeText, xpd = TRUE, srt = srt, adj = adj,
-                 cex = lab.cex, col = lab.col, font = lab.font)
-    }
-    }
-    else if (inner) {
-    segmentsHV <- function(x0, y0, x1, y1) {
-        if (horiz)
-        segments(y0, x0, y1, x1, col = col, lty = lty, lwd = lwd)
-        else segments(x0, y0, x1, y1, col = col, lty = lty, lwd = lwd)
-    }
-    for (k in 1:length(subtree)) {
-        child <- subtree[[k]]
-        ## draw lines to the children and draw them recursively
-        yBot <- attr(child, "height")
-        if (getOption("verbose")) cat("ch.", k, "@ h=", yBot, "; ")
-        if (is.null(yBot))
-        yBot <- 0
-        xBot <-
-        if (center) mean(bx$limit[k:(k + 1)])
-        else bx$limit[k] + .my.midDend(child)
-
-        hasE <- !is.null(ePar <- attr(child, "edgePar"))
-        if (!hasE)
-        ePar <- edgePar
-        i <- if (!is.leaf(child) || hasE) 1 else 2
-        ## define line attributes for segmentsHV():
-        col <- Xtract("col", ePar, default = par("col"), i)
-        lty <- Xtract("lty", ePar, default = par("lty"), i)
-        lwd <- Xtract("lwd", ePar, default = par("lwd"), i)
-        if (type == "triangle") {
-        segmentsHV(xTop, yTop, xBot, yBot)
-        }
-        else { # rectangle
-        segmentsHV(xTop,yTop, xBot,yTop)# h
-        segmentsHV(xBot,yTop, xBot,yBot)# v
-        }
-        vln <- NULL
-        if (is.leaf(child) && leaflab == "textlike") {
-        nodeText <- asTxt(attr(child,"label"))
-        if(getOption("verbose"))
-            cat('-- with "label"',format(nodeText))
-        hln <- 0.6 * strwidth(nodeText, cex = lab.cex)/2
-        vln <- 1.5 * strheight(nodeText, cex = lab.cex)/2
-        rect(xBot - hln, yBot,
-             xBot + hln, yBot + 2 * vln, col = p.col)
-        text(xBot, yBot + vln, nodeText, xpd = TRUE,
-                     cex = lab.cex, col = lab.col, font = lab.font)
-        }
-        if (!is.null(attr(child, "edgetext"))) {
-        edgeText <- asTxt(attr(child, "edgetext"))
-        if(getOption("verbose"))
-            cat('-- with "edgetext"',format(edgeText))
-        if (!is.null(vln)) {
-            mx <-
-            if(type == "triangle")
-                (xTop+ xBot+ ((xTop - xBot)/(yTop - yBot)) * vln)/2
-            else xBot
-            my <- (yTop + yBot + 2 * vln)/2
-        }
-        else {
-            mx <- if(type == "triangle") (xTop + xBot)/2 else xBot
-            my <- (yTop + yBot)/2
-        }
-        ## Both for "triangle" and "rectangle" : Diamond + Text
-
-                p.col <- Xtract("p.col", ePar, default = "white", i)
-                p.border <- Xtract("p.border", ePar, default = par("fg"), i)
-                ## edge label pars: defaults from the segments pars
-                p.lwd <- Xtract("p.lwd", ePar, default = lwd, i)
-                p.lty <- Xtract("p.lty", ePar, default = lty, i)
-                t.col <- Xtract("t.col", ePar, default = col, i)
-                t.cex <- Xtract("t.cex", ePar, default =  1,  i)
-                t.font<- Xtract("t.font",ePar, default= par("font"), i)
-                t.shift <- Xtract("t.shift", ePar, default =  0.01,  i)
-
-        vlm <- strheight(c(edgeText,"h"), cex = t.cex)/2
-        hlm <- strwidth (c(edgeText,"m"), cex = t.cex)/2
-        hl3 <- c(hlm[1], hlm[1] + hlm[2], hlm[1])
-                #polygon(mx+ c(-hl3, hl3), my + sum(vlm)*c(-1:1,1:-1),
-                #        col = p.col, border= p.border, lty = p.lty, lwd = p.lwd)
-        #text(mx, my, edgeText, cex = t.cex, col = t.col, font = t.font)
-                if(horiz) {
-                  text(my, mx+t.shift*abs(usrpar[3]-usrpar[4]), edgeText, cex = t.cex, col = t.col, font = t.font)
-                } else {
-                  text(mx+t.shift*abs(usrpar[2]-usrpar[1]), my, edgeText, cex = t.cex, col = t.col, font = t.font)
-                }
-        }
-        my.plotNode(bx$limit[k], bx$limit[k + 1], subtree = child,
-             type, center, leaflab, dLeaf, nodePar, edgePar, horiz)
-    }
-    }
-}
-
-my.plotNodeLimit <- function(x1, x2, subtree, center)
-{
-    ## get the left borders limit[k] of all children k=1..K, and
-    ## the handle point `x' for the edge connecting to the parent.
