3
|
1 #!/usr/bin/env Rscript
|
|
2
|
|
3 #usage $0 STEP RIGHT chipPeaks outputFile.png output.txt [controlPeaks] [1 for pdf]
|
|
4 args <- commandArgs(TRUE)
|
|
5 myStep <- type.convert(args[2])
|
|
6 maxValue <- type.convert(args[3])
|
|
7
|
|
8 dataTable <-read.table(file=paste(args[4],".genes.ClosestPeakDist", sep=""), header=TRUE);
|
|
9 chip.genes.ClosestPeakDist<-data.frame(dataTable)
|
|
10 ifReg <- 0
|
|
11 if (length(unique(chip.genes.ClosestPeakDist$Reg))>1) {
|
|
12 ifReg <- 1
|
|
13 }
|
|
14 ifControl <- 0
|
|
15
|
|
16 ifPDF <- 0
|
|
17 if (length(args)>=8) {
|
|
18 ifPDF=args[8]
|
|
19 }
|
|
20 if (length(args)==7 & args[7]==1) {
|
|
21 ifPDF=1
|
|
22 }
|
|
23
|
|
24 suppressMessages(library(Hmisc))
|
|
25
|
|
26 if (length(args)>=7 & args[7]!=1 & args[7]!=0) {
|
|
27 dataTable <-read.table(file=paste(args[7],".genes.ClosestPeakDist", sep=""), header=TRUE);
|
|
28 control.genes.ClosestPeakDist<-data.frame(dataTable)
|
|
29 ifControl <- 1
|
|
30 }
|
|
31 if (ifReg & ifControl) {
|
|
32 if (ifPDF==1) {
|
|
33 pdf(file = args[5], width = 19, height = 8, pointsize = 20, bg = "white")
|
|
34 } else {
|
|
35 png(file = args[5], type="cairo", width = 1440 , height = 680, units = "px", pointsize = 20, bg = "white", res = NA)
|
|
36 plot(1:10)
|
|
37 }
|
|
38 op <- par(mfrow = c(2,3))
|
|
39 } else {
|
|
40 if (ifPDF==1) {
|
|
41 pdf(file = args[5], width = 10, height = 13, pointsize = 20, bg = "white")
|
|
42 } else {
|
|
43 png(file = args[5], type="cairo", width = 680, height = 880, units = "px", pointsize = 20, bg = "white", res = NA)
|
|
44 plot(1:10)
|
|
45 }
|
|
46 op <- par(mfrow = c(2,1))
|
|
47 }
|
|
48 myColor <- 1
|
|
49 myColor[1] <- colors()[131]
|
|
50 myColor[2] <- "darkolivegreen3"
|
|
51 myColor[3] <- "azure4"
|
|
52 myColor[4] <- "royalblue3"
|
|
53 myColor[5] <- colors()[17]
|
|
54
|
|
55 myColorControl <- 1
|
|
56
|
|
57 myColorControl[1] <- colors()[24]
|
|
58 myColorControl[2] <- colors()[278]
|
|
59 myColorControl[3] <- colors()[305]
|
|
60 myColorControl[4] <- colors()[219]
|
|
61 myColorControl[5] <- colors()[343]
|
|
62
|
|
63
|
|
64
|
|
65 #for cumulative:
|
|
66 dist_real_f <- chip.genes.ClosestPeakDist
|
|
67 if (ifControl) {
|
|
68 dist_control_f <- control.genes.ClosestPeakDist
|
|
69 }
|
|
70 step <- myStep
|
|
71 lim <- maxValue
|
|
72 x <- 0
|
|
73 count <- 1
|
|
74 countL <-1
|
|
75 n.types <- 1
|
|
76 myLevels <- 0
|
|
77 countTotalCont <- 0
|
|
78 countTotal <-0
|
|
79 countLCont <- 0
|
|
80 cumTotalCont <- 0
|
|
81 if (ifReg) {
|
|
82 n.types <- length(levels(chip.genes.ClosestPeakDist$Reg))
|
|
83 myLevels <- levels(chip.genes.ClosestPeakDist$Reg)
|
|
84 cum = matrix( 0, nrow=lim/step +1, ncol=n.types, byrow = TRUE)
|
|
85 for (i in c(1:n.types)) {
|
|
86 t <- which ((dist_real_f$Reg==myLevels[i]))
|
|
87 countL[i] <- length(t)
|
|
88 }
|
|
89 count <-1
|
|
90 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
91 for (t in c(1:n.types)) {
|
|
92 tt <- which ((dist_real_f$Reg==myLevels[t])&(dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
93 cum[count,t] <- length(tt)
|
|
94 }
|
|
95 x[count] <- i
|
|
96 count <- count + 1
|
|
97 }
|
|
98 ymax <- max(cum[,1]/countL[1], na.rm=TRUE)
|
|
99 for (i in c(2:n.types)) {
|
|
100 ymax <- max(ymax,max(cum[,i]/countL[i], na.rm=TRUE))
|
|
101 }
|
|
102 myLocCol <- myColor[2]
|
|
103
|
|
104 par(mar=c(5.1, 7.1, 4.1, 2.1))
|
|
105
|
|
106 plot (x,cum[,1]/countL[1] ,col = myColor[2],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" , ylim=c(0,ymax))
|
|
107 for (i in c(2:n.types)) {
|
|
108 colorr <- i+1
|
|
109 myLocCol <- c(myLocCol,myColor[colorr])
