comparison inspect.xml @ 12:03ed427eb5e7 draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit c21958f44b81d740191999fb6015d5ae69538ee0
author iuc
date Wed, 31 Jul 2024 18:07:55 +0000
parents fc598b15f113
children 1c36180febfb
comparison
equal deleted inserted replaced
11:aa01179b0d1d 12:03ed427eb5e7
1 <tool id="scanpy_inspect" name="Inspect and manipulate" version="@galaxy_version@" profile="@profile@"> 1 <tool id="scanpy_inspect" name="Inspect and manipulate" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@profile@">
2 <description> with scanpy</description> 2 <description> with scanpy</description>
3 <expand macro="bio_tools"/>
4 <macros> 3 <macros>
5 <import>macros.xml</import> 4 <import>macros.xml</import>
6 <xml name="score_genes_params"> 5 <xml name="score_genes_params">
7 <param argument="n_bins" type="integer" value="25" label="Number of expression level bins for sampling" help=""/> 6 <param argument="n_bins" type="integer" value="25" label="Number of expression level bins for sampling" help=""/>
8 <param argument="random_state" type="integer" value="0" label="Random seed for sampling" help=""/> 7 <param argument="random_state" type="integer" value="0" label="Random seed for sampling" help=""/>
49 <xml name="random_state"> 48 <xml name="random_state">
50 <param argument="random_state" type="integer" value="" optional="true" 49 <param argument="random_state" type="integer" value="" optional="true"
51 label="The seed of the pseudo random number generator to use when shuffling the data" help=""/> 50 label="The seed of the pseudo random number generator to use when shuffling the data" help=""/>
52 </xml> 51 </xml>
53 </macros> 52 </macros>
53 <expand macro="bio_tools"/>
54 <expand macro="requirements"/> 54 <expand macro="requirements"/>
55 <expand macro="version_command"/> 55 <expand macro="version_command"/>
56 <command detect_errors="exit_code"><![CDATA[ 56 <command detect_errors="exit_code"><![CDATA[
57 @CMD@ 57 @CMD@
58 ]]></command> 58 ]]></command>
64 #if $method.method == "pp.calculate_qc_metrics" 64 #if $method.method == "pp.calculate_qc_metrics"
65 sc.pp.calculate_qc_metrics( 65 sc.pp.calculate_qc_metrics(
66 adata=adata, 66 adata=adata,
67 expr_type='$method.expr_type', 67 expr_type='$method.expr_type',
68 var_type='$method.var_type', 68 var_type='$method.var_type',
69 #if str($method.qc_vars) != '' 69 #if $method.qc_vars
70 #set $qc_vars = [str(x.strip()) for x in str($method.qc_vars).split(',')] 70 #set $qc_vars = [str(x.strip()) for x in str($method.qc_vars).split(',')]
71 qc_vars=$qc_vars, 71 qc_vars=$qc_vars,
72 #end if 72 #end if
73 #if str($method.percent_top) != '' 73 #if $method.percent_top
74 #set $percent_top = [int(x.strip()) for x in str($method.percent_top).split(',')] 74 #set $percent_top = [int(x.strip()) for x in str($method.percent_top).split(',')]
75 percent_top=$method.percent_top, 75 percent_top=$percent_top,
76 #end if 76 #end if
77 inplace=True) 77 inplace=True)
78 78
79 #else if $method.method == "tl.score_genes" 79 #else if $method.method == "tl.score_genes"
80 sc.tl.score_genes( 80 sc.tl.score_genes(
123 adata=adata, 123 adata=adata,
124 n_neighbors=$method.n_neighbors, 124 n_neighbors=$method.n_neighbors,
125 #if str($method.n_pcs) != '' 125 #if str($method.n_pcs) != ''
126 n_pcs=$method.n_pcs, 126 n_pcs=$method.n_pcs,
127 #end if 127 #end if
128 #if str($method.use_rep) != '' 128 #if $method.use_rep
129 use_rep='$method.use_rep', 129 use_rep='$method.use_rep',
130 #end if 130 #end if
131 knn=$method.knn, 131 knn=$method.knn,
132 random_state=$method.random_state, 132 random_state=$method.random_state,
133 method='$method.pp_neighbors_method', 133 method='$method.pp_neighbors_method',