-    inner <- !is.leaf(subtree) && x1 != x2
-    if(inner) {
-    K <- length(subtree)
-    mTop <- .my.memberDend(subtree)
-    limit <- integer(K)
-    xx1 <- x1
-    for(k in 1:K) {
-        m <- .my.memberDend(subtree[[k]])
-        ##if(is.null(m)) m <- 1
-        xx1 <- xx1 + (if(center) (x2-x1) * m/mTop else m)
-        limit[k] <- xx1
-    }
-    limit <- c(x1, limit)
-    } else { ## leaf
-    limit <- c(x1, x2)
-    }
-    mid <- attr(subtree, "midpoint")
-    center <- center || (inner && !is.numeric(mid))
-    x <- if(center) mean(c(x1,x2)) else x1 + (if(inner) mid else 0)
-    list(x = x, limit = limit)
-}
-
-.my.memberDend <- function(x) {
-    r <- attr(x,"x.member")
-    if(is.null(r)) {
-        r <- attr(x,"members")
-        if(is.null(r)) r <- 1:1
-    }
-    r
-}
-
-.my.midDend <- function(x)
-    if(is.null(mp <- attr(x, "midpoint"))) 0 else mp
-
-
-## original Andy Liaw; modified RG, MM :
-my.heatmap <- function (x, Rowv=NULL, Colv=if(symm)"Rowv" else NULL,
-          distfun = dist, hclustfun = hclust,
-          reorderfun = function(d,w) reorder(d,w),
-          add.expr, symm = FALSE, revC = identical(Colv, "Rowv"),
-          scale = c("row", "column", "none"), na.rm=TRUE,
-          margins = c(5, 5), ColSideColors, RowSideColors,
-          cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc),
-          labRow = NULL, labCol = NULL, main = NULL, xlab = NULL, ylab = NULL,
-          keep.dendro = FALSE,
-          verbose = getOption("verbose"), imageSize=4, imageVSize=imageSize,imageHSize=imageSize,lasCol=2, lasRow=2, respect=F, ...)
