Mercurial > repos > jeremyjliu > region_motif_enrichment
diff region_motif_compare.r @ 0:19d2cffb8db3 draft
Initial upload
author | jeremyjliu |
---|---|
date | Wed, 06 Aug 2014 15:36:46 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/region_motif_compare.r Wed Aug 06 15:36:46 2014 -0400 @@ -0,0 +1,189 @@ +# Name: region_motif_compare.r +# Description: Reads in two count files and determines enriched and depleted +# motifs (or any location based feature) based on poisson tests and gc +# corrections. All enrichment ratios relative to overall count / gc ratios. +# Author: Jeremy liu +# Email: jeremy.liu@yale.edu +# Date: 14/07/03 +# Note: This script is meant to be invoked with the following command +# R --slave --vanilla -f ./region_motif_compare.r --args <workingdir> <db> <intab1> <intab2> +# <enriched_tab> <depleted_tab> <plots_png> +# <workingdir> is working directory of galaxy installation +# <db> types: "t" test, "p" pouya, "j" jaspar jolma, "m" mouse, "c" combined +# Dependencies: plotting.r + +# Auxiliary function to concatenate multiple strings +concat <- function(...) { + input_list <- list(...) + return(paste(input_list, sep="", collapse="")) +} + +# Supress all warning messages to prevent Galaxy treating warnings as errors +options(warn=-1) + +# Set common and data directories +args <- commandArgs() +workingDir = args[7] +commonDir = concat(workingDir, "/tools/my_tools") +dbCode = args[8] +# dbCode "c" implemented when pwmFile is loaded +if (dbCode == "t" | dbCode == "p") { + pwmFile = concat(commonDir, "/region_motif_db/pwms/pouya.pwms.from.seq.RData") +} else if (dbCode == "j") { + pwmFile = concat(commonDir, "/region_motif_db/pwms/jaspar.jolma.pwms.from.seq.RData") +} else if (dbCode == "m") { + pwmFile = concat(commonDir, "/region_motif_db/pwms/mm9.pwms.from.seq.RData") +} else if (dbCode == "c") { # rest of dbCode "c" implemeted when pwmFile loaded + pwmFile = concat(commonDir, "/region_motif_db/pwms/pouya.pwms.from.seq.RData") + pwmFile2 = concat(commonDir, "/region_motif_db/pwms/jaspar.jolma.pwms.from.seq.RData") +} else { + pwmFile = concat(commonDir, "/region_motif_db/pwms/pouya.pwms.from.seq.RData") +} + +# Set input and reference files +inTab1 = args[9] +inTab2 = args[10] +enrichTab = args[11] +depleteTab = args[12] +plotsPng = args[13] + +# Load dependencies +source(concat(commonDir, "/region_motif_lib/plotting.r")) + +# Auxiliary function to read in tab file and prepare the data +read_tsv <- function(file) { + data = read.table(file, sep="\t", stringsAsFactors=FALSE) + names(data)[names(data) == "V1"] = "motif" + names(data)[names(data) == "V2"] = "counts" + return(data) +} + +startTime = Sys.time() +cat("Running ... Started at:", format(startTime, "%a %b %d %X %Y"), "...\n") + +# Loading motif position weight matrix (pwm) file and input tab file +#cat("Loading and reading input region motif count files...\n") +load(pwmFile) # pwms data structure +if (dbCode == "c") { # Remaining implementation of dbCode "c" combined + temp = pwms + load(pwmFile2) + pwms = append(temp, pwms) +} +region1DF = read_tsv(inTab1) +region2DF = read_tsv(inTab2) +region1Counts = region1DF$counts +region2Counts = region2DF$counts +names(region1Counts) = region1DF$motif +names(region2Counts) = region2DF$motif + +# Processing count vectors to account for missing 0 count motifs, then sorting +#cat("Performing 0 count correction and sorting...\n") +allNames = union(names(region1Counts), names(region2Counts)) +region1Diff = setdiff(allNames, names(region1Counts)) +region2Diff = setdiff(allNames, names(region2Counts)) +addCounts1 = rep(0, length(region1Diff)) +addCounts2 = rep(0, length(region2Diff)) +names(addCounts1) = region1Diff +names(addCounts2) = region2Diff +newCounts1 = append(region1Counts, addCounts1) +newCounts2 = append(region2Counts, addCounts2) +region1Counts = newCounts1[sort.int(names(newCounts1), index.return=TRUE)$ix] +region2Counts = newCounts2[sort.int(names(newCounts2), index.return=TRUE)$ix] + +# Generate gc content matrix +gc = sapply(pwms, function(i) mean(i[2:3,3:18])) + +# Apply poisson test, calculate p and q values, and filter significant results +#cat("Applying poisson test...