136 136
137 #else if $method.method == 'tl.rank_genes_groups' 137 #else if $method.method == 'tl.rank_genes_groups'
138 sc.tl.rank_genes_groups( 138 sc.tl.rank_genes_groups(
139 adata=adata, 139 adata=adata,
140 groupby='$method.groupby', 140 groupby='$method.groupby',
141 #if str($method.groups) != '' 141 #if $method.groups
142 #set $group=[x.strip() for x in str($method.groups).split(',')] 142 #set $group=[x.strip() for x in str($method.groups).split(',')]
143 groups=$group, 143 groups=$group,
144 #end if 144 #end if
145 #if $method.ref.rest == 'rest' 145 #if $method.ref.rest == 'rest'
146 reference='$method.ref.rest', 146 reference='$method.ref.rest',
174 #end if 174 #end if
175 fit_intercept=$method.tl_rank_genes_groups_method.solver.intercept_scaling.fit_intercept, 175 fit_intercept=$method.tl_rank_genes_groups_method.solver.intercept_scaling.fit_intercept,
176 #if $method.tl_rank_genes_groups_method.solver.intercept_scaling.fit_intercept == 'True' 176 #if $method.tl_rank_genes_groups_method.solver.intercept_scaling.fit_intercept == 'True'
177 intercept_scaling=$method.tl_rank_genes_groups_method.solver.intercept_scaling.intercept_scaling, 177 intercept_scaling=$method.tl_rank_genes_groups_method.solver.intercept_scaling.intercept_scaling,
178 #end if 178 #end if
179 #if $method.tl_rank_genes_groups_method.solver.random_state 179 #if str($method.tl_rank_genes_groups_method.solver.random_state) != ''
180 random_state=$method.tl_rank_genes_groups_method.solver.random_state, 180 random_state=$method.tl_rank_genes_groups_method.solver.random_state,
181 #end if 181 #end if
182 #else if $method.tl_rank_genes_groups_method.solver.solver == 'sag' 182 #else if $method.tl_rank_genes_groups_method.solver.solver == 'sag'
183 penalty='l2', 183 penalty='l2',
184 fit_intercept=$method.tl_rank_genes_groups_method.solver.fit_intercept, 184 fit_intercept=$method.tl_rank_genes_groups_method.solver.fit_intercept,
185 #if $method.tl_rank_genes_groups_method.solver.random_state 185 #if str($method.tl_rank_genes_groups_method.solver.random_state) != ''
186 random_state=$method.tl_rank_genes_groups_method.solver.random_state, 186 random_state=$method.tl_rank_genes_groups_method.solver.random_state,
187 #end if 187 #end if
188 max_iter=$method.tl_rank_genes_groups_method.solver.max_iter, 188 max_iter=$method.tl_rank_genes_groups_method.solver.max_iter,
189 multi_class='$method.tl_rank_genes_groups_method.solver.multi_class', 189 multi_class='$method.tl_rank_genes_groups_method.solver.multi_class',
190 #else if $method.tl_rank_genes_groups_method.solver.solver == 'saga' 190 #else if $method.tl_rank_genes_groups_method.solver.solver == 'saga'
211 #end for 211 #end for
212 212
213 sc.tl.marker_gene_overlap( 213 sc.tl.marker_gene_overlap(
214 adata, 214 adata,
215 reference_markers, 215 reference_markers,
216 #if str($method.key) != '' 216 #if $method.key
217 key='$method.key', 217 key='$method.key',
218 #end if 218 #end if
219 method='$method.overlap.method', 219 method='$method.overlap.method',
220 #if $method.overlap.method == 'overlap_count' and str($method.overlap.normalize) != 'None' 220 #if $method.overlap.method == 'overlap_count' and str($method.overlap.normalize) != 'None'
221 normalize='$method.overlap.normalize', 221 normalize='$method.overlap.normalize',
224 top_n_markers=$method.top_n_markers, 224 top_n_markers=$method.top_n_markers,
225 #end if 225 #end if
226 #if str($method.adj_pval_threshold) != '' 226 #if str($method.adj_pval_threshold) != ''
227 adj_pval_threshold=$method.adj_pval_threshold, 227 adj_pval_threshold=$method.adj_pval_threshold,
228 #end if 228 #end if