-{
-    scale <- if(symm && missing(scale)) "none" else match.arg(scale)
-    if(length(di <- dim(x)) != 2 || !is.numeric(x))
-        stop("'x' must be a numeric matrix")
-    nr <- di[1]
-    nc <- di[2]
-    if(nr <= 1 || nc <= 1)
-        stop("'x' must have at least 2 rows and 2 columns")
-    if(!is.numeric(margins) || length(margins) != 2)
-        stop("'margins' must be a numeric vector of length 2")
-
-    doRdend <- !identical(Rowv,NA)
-    doCdend <- !identical(Colv,NA)
-    ## by default order by row/col means
-    if(is.null(Rowv)) Rowv <- rowMeans(x, na.rm = na.rm)
-    if(is.null(Colv)) Colv <- colMeans(x, na.rm = na.rm)
-
-    ## get the dendrograms and reordering indices
-
-    if(doRdend) {
-        if(inherits(Rowv, "dendrogram"))
-            ddr <- Rowv
-        else {
-            hcr <- hclustfun(distfun(x))
-            ddr <- as.dendrogram(hcr)
-            if(!is.logical(Rowv) || Rowv)
-                ddr <- reorderfun(ddr, Rowv)
-        }
-        if(nr != length(rowInd <- order.dendrogram(ddr)))
-            stop("row dendrogram ordering gave index of wrong length")
-    }
-    else rowInd <- 1:nr
-
-    if(doCdend) {
-        if(inherits(Colv, "dendrogram"))
-            ddc <- Colv
-        else if(identical(Colv, "Rowv")) {
-            if(nr != nc)
-                stop('Colv = "Rowv" but nrow(x) != ncol(x)')
-            ddc <- ddr
-        }
-        else {
-            hcc <- hclustfun(distfun(if(symm)x else t(x)))
-            ddc <- as.dendrogram(hcc)
-            if(!is.logical(Colv) || Colv)
-                ddc <- reorderfun(ddc, Colv)
-        }
-        if(nc != length(colInd <- order.dendrogram(ddc)))
-            stop("column dendrogram ordering gave index of wrong length")
-    }
-    else colInd <- 1:nc
-
-    ## reorder x
-    x <- x[rowInd, colInd]
-
-    labRow <-
-        if(is.null(labRow))
-            if(is.null(rownames(x))) (1:nr)[rowInd] else rownames(x)
-        else labRow[rowInd]
-    labCol <-
-        if(is.null(labCol))
-            if(is.null(colnames(x))) (1:nc)[colInd] else colnames(x)
-        else labCol[colInd]
-
-    if(scale == "row") {
-        x <- sweep(x, 1, rowMeans(x, na.rm = na.rm))
-        sx <- apply(x, 1, sd, na.rm = na.rm)
-        x <- sweep(x, 1, sx, "/")
-    }
-    else if(scale == "column") {
-        x <- sweep(x, 2, colMeans(x, na.rm = na.rm))
-        sx <- apply(x, 2, sd, na.rm = na.rm)
-        x <- sweep(x, 2, sx, "/")
-    }
-
-    ## Calculate the plot layout
-    lmat <- rbind(c(NA, 3), 2:1)
-    lwid <- c(if(doRdend) 1 else 0.05, imageHSize)
-    lhei <- c((if(doCdend) 1 else 0.05) + if(!is.null(main)) 0.2 else 0, imageVSize)
-    if(!missing(ColSideColors)) { ## add middle row to layout
-        if(!is.character(ColSideColors) || length(ColSideColors) != nc)
-            stop("'ColSideColors' must be a character vector of length ncol(x)")
-        lmat <- rbind(lmat[1,]+1, c(NA,1), lmat[2,]+1)
-        lhei <- c(lhei[1], 0.2, lhei[2])
-    }
-    if(!missing(RowSideColors)) { ## add middle column to layout
-        if(!is.character(RowSideColors) || length(RowSideColors) != nr)
-            stop("'RowSideColors' must be a character vector of length nrow(x)")
-        lmat <- cbind(lmat[,1]+1, c(rep(NA, nrow(lmat)-1), 1), lmat[,2]+1)
-        lwid <- c(lwid[1], 0.2, lwid[2])
-    }
-    lmat[is.na(lmat)] <- 0
-    if(verbose) {
-        cat("layout: widths = ", lwid, ", heights = ", lhei,"; lmat=\n")
-        print(lmat)
-    }
-
-    ## Graphics `output' -----------------------
-
-    op <- par(no.readonly = TRUE)
-    on.exit(par(op))
-    layout(lmat, widths = lwid, heights = lhei, respect = respect)
-    ## draw the side bars
-    if(!missing(RowSideColors)) {
-        par(mar = c(margins[1],0, 0,0.5))
-        image(rbind(1:nr), col = RowSideColors[rowInd], axes = FALSE)
-    }
-    if(!missing(ColSideColors)) {
-        par(mar = c(0.5,0, 0,margins[2]))
-        image(cbind(1:nc), col = ColSideColors[colInd], axes = FALSE)
-    }
-    ## draw the main carpet
-    par(mar = c(margins[1], 0, 0, margins[2]))
-    if(!symm || scale != "none")
-        x <- t(x)
-    if(revC) { # x columns reversed
-        iy <- nr:1
-        ddr <- rev(ddr)
-        x <- x[,iy]
-    } else iy <- 1:nr
-
-    image(1:nc, 1:nr, x, xlim = 0.5+ c(0, nc), ylim = 0.5+ c(0, nr),
-          axes = FALSE, xlab = "", ylab = "", ...)