|
|
110 lines (x,cum[,i]/countL[i] ,col = myColor[colorr],type="l", lwd = 2)
|
|
111 # print (myColor[colorr])
|
|
112 }
|
|
113
|
|
114 gradi <- 1000
|
|
115 if (lim>10000) {
|
|
116 gradi <- 10000
|
|
117 }
|
|
118 if (lim<3000) {
|
|
119 gradi <- 500
|
|
120 }
|
|
121 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
122 axisxlab <- paste(axisx/1000,"", sep = "")
|
|
123 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
124 ymax <- max(cum[,i]/countL[i], na.rm=TRUE)
|
|
125
|
|
126 minor.tick(nx=5,tick.ratio=0.5)
|
|
127
|
|
128 legend(lim*0.45, ymax*0.45, myLevels, cex=1, lwd = 2, bty = "n", col = myLocCol, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
129
|
|
130 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
131
|
|
132 if (ifControl) {
|
|
133 count <-1
|
|
134 n.types <- length(levels(control.genes.ClosestPeakDist$Reg))
|
|
135 myLevels <- levels(control.genes.ClosestPeakDist$Reg)
|
|
136 cumCont = matrix( 0, nrow=lim/step +1, ncol=n.types, byrow = TRUE)
|
|
137 for (i in c(1:n.types)) {
|
|
138 t <- which ((dist_control_f$Reg==myLevels[i]))
|
|
139 countLCont[i] <- length(t)
|
|
140 }
|
|
141 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
142 for (t in c(1:n.types)) {
|
|
143 tt <- which ((dist_control_f$Reg==myLevels[t])&(dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
144 cumCont[count,t] <- length(tt)
|
|
145 }
|
|
146 x[count] <- i
|
|
147 count <- count + 1
|
|
148 }
|
|
149 ymax <- max(cumCont[,1]/countLCont[1], na.rm=TRUE)
|
|
150 for (i in c(2:n.types)) {
|
|
151 ymax <- max(ymax,max(cumCont[,i]/countLCont[i], na.rm=TRUE))
|
|
152 }
|
|
153 myLocColCntr <- myColorControl[2]
|
|
154 plot (x,cumCont[,1]/countLCont[1] ,col = myLocColCntr[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" , ylim=c(0,ymax))
|
|
155 for (i in c(2:n.types)) {
|
|
156 colorr <- i+1
|
|
157 myLocColCntr <- c(myLocColCntr,myColorControl[colorr])
|
|
158 lines (x,cumCont[,i]/countLCont[i] ,col = myColorControl[colorr],type="l", lwd = 2)
|
|
159 }
|
|
160 if (lim>10000) {
|
|
161 gradi <- 10000
|
|
162 }
|
|
163 if (lim<3000) {
|
|
164 gradi <- 500
|
|
165 }
|
|
166 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
167 axisxlab <- paste(axisx/1000, sep = "")
|
|
168 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
169 minor.tick(nx=5,tick.ratio=0.5)
|
|
170 legend(lim*0.45, ymax*0.45, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocColCntr, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
171 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
172 #real_vs_control_cumulative:
|
|
173 count <-1
|
|
174 countTotal <- length(dist_real_f$Reg)
|
|
175 cumTotal <- 0
|
|
176 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
177 t <- which ((dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
178 cumTotal[count] <- length(t)
|
|
179 x[count] <- i
|
|
180 count <- count + 1
|
|
181 }
|
|
182 plot (x,cumTotal/countTotal ,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" )
|
|
183 gradi <- 1000
|
|
184 if (lim>10000) {
|
|
185 gradi <- 10000
|
|
186 }
|
|
187 if (lim<3000) {
|
|
188 gradi <- 500
|
|
189 }
|
|
190 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
191 axisxlab <- paste(axisx/1000, sep = "")
|
|
192 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
193 ymax <- max(cumTotal/countTotal, na.rm=TRUE)
|
|
194 minor.tick(nx=5,tick.ratio=0.5)
|
|
195 countTotalCont <- length(dist_control_f$Reg)
|
|
196 cumTotalCont <- 0
|
|
197 count <- 1
|
|
198 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
199 t <- which ((dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