\n") +rValue = sum(region2Counts) / sum(region1Counts) +pValue = sapply(seq(along=region1Counts), function(i) { + poisson.test(c(region1Counts[i], region2Counts[i]), r=1/rValue)$p.value +}) +qValue = p.adjust(pValue, "fdr") +indices = which(qValue<0.1 & abs(log2(region1Counts/region2Counts/rValue))>log2(1.5)) + +# Setting up output diagnostic plots, 4 in 1 png image +png(plotsPng, width=800, height=800) +xlab = "region1_count" +ylab = "region2_count" +lim = c(0.5, 5000) +layout(matrix(1:4, ncol=2)) +par(mar=c(5, 5, 5, 1)) + +# Plot all motif counts along the linear correlation coefficient +plot.scatter(region1Counts+0.5, region2Counts+0.5, log="xy", xlab=xlab, ylab=ylab, + cex.lab=2.2, cex.axis=1.8, xlim=lim, ylim=lim*rValue) +abline(0, rValue, untf=T) +abline(0, rValue*2, untf=T, lty=2) +abline(0, rValue/2, untf=T, lty=2) + +# Plot enriched and depleted motifs in red, housed in second plot +plot.scatter(region1Counts+0.5, region2Counts+0.5, log="xy", xlab=xlab, ylab=ylab, + cex.lab=2.2, cex.axis=1.8, xlim=lim, ylim=lim*rValue) +points(region1Counts[indices]+0.5, region2Counts[indices]+0.5, col="red") +abline(0, rValue, untf=T) +abline(0, rValue*2, untf=T, lty=2) +abline(0, rValue/2, untf=T, lty=2) + +# Apply and plot gc correction and loess curve +#cat("Applying gc correction, rerunning poisson test...\n") +ind = which(region1Counts>5) +gc = gc[names(region2Counts)] # Reorder the indices of pwms to match input data +lo = plot.scatter(gc,log2(region2Counts/region1Counts),draw.loess=T, + xlab="gc content of motif",ylab=paste("log2(",ylab,"/",xlab,")"), + cex.lab=2.2,cex.axis=1.8,ind=ind) # This function is in plotting.r +gcCorrection = 2^approx(lo$loess,xout=gc,rule=2)$y +save(gc, file="gc.RData") + +# Recalculate p and q values, and filter for significant entries +pValueGC = sapply(seq(along=region1Counts),function(i) { + poisson.test(c(region1Counts[i],region2Counts[i]),r=1/gcCorrection[i])$p.value +}) +qValueGC=p.adjust(pValueGC,"fdr") +indicesGC = which(qValueGC<0.1 & abs(log2(region1Counts/region2Counts*gcCorrection))>log2(1.5)) + +# Plot gc corrected motif counts +plot.scatter(region1Counts+0.5, (region2Counts+0.5)/gcCorrection, log="xy", + xlab=xlab, ylab=paste(ylab,"(normalized)"), cex.lab=2.2, cex.axis=1.8, + xlim=lim, ylim=lim) +points(region1Counts[indicesGC]+0.5, + (region2Counts[indicesGC]+0.5)/gcCorrection[indicesGC], col="red") +abline(0,1) +abline(0,1*2,untf=T,lty=2) +abline(0,1/2,untf=T,lty=2) + +# Trim results, compile statistics and output to file +# Only does so if significant results are computed +if(length(indicesGC) > 0) { + # Calculate expected counts and enrichment ratios + #cat("Calculating statistics...\n") + nullExpect = region1Counts * gcCorrection + enrichment = region2Counts / nullExpect + + # Reorder selected indices in ascending pvalue + #cat("Reordering by ascending pvalue...\n") + indicesReorder = indicesGC[order(pValueGC[indicesGC])] + + # Combine data into one data frame and output to two files + #cat("Splitting and outputting data...\n") + outDF = data.frame(motif=names(pValueGC), p=as.numeric(pValueGC), q=qValueGC, + stringsAsFactors=F, region_1_count=region1Counts, + null_expectation=round(nullExpect,2), region_2_count=region2Counts, + enrichment=enrichment)[indicesReorder,] + names(outDF)[which(names(outDF)=="region_1_count")]=xlab + names(outDF)[which(names(outDF)=="region_2_count")]=ylab + indicesEnrich = which(outDF$enrichment>1) + indicesDeplete = which(outDF$enrichment<1) + outDF$enrichment = ifelse(outDF$enrichment>1, + round(outDF$enrichment,3), + paste("1/",round(1/outDF$enrichment,3))) + write.table(outDF[indicesEnrich,], file=enrichTab, quote=FALSE, + sep="\t", append=FALSE, row.names=FALSE, col.names=TRUE) + write.table(outDF[indicesDeplete,], file=depleteTab, quote=FALSE, + sep="\t", append=FALSE, row.names=FALSE, col.names=TRUE) +} + +# Catch display messages and output timing information +catchMessage = dev.off() +cat("Done. Job started at:", format(startTime, "%a %b %d %X %Y."), + "Job ended at:", format(Sys.time(), "%a %b %d %X %Y."), "\n")