-    axis(1, 1:nc, labels= labCol, las= lasCol, line= -0.5, tick= 0, cex.axis= cexCol)
-    if(!is.null(xlab)) mtext(xlab, side = 1, line = margins[1] - 1.25)
-    axis(4, iy, labels= labRow, las= lasRow, line= -0.5, tick= 0, cex.axis= cexRow)
-    if(!is.null(ylab)) mtext(ylab, side = 4, line = margins[2] - 1.25,las=lasRow)
-    if (!missing(add.expr))
-        eval(substitute(add.expr))
-
-    ## the two dendrograms :
-    par(mar = c(margins[1], 0, 0, 0))
-    if(doRdend)
-        my.plot.dendrogram(ddr, horiz = TRUE, axes = FALSE, yaxs = "i", leaflab = "none")
-    else frame()
-
-    par(mar = c(0, 0, if(!is.null(main)) 1 else 0, margins[2]))
-    if(doCdend)
-        my.plot.dendrogram(ddc,               axes = FALSE, xaxs = "i", leaflab = "none")
-    else if(!is.null(main)) frame()
-
-    ## title
-    if(!is.null(main)) title(main, cex.main = 1.5*op[["cex.main"]])
-
-    invisible(list(rowInd = rowInd, colInd = colInd,
-                   Rowv = if(keep.dendro && doRdend) ddr,
-                   Colv = if(keep.dendro && doCdend) ddc ))
-}
--- a/tool_dependencies.xml	Wed Nov 12 15:10:51 2014 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,6 +0,0 @@
-<?xml version="1.0"?>
-<tool_dependency>
-    <set_environment version="1.0">
-        <environment_variable name="R_SCRIPT_PATH" action="set_to">$REPOSITORY_INSTALL_DIR</environment_variable>   
-    </set_environment>
-</tool_dependency>
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/upload/region_motif_compare.r	Wed Nov 12 15:19:37 2014 -0500
@@ -0,0 +1,188 @@
+# Name: region_motif_compare.r
+# Description: Reads in two count files and determines enriched and depleted
+# motifs (or any location based feature) based on poisson tests and gc
+# corrections. All enrichment ratios relative to overall count / gc ratios.
+# Author: Jeremy liu
+# Email: jeremy.liu@yale.edu
+# Date: 14/07/03
+# Note: This script is meant to be invoked with the following command
+# R --slave --vanilla -f ./region_motif_compare.r --args <workingdir> <db> <intab1> <intab2> 
+#   <enriched_tab> <depleted_tab> <plots_png>
+# <workingdir> is working directory of galaxy installation
+# <db> types: "t" test, "p" pouya, "j" jaspar jolma, "m" mouse, "c" combined
+# Dependencies: plotting.r
+
+# Auxiliary function to concatenate multiple strings
+concat <- function(...) {
+	input_list <- list(...)