229 #if str($method.key_added) != '' 229 #if $method.key_added
230 key_added='$method.key_added', 230 key_added='$method.key_added',
231 #end if 231 #end if
232 inplace=True) 232 inplace=True)
233 233
234 #else if $method.method == "pp.log1p" 234 #else if $method.method == "pp.log1p"
238 238
239 #else if $method.method == "pp.scale" 239 #else if $method.method == "pp.scale"
240 sc.pp.scale( 240 sc.pp.scale(
241 adata, 241 adata,
242 zero_center=$method.zero_center, 242 zero_center=$method.zero_center,
243 #if $method.max_value 243 #if str($method.max_value) != ''
244 max_value=$method.max_value, 244 max_value=$method.max_value,
245 #end if 245 #end if
246 copy=False) 246 copy=False)
247 247
248 #else if $method.method == "pp.sqrt" 248 #else if $method.method == "pp.sqrt"
366 </when> 366 </when>
367 </conditional> 367 </conditional>
368 <param argument="n_genes" type="integer" min="0" value="100" label="The number of genes that appear in the returned tables" help=""/> 368 <param argument="n_genes" type="integer" min="0" value="100" label="The number of genes that appear in the returned tables" help=""/>
369 <conditional name="tl_rank_genes_groups_method"> 369 <conditional name="tl_rank_genes_groups_method">
370 <param argument="method" type="select" label="Method"> 370 <param argument="method" type="select" label="Method">
371 <option value="t-test">t-test</option> 371 <option value="t-test" selected="true">t-test</option>
372 <option value="wilcoxon">Wilcoxon-Rank-Sum</option> 372 <option value="wilcoxon">Wilcoxon-Rank-Sum</option>
373 <option value="t-test_overestim_var" selected="true">t-test with overestimate of variance of each group</option> 373 <option value="t-test_overestim_var">t-test with overestimate of variance of each group</option>
374 <option value="logreg">Logistic regression</option> 374 <option value="logreg">Logistic regression</option>
375 </param> 375 </param>
376 <when value="t-test"> 376 <when value="t-test">
377 <expand macro="corr_method"/> 377 <expand macro="corr_method"/>
378 </when> 378 </when>
451 <param argument="c" type="float" value="1.0" label="Inverse of regularization strength" 451 <param argument="c" type="float" value="1.0" label="Inverse of regularization strength"
452 help="It must be a positive float. Like in support vector machines, smaller values specify stronger regularization."/> 452 help="It must be a positive float. Like in support vector machines, smaller values specify stronger regularization."/>
453 </when> 453 </when>
454 </conditional> 454 </conditional>
455 </when> 455 </when>
456 <!--<when value="tl.marker_gene_overlap"> 456 <!-- With inplace=True, NotImplementedError: Writing Pandas dataframes to h5ad is currently under development. Please use `inplace=False`. -->
457 <!-- <when value="tl.marker_gene_overlap">
457 <repeat name="reference_markers" title="Marker genes"> 458 <repeat name="reference_markers" title="Marker genes">
458 <param name="key" type="text" value="" label="Cell identity name" help=""/> 459 <param name="key" type="text" value="" label="Cell identity name" help=""/>
459 <param name="values" type="text" value="" label="List of genes" help="Comma-separated names from 'var'"/> 460 <param name="values" type="text" value="" label="List of genes" help="Comma-separated names from 'var'"/>
460 </repeat> 461 </repeat>
461 <param argument="key" type="text" value="rank_genes_groups" label="Key in adata.uns where the rank_genes_groups output is stored"/> 462 <param argument="key" type="text" value="rank_genes_groups" label="Key in adata.uns where the rank_genes_groups output is stored"/>
475 <when value="overlap_coef"/> 476 <when value="overlap_coef"/>
476 <when value="jaccard"/