200 cumTotalCont[count] <- length(t)
|
|
201 x[count] <- i
|
|
202 count <- count + 1
|
|
203 }
|
|
204 lines (x,cumTotalCont/countTotalCont ,col = colors()[328],type="l", lwd = 2)
|
|
205 legend(lim*0.45, ymax*0.45, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
206 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
207 }
|
|
208 } else {
|
|
209 countTotal <- length(dist_real_f$Reg)
|
|
210 cumTotal <- 0
|
|
211 count <-1
|
|
212
|
|
213 gradi <- 1000
|
|
214 if (lim>10000) {
|
|
215 gradi <- 10000
|
|
216 }
|
|
217 if (lim<3000) {
|
|
218 gradi <- 500
|
|
219 }
|
|
220
|
|
221 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
222 t <- which ((dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
223 cumTotal[count] <- length(t)
|
|
224 x[count] <- i
|
|
225 count <- count + 1
|
|
226 }
|
|
227 par(mar=c(5.1, 7.1, 4.1, 2.1))
|
|
228
|
|
229 plot (x,cumTotal/countTotal ,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" )
|
|
230 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
231 axisxlab <- paste(axisx/1000, sep = "")
|
|
232 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
233 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
234 ymax <- max(cumTotal/countTotal, na.rm=TRUE)
|
|
235 if (ifControl) {
|
|
236 countTotalCont <- length(dist_control_f$Reg)
|
|
237 cumTotalCont <- 0
|
|
238 count <- 1
|
|
239 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
240 t <- which ((dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
241 cumTotalCont[count] <- length(t)
|
|
242 x[count] <- i
|
|
243 count <- count + 1
|
|
244 }
|
|
245 lines (x,cumTotalCont/countTotalCont ,col = colors()[328],type="l", lwd = 2)
|
|
246 legend(lim*0.45, ymax*0.45, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
247 } else {
|
|
248 legend(lim*0.45, ymax*0.45, c("ChIP"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1]), lty = c(1), pt.bg= c(myColor[1]) , merge = TRUE)
|
|
249 }
|
|
250 }
|
|
251
|
|
252 sink(args[6], append=FALSE, split=FALSE)
|
|
253 if (ifReg) {
|
|
254 if (ifControl) {
|
|
255 cat (paste("Dist_TSS","% genes w/ a peak in ChIP","% genes w/ a peak in control",sep='\t'))
|
|
256 cat("\t")
|
|
257 for (i in c(1:n.types)) {
|
|
258 cat(paste("% ", myLevels[i]," genes w/ a peak in ChIP", sep=""))
|
|
259 cat("\t")
|
|
260 }
|
|
261
|
|
262 for (i in c(1:n.types)) {
|
|
263 cat(paste("% ", myLevels[i]," genes w/ a peak in Control", sep=""))
|
|
264 cat("\t")
|
|
265 }
|
|
266 cat("\n")
|
|
267 for (i in c(1:length(x))) {
|
|
268 cat(paste(x[i],cumTotal[i]/countTotal,cumTotalCont[i]/countTotalCont,sep="\t"))
|
|
269 cat("\t")
|
|
270 for (t in c(1:n.types)) {
|
|
271 cat(paste(cum[i,t]/countL[t],"\t", sep=""))
|
|
272 }
|
|
273 for (t in c(1:n.types)) {
|
|
274 cat(paste(cumCont[i,t]/countLCont[t],"\t", sep=""))
|
|
275 }
|
|
276 cat("\n")
|
|
277 }
|
|
278 }else {
|
|
279 cat (paste("Dist_TSS","\t",sep=''))
|
|
280 for (i in c(1:n.types)) {
|
|
281 cat(paste("% ", myLevels[i]," genes w/ a peak in ChIP", "\t", sep=""))
|
|
282 }
|
|
283 cat("\n")
|
|
284 for (i in c(1:length(x))) {
|
|
285 cat(paste(x[i],"\t",sep=""))
|
|
286 for (t in c(1:n.types)) {
|
|
287 cat(paste(cum[i,t]/countL[t],"\t", sep=""))
|
|
288 }
|
|
289 cat("\n")
|
|
290 }
|
|
291 }
|
|
292 } else {
|
|
293 if (ifControl) {
|
|
294 cat (paste("Dist_TSS","% genes w/ a peak in ChIP","% genes w/ a peak in control",sep='\t'))
|
|
295 cat("\n")
|
|
296 for (i in c(1:length(x))) {
|
|
297 cat(paste(x[i],cumTotal[i]/countTotal,cumTotalCont[i]/countTotalCont,sep="\t"))
|
|
298 cat("\n")
|
|
299 }
|
|
300 }else {
|
|
