Mercurial > repos > jdv > albacore
comparison albacore_denoise.xml @ 1:0a4f83207e53 draft
planemo upload for repository https://github.com/jvolkening/galaxy-tools/tree/master/tools/albacore commit 4aa7a76a7b29c425dd89a020979e835d785d3c95-dirty
| author | jdv |
|---|---|
| date | Wed, 06 Sep 2017 12:12:52 -0400 |
| parents | |
| children | b658298e65d8 |
comparison
equal
deleted
inserted
replaced
| 0:f8e25d69167d | 1:0a4f83207e53 |
|---|---|
| 1 <tool id="albacore_denoise" name="Albacore de-noise" version="0.001"> | |
| 2 | |
| 3 <description>Filter noise from barcode bins</description> | |
| 4 | |
| 5 <!-- ***************************************************************** --> | |
| 6 | |
| 7 <!-- | |
| 8 <requirements> | |
| 9 <requirement type="package" version="1.2.6">albacore</requirement> | |
| 10 </requirements> | |
| 11 --> | |
| 12 | |
| 13 <!-- ***************************************************************** --> | |
| 14 | |
| 15 <version_command>echo "0.001"</version_command> | |
| 16 | |
| 17 <!-- ***************************************************************** --> | |
| 18 | |
| 19 <command detect_errors="aggressive"> | |
| 20 <![CDATA[ | |
| 21 | |
| 22 perl $__tool_directory__/denoise.pl | |
| 23 | |
| 24 --table $table | |
| 25 | |
| 26 #if $filter.type == 'topN' | |
| 27 --n_keep ${filter.n_keep} | |
| 28 #else | |
| 29 --min_score ${filter.min_score} | |
| 30 --min_frac ${filter.min_frac} | |
| 31 #end if | |
| 32 | |
| 33 $remove_unclassified | |
| 34 | |
| 35 #for $input in $inputs | |
| 36 --input ${input} | |
| 37 --name ${input.name} | |
| 38 #end for | |
| 39 | |
| 40 --summary $summary | |
| 41 | |
| 42 ]]> | |
| 43 </command> | |
| 44 | |
| 45 <!-- ***************************************************************** --> | |
| 46 | |
| 47 <inputs> | |
| 48 | |
| 49 <param name="inputs" type="data_collection" collection_type="list" format="fast5_archive" label="Input reads" multiple="true" /> | |
| 50 <param name="table" type="data" format="tabular" label="Read table" /> | |
| 51 <conditional name="filter"> | |
| 52 <param name="type" type="select" label="Filtering type"> | |
| 53 <option value="cutoffs" selected="true">By cutoff</option> | |
| 54 <option value="topN">Top N bins</option> | |
| 55 </param> | |
| 56 <when value="cutoffs"> | |
| 57 <param name="min_score" value="70" type="float" min="0" max="100" label="Minimum average score (0-100)" /> | |
| 58 <param name="min_frac" value="0.05" type="float" min="0" label="Minimum fraction of average count" /> | |
| 59 </when> | |
| 60 <when value="topN"> | |
| 61 <param name="n_keep" value="1" type="integer" min="1" label="Number of top bins to keep" /> | |
| 62 </when> | |
| 63 </conditional> | |
| 64 <param name="remove_unclassified" type="boolean" checked="true" truevalue="--remove_unclassified" falsevalue="" label="Remove unclassified reads" /> | |
| 65 | |
| 66 </inputs> | |
| 67 | |
| 68 <!-- ***************************************************************** --> | |
| 69 | |
| 70 <outputs> | |
| 71 | |
| 72 <collection type="list" name="outputs" label="${tool.name} on ${on_string} (reads)"> | |
| 73 <discover_datasets pattern="(?P<name>.*)\.fast5\.tar\.gz$" directory="outputs" format="fast5_archive" /> | |
| 74 </collection> | |
| 75 | |
| 76 <data name="summary" format="tabular" label="${tool.name} on ${on_string} (summary)" /> | |
| 77 | |
| 78 </outputs> | |
| 79 | |
| 80 <!-- ***************************************************************** --> | |
| 81 | |
| 82 <!-- | |
| 83 <tests> | |
| 84 <test> | |
| 85 <param name="input" value="test_data.fast5.tar.gz" ftype="fast5_archive" /> | |
| 86 <output name="output" file="test_data.fastq" compare="diff" /> | |
| 87 </test> | |
| 88 </tests> | |
| 89 --> | |
| 90 | |
| 91 <!-- ***************************************************************** --> | |
| 92 | |
| 93 <help> | |
| 94 <![CDATA[ | |
| 95 | |
| 96 **Description** | |
| 97 | |
| 98 This script will filter "noise" bins from the barcoded output of Albacore | |
| 99 based on read counts and mean quality scores for each barcode bin. It can | |
| 100 either filter the top N bins (if you know the number of barcodes in your | |
| 101 sample) or filter based on minimum read count (as ratio to average value over | |
| 102 all bin) and minimum average score. | |
| 103 | |
| 104 ]]> | |
| 105 </help> | |
| 106 | |
| 107 <!-- ***************************************************************** --> | |
| 108 | |
| 109 <citations> | |
| 110 </citations> | |
| 111 | |
| 112 </tool> |