+	return(paste(input_list, sep="", collapse=""))
+}
+
+# Supress all warning messages to prevent Galaxy treating warnings as errors
+options(warn=-1)
+
+# Set common and data directories
+args <- commandArgs()
+workingDir = args[7]
+dbDir = concat(workingDir, "/region_motif_db")
+dbCode = args[8]
+# dbCode "c" implemented when pwmFile is loaded
+if (dbCode == "t" | dbCode == "p") {
+	pwmFile = concat(dbDir, "/pwms/pouya.pwms.from.seq.RData")
+} else if (dbCode == "j") {
+	pwmFile = concat(dbDir, "/pwms/jaspar.jolma.pwms.from.seq.RData")
+} else if (dbCode == "m") {
+	pwmFile = concat(dbDir, "/pwms/mm9.pwms.from.seq.RData")
+} else if (dbCode == "c") { # rest of dbCode "c" implemeted when pwmFile loaded
+	pwmFile = concat(dbDir, "/pwms/pouya.pwms.from.seq.RData")
+	pwmFile2 = concat(dbDir, "/pwms/jaspar.jolma.pwms.from.seq.RData")
+} else {
+	pwmFile = concat(dbDir, "/pwms/pouya.pwms.from.seq.RData")
+}
+
+# Set input and reference files
+inTab1 = args[9]
+inTab2 = args[10]
+enrichTab = args[11]
+depleteTab = args[12]
+plotsPng = args[13]
+
+# Load dependencies
+source(concat(workingDir, "/region_motif_lib/plotting.r"))
+
+# Auxiliary function to read in tab file and prepare the data
+read_tsv <- function(file) {
+	data = read.table(file, sep="\t", stringsAsFactors=FALSE)
+	names(data)[names(data) == "V1"] = "motif"
+	names(data)[names(data) == "V2"] = "counts"
+	return(data)
+}
+
+startTime = Sys.time()
+cat("Running ... Started at:", format(startTime, "%a %b %d %X %Y"), "...\n")
+
+# Loading motif position weight matrix (pwm) file and input tab file
+cat("Loading and reading input region motif count files...\n")
+load(pwmFile) # pwms data structure
+if (dbCode == "c") { # Remaining implementation of dbCode "c" combined 
+	temp = pwms
+	load(pwmFile2)
+	pwms = append(temp, pwms)
+}
+region1DF = read_tsv(inTab1)
+region2DF = read_tsv(inTab2)
+region1Counts = region1DF$counts
+region2Counts = region2DF$counts
+names(region1Counts) = region1DF$motif
+names(region2Counts) = region2DF$motif
+
+# Processing count vectors to account for missing 0 count motifs, then sorting
+cat("Performing 0 count correction and sorting...\n")
+allNames = union(names(region1Counts), names(region2Counts))
+region1Diff = setdiff(allNames, names(region1Counts))
+region2Diff = setdiff(allNames, names(region2Counts))
+addCounts1 = rep(0, length(region1Diff))
+addCounts2 = rep(0, length(region2Diff))
+names(addCounts1) = region1Diff
+names(addCounts2) = region2Diff
+newCounts1 = append(region1Counts, addCounts1)
+newCounts2 = append(region2Counts, addCounts2)
+region1Counts = newCounts1[sort.int(names(newCounts1), index.return=TRUE)$ix]
+region2Counts = newCounts2[sort.int(names(newCounts2), index.return=TRUE)$ix]
+
+# Generate gc content matrix
+gc = sapply(pwms, function(i) mean(i[2:3,3:18]))
+
+# Apply poisson test, calculate p and q values, and filter significant results
+cat("Applying poisson test...\n")
+rValue = sum(region2Counts) / sum(region1Counts)
+pValue = sapply(seq(along=region1Counts), function(i) {
+	poisson.test(c(region1Counts[i], region2Counts[i]), r=1/rValue)$p.value
+})
+qValue = p.adjust(pValue, "fdr")
+indices = which(qValue<0.1 & abs(log2(region1Counts/region2Counts/rValue))>log2(1.5))
+
+# Setting up output diagnostic plots, 4 in 1 png image
+png(plotsPng, width=800, height=800)
+xlab = "region1_count"
+ylab = "region2_count"
+lim = c(0.5, 5000)
+layout(matrix(1:4, ncol=2))
+par(mar=c(5, 5, 5, 1))
+
+# Plot all motif counts along the linear correlation coefficient
+plot.scatter(region1Counts+0.5, region2Counts+0.5, log="xy", xlab=xlab, ylab=ylab,
+						 cex.lab=2.2, cex.axis=1.8, xlim=lim, ylim=lim*rValue)
+abline(0, rValue, untf=T)
+abline(0, rValue*2, untf=T, lty=2)
+abline(0, rValue/2, untf=T, lty=2)
+	
+# Plot enriched and depleted motifs in red, housed in second plot    