301 cat (paste("Dist_TSS","% genes w/ a peak in ChIP",sep='\t'))
|
|
302 cat("\n")
|
|
303 for (i in c(1:length(x))) {
|
|
304 cat(paste(x[i],cumTotal[i]/countTotal,sep="\t"))
|
|
305 cat("\n")
|
|
306 }
|
|
307
|
|
308 }
|
|
309 }
|
|
310
|
|
311
|
|
312 #stop sinking:
|
|
313 sink()
|
|
314
|
|
315 #around TSS:
|
|
316 lim <- maxValue
|
|
317 step <- myStep
|
|
318 my_breaks <- seq(length=lim/step*2 +1, from=-lim, by=step)
|
|
319 chip.genes <- read.table(file=paste(args[4],".genes", sep=""), header=TRUE) ;
|
|
320 dist_real_f <- chip.genes
|
|
321 if (ifControl) {
|
|
322 control.genes <- read.table(file=paste(args[4],".genes", sep=""), header=TRUE) ;
|
|
323 dist_control_f<-data.frame(control.genes)
|
|
324 }
|
|
325 if (ifReg) {
|
|
326 #n.types <- length(levels(chip.genes.ClosestPeakDist$Reg))
|
|
327 #myLevels <- levels(dist_real_f$Reg)
|
|
328
|
|
329 t<- which (dist_real_f$Reg==myLevels[1])
|
|
330 values_real <-dist_real_f$Dist[t]
|
|
331 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
332 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
333 for (i in c(2:n.types)) {
|
|
334 t<- which (dist_real_f$Reg==myLevels[i])
|
|
335 values_real <-dist_real_f$Dist[t]
|
|
336 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
337 ymax <- max(ymax,max(hTSSreal$density, na.rm=TRUE))
|
|
338 }
|
|
339
|
|
340
|
|
341 t<- which (dist_real_f$Reg==myLevels[1])
|
|
342 values_real <-dist_real_f$Dist[t]
|
|
343 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
344 plot (hTSSreal$mids,hTSSreal$density,col = myLocCol[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),ylim = c(0, ymax), xaxt="n" )
|
|
345
|
|
346 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
347
|
|
348 for (i in c(2:n.types)) {
|
|
349 t<- which (dist_real_f$Reg==myLevels[i])
|
|
350 values_real <-dist_real_f$Dist[t]
|
|
351 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
352 lines (hTSSreal$mids,hTSSreal$density,col = myLocCol[i],type="l", lwd = 2)
|
|
353 }
|
|
354 legend(lim*0.1, ymax*0.9, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocCol, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
355
|
|
356 gradi <- 1000
|
|
357 if (lim>10000) {
|
|
358 gradi <- 10000
|
|
359 }
|
|
360 if (lim<3000) {
|
|
361 gradi <- 500
|
|
362 }
|
|
363
|
|
364 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
365 axisxlab <- paste(axisx/1000, sep = "")
|
|
366 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
367
|
|
368
|
|
369 #minor.tick(nx=10,tick.ratio=0.5)
|
|
370 if (ifControl) {
|
|
371 t<- which (dist_control_f$Reg==myLevels[1])
|
|
372 values_control <-dist_control_f$Dist[t]
|
|
373 hTSScontrol= hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
374 ymax <- max(hTSScontrol$density, na.rm=TRUE)
|
|
375 for (i in c(2:n.types)) {
|
|
376 t<- which (dist_control_f$Reg==myLevels[i])
|
|
377 values_control <-dist_control_f$Dist[t]
|
|
378 hTSScontrol = hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
379 ymax <- max(ymax,max(hTSScontrol$density, na.rm=TRUE))
|
|
380 }
|
|
381 t<- which (dist_control_f$Reg==myLevels[1])
|
|
382 values_control <-dist_control_f$Dist[t]
|
|
383 hTSScontrol= hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
384 plot (hTSScontrol$mids,hTSScontrol$density,col = myLocColCntr[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),ylim = c(0, ymax),xaxt="n" )
|
|
385 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
386 for (i in c(2:n.types)) {
|
|
387 t<- which (dist_control_f$Reg==myLevels[i])
|
|
388 values_control <-dist_control_f$Dist[t]
|
|
389 hTSScontrol = hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
390 lines (hTSScontrol$mids,hTSScontrol$density,col = myLocColCntr[i],type="l", lwd = 2)
|
|
391 }
|
|
392
|
|
393 gradi <- 1000
|
|
394 if (lim>10000) {
|
|
395 gradi <- 10000
|
|
396 }
|
|
397 if (lim<3000) {
|
|
398 gradi <- 500
|
|
399 }
|
|
400
|
|
401 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
402 axisxlab <- paste(axisx/1000, sep = "")
|
|
403 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
404
|
|
405 legend(lim*0.1, ymax*0.9, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocColCntr, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
406
|
|
407 # minor.tick(nx=10,tick.ratio=0.5)
|
|
408 #control vs real
|
|
409 values_real <-dist_real_f$Dist
|
|
410 hTSSreal = hist(values_real, plot=FALSE, breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
411 plot (hTSSreal$mids,hTSSreal$density,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),xaxt="n")
|
|
412 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
413 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
414 values_control <-dist_control_f$Dist
|
|
415 hTSScontrol = hist(values_control, plot=FALSE, breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
416 lines (hTSScontrol$mids,hTSScontrol$density,col = colors()[328],type="l", lwd = 2)
|
|
417 legend(lim*0.2, ymax*0.9, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
418
|
|
419 gradi <- 1000
|
|
420 if (lim>10000) {
|
|
421 gradi <- 10000
|
|
422 }
|
|
423 if (lim<3000) {
|
|
424 gradi <- 500
|
|
425 }
|
|
426
|
|
427 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
428 axisxlab <- paste(axisx/1000, sep = "")
|
|
429 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
430
|
|
431
|
|
432
|
|
433 # minor.tick(nx=10,tick.ratio=0.5)
|
|
434 }
|
|
435 } else {
|
|
436 values_real <-dist_real_f$Dist
|
|
437 hTSSreal = hist(values_real, plot=FALSE, breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
438 plot (hTSSreal$mids,hTSSreal$density,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),xaxt="n")
|
|
439 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
440 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
441 if (ifControl) {
|
|
442 values_control <-dist_control_f$Dist
|
|
443 hTSScontrol = hist(values_control, plot=FALSE, breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
444 lines (hTSScontrol$mids,hTSScontrol$density,col = colors()[328],type="l", lwd = 2)
|
|
445 legend(lim*0.2, ymax*0.9, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
446 } else {
|
|
447 legend(lim*0.2, ymax*0.9, c("ChIP"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1]), lty = c(1), pt.bg= c(myColor[1]) , merge = TRUE)
|
|
448 }
|
|
449
|
|
450 gradi <- 1000
|
|
451 if (lim>10000) {
|
|
452 gradi <- 10000
|
|
453 }
|
|
454 if (lim<3000) {
|
|
455 gradi <- 500
|
|
456 }
|
|
457
|
|
458 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
459 axisxlab <- paste(axisx/1000, sep = "")
|
|
460 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
461
|
|
462
|
|
463 # minor.tick(nx=10,tick.ratio=0.5)
|
|
464 }
|
|
465 suppressMessages(dev.off())
|
|
466 q();
|
|
467 cat (paste("peak height","# peaks in ChIP","# peaks in Control","#control/chip","\n",sep='\t'))
|
|
468 for (xval in c(minValue:maxValue)) {
|
|
469 for (i in (1:length(chipHist$mids))) {
|
|
470 if (xval==chipHist$mids[i]) {
|
|
471 ychip <- chipHist$counts[i]
|
|
472 }
|
|
473 }
|
|
474 for (i in (1:length(controlHist$mids))) {
|
|
475 if (xval==controlHist$mids[i]) {
|
|
476 ycontrol <- controlHist$counts[i]
|
|
477 }
|
|
478 }
|
|
479 cat (paste(xval,ychip,ycontrol,ycontrol/ychip,"\n",sep='\t'))
|
|
480 }
|