+plot.scatter(region1Counts+0.5, region2Counts+0.5, log="xy", xlab=xlab, ylab=ylab,
+						 cex.lab=2.2, cex.axis=1.8, xlim=lim, ylim=lim*rValue)
+points(region1Counts[indices]+0.5, region2Counts[indices]+0.5, col="red")
+abline(0, rValue, untf=T)
+abline(0, rValue*2, untf=T, lty=2)
+abline(0, rValue/2, untf=T, lty=2)
+
+# Apply and plot gc correction and loess curve
+cat("Applying gc correction, rerunning poisson test...\n")
+ind = which(region1Counts>5)
+gc = gc[names(region2Counts)] # Reorder the indices of pwms to match input data
+lo = plot.scatter(gc,log2(region2Counts/region1Counts),draw.loess=T, 
+								xlab="gc content of motif",ylab=paste("log2(",ylab,"/",xlab,")"),
+								cex.lab=2.2,cex.axis=1.8,ind=ind) # This function is in plotting.r
+gcCorrection = 2^approx(lo$loess,xout=gc,rule=2)$y
+
+# Recalculate p and q values, and filter for significant entries
+pValueGC = sapply(seq(along=region1Counts),function(i) {
+	poisson.test(c(region1Counts[i],region2Counts[i]),r=1/gcCorrection[i])$p.value
+})
+qValueGC=p.adjust(pValueGC,"fdr")
+indicesGC = which(qValueGC<0.1 & abs(log2(region1Counts/region2Counts*gcCorrection))>log2(1.5))
+
+# Plot gc corrected motif counts 
+plot.scatter(region1Counts+0.5, (region2Counts+0.5)/gcCorrection, log="xy", 
+						 xlab=xlab, ylab=paste(ylab,"(normalized)"), cex.lab=2.2, cex.axis=1.8,
+						 xlim=lim, ylim=lim)
+points(region1Counts[indicesGC]+0.5, 
+			 (region2Counts[indicesGC]+0.5)/gcCorrection[indicesGC], col="red")
+abline(0,1)
+abline(0,1*2,untf=T,lty=2)
+abline(0,1/2,untf=T,lty=2)
+
+# Trim results, compile statistics and output to file
+# Only does so if significant results are computed
+if(length(indicesGC) > 0) {
+	# Calculate expected counts and enrichment ratios
+	cat("Calculating statistics...\n")
+	nullExpect = region1Counts * gcCorrection
+	enrichment = region2Counts / nullExpect
+
+	# Reorder selected indices in ascending pvalue
+	cat("Reordering by ascending pvalue...\n")
+	indicesReorder = indicesGC[order(pValueGC[indicesGC])]
+
+	# Combine data into one data frame and output to two files
+	cat("Splitting and outputting data...\n")
+	outDF = data.frame(motif=names(pValueGC), p=as.numeric(pValueGC), q=qValueGC, 
+										 stringsAsFactors=F, region_1_count=region1Counts, 
+										 null_expectation=round(nullExpect,2), region_2_count=region2Counts,
+										 enrichment=enrichment)[indicesReorder,]
+	names(outDF)[which(names(outDF)=="region_1_count")]=xlab
+	names(outDF)[which(names(outDF)=="region_2_count")]=ylab
+	indicesEnrich = which(outDF$enrichment>1)
+	indicesDeplete = which(outDF$enrichment<1)
+	outDF$enrichment = ifelse(outDF$enrichment>1,
+														round(outDF$enrichment,3),
+														paste("1/",round(1/outDF$enrichment,3)))
+	write.table(outDF[indicesEnrich,], file=enrichTab, quote=FALSE, 
+							sep="\t", append=FALSE, row.names=FALSE, col.names=TRUE)
+	write.table(outDF[indicesDeplete,], file=depleteTab, quote=FALSE, 
+							sep="\t", append=FALSE, row.names=FALSE, col.names=TRUE)
+}
+
+# Catch display messages and output timing information 
+catchMessage = dev.off()
+cat("Done. Job started at:", format(startTime, "%a %b %d %X %Y."),
+		"Job ended at:", format(Sys.time(), "%a %b %d %X %Y."), "\n")
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/upload/region_motif_compare.xml	Wed Nov 12 15:19:37 2014 -0500
@@ -0,0 +1,32 @@
+<tool id="region_motif_compare" name="Region Motif Count Compare">
+  <description>for comparing the motif counts in different region sets</description>
+  <requirements>
+    <requirement type="set_environment">RMOTIF_PATH</requirement>
+  </requirements>
+  <command interpreter="Rscript">
+    region_motif_compare.r --args \$RMOTIF_PATH $db_type $in_tab_1 $in_tab_2 $out_enriched $out_depleted $out_plots
+  </command>
+  <inputs>
+    <param name="in_tab_1" type="data" format="tabular" label="Region Set 1 Motif Count File"/>
+    <param name="in_tab_2" type="data" format="tabular" label="Region Set 2 Motif Count File"/>
+    <param name="db_type" type="select" label="Select Motif Database" >
+      <option value="t">Test Pouya Subset (hg19)</option>
+      <option value="p">Pouya Encode Motifs (hg19)</option>
+      <option value="j">Jaspar and Jolma Motifs (hg19)</option>
+      <option value="m">Mouse Motifs (mm9)</option>
+      <option value="c">Pouya, Jaspar, and Jolma Combined (hg19)</option>
+    </param>
+  </inputs>
+  <outputs>
+    <data name="out_enriched" format="tabular" label="Enriched Motifs"/>
+    <data name="out_depleted" format="tabular" label="Depleted Motifs"/>
+    <data name="out_plots" format="png" label="Motif Count Comparison Plots"/>
+  </outputs>
+
+  <help>
+    This tools reads in two counts file and determines enriched and depleted
+    motifs in two different region sets based on poisson calculation with
+    gc correction.
+  </help>
+ 
+</tool>
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/upload/region_motif_intersect.r	Wed Nov 12 15:19:37 2014 -0500
@@ -0,0 +1,102 @@
+# Name: region_motif_intersect.r
+# Description: Takes a bed file of target regions and counts intersections
+# of each motif (built in rdata database) and target regions.
+# Author: Jeremy liu
+# Email: jeremy.liu@yale.edu
+# Date: 14/07/02
+# Note: This script is meant to be invoked with the following command
+# R --slave --vanilla -f ./region_motif_intersect.r --args <workingdir> <db> <inbed> <outtab>
+# <workingdir> is working directory of galaxy installation
+# <db> types: "t" test, "p" pouya, "j" jaspar jolma, "m" mouse
+# Dependencies: none
+
+# Auxiliary function to concatenate multiple strings
+concat <- function(...) {
+  input_list <- list(...)
+  return(paste(input_list, sep="", collapse=""))
+}
+
+# Set common and data directories
+args <- commandArgs()
+workingDir = args[7]
+dbDir = concat(workingDir, "/region_motif_db")
+dbCode = args[8]
+if (dbCode == "t") {
+  motifDB = concat(dbDir, "/pouya_test_motifs.bed.bgz")
+} else if (dbCode == "p") {
+  motifDB = concat(dbDir, "/pouya_motifs.bed.bgz")
+} else if (dbCode == "j") {
+  motifDB = concat(dbDir, "/jaspar_jolma_motifs.bed.bgz")
+} else if (dbCode == "m") {
+  motifDB = concat(dbDir, "/mm9_motifs.bed.bgz")
+} else {
+  motifDB = concat(dbDir, "/pouya_motifs.bed.bgz")
+}
+
+# Set input and reference files, comment to toggle commmand line arguments
+inBed = args[9]
+outTab = args[10]
+
+# Auxiliary function to read in BED file
+read_bed <- function(file) {
+  return(read.table(file, sep="\t", stringsAsFactors=FALSE))
+}
+
+startTime = Sys.time()
+cat("Running ... Started at:", format(startTime, "%a %b %d %X %Y"), "...\n")
+
+# Load dependencies
+cat("Loading dependencies...\n")
+suppressPackageStartupMessages(library(Rsamtools, quietly=TRUE))
+
+# Initializing hash table (as env) with motif names and loading tabix file
+cat("Loading motif database and initializing hash table...\n")
+motifTable = new.env()
+motifTbx <- TabixFile(motifDB)
+
+# Loading input bed file, convert integer columns to numeric, name columns
+cat("Loading region file...\n")
+regionsDF = read_bed(inBed)
+dfTemp = sapply(regionsDF, is.integer)
+regionsDF[dfTemp] = lapply(regionsDF[dfTemp], as.numeric)
+names(regionsDF)[names(regionsDF) == "V1"] = "chr"
+names(regionsDF)[names(regionsDF) == "V2"] = "start"
+names(regionsDF)[names(regionsDF) == "V3"] = "end"
+
+# Filtering regions to exclude chromosomes not in motif database
+cat("Determining intersection counts...\n")
+motifTbxChrs = seqnamesTabix(motifTbx)
+regionsDFFilter = subset(regionsDF, chr %in% motifTbxChrs)
+
+# Loading regions into GRanges object and scanning motif tabix database
+# Region end is incremented by 1 since scanTabix querying is inclusive for
+# position start but exclusive for position end.
+param = GRanges(regionsDFFilter$chr, IRanges(regionsDFFilter$start, 
+                end=regionsDFFilter$end + 1))
+regionsIntersects = scanTabix(motifTbx, param=param)
+
+# Parsing result list and updating motif count hash table
+cat("Parsing result list...\n")
+for(regionIntersects in regionsIntersects) {
+  for(regionIntersect in strsplit(regionIntersects, " ")) {
+    intersectMotif = strsplit(regionIntersect, "\t")[[1]][4]
+    if(is.null(motifTable[[intersectMotif]])) {
+      motifTable[[intersectMotif]] = 1
+    } else {
+      motifTable[[intersectMotif]] = motifTable[[intersectMotif]] + 1
+    }
+  }
+}
+
+# Converting motif count hash table to an integer vector for output
+counts = integer(length = length(ls(motifTable)))
+names(counts) = ls(motifTable)
+for(motifName in ls(motifTable)) {
+  counts[motifName] = as.integer(motifTable[[motifName]])
+}
+
+# Outputting intersection counts to tab delineated file
+cat("Outputting to file...\n")
+write.table(counts, outTab, quote=FALSE, sep="\t", row.names=TRUE, col.names=FALSE)
+cat("Done. Job started at:", format(startTime, "%a %b %d %X %Y."),
+    "Job ended at:", format(Sys.time(), "%a %b %d %X %Y."), "\n")
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/upload/region_motif_intersect.xml	Wed Nov 12 15:19:37 2014 -0500
@@ -0,0 +1,27 @@
+<tool id="region_motif_intersect" name="Region Motif Intersect">
+  <description>for computing the motifs that lie inside a region set</description>
+  <requirements>
+    <requirement type="set_environment">RMOTIF_PATH</requirement>
+  </requirements>
+  <command interpreter="Rscript">
+    region_motif_intersect.r --args \$RMOTIF_PATH $db_type $in_bed $out_tab
+  </command>
+  <inputs>
+    <param name="in_bed" type="data" format="bed" label="Input BED File" />
+    <param name="db_type" type="select" label="Select Motif Database" >
+      <option value="t">Test Pouya Subset (hg19)</option>
+      <option value="p">Pouya Encode Motifs (hg19)</option>
+      <option value="j">Jaspar and Jolma Motifs (hg19)</option>
+      <option value="m">Mouse Motifs (mm9)</option>
+    </param>
+  </inputs>
+  <outputs>
+    <data name="out_tab" format="tabular" />
+  </outputs>
+
+  <help>
+    This tool computes the motifs and the number of motifs that intersect
+    any region in a input set of regions.
+  </help>
+ 
+</tool>
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/upload/tool_dependencies.xml	Wed Nov 12 15:19:37 2014 -0500
@@ -0,0 +1,6 @@
+<?xml version="1.0"?>
+<tool_dependency>
+    <set_environment version="1.0">
+        <environment_variable name="RMOTIF_PATH" action="set_to">$REPOSITORY_INSTALL_DIR</environment_variable>   
+    </set_environment>
+</tool_dependency>
\ No newline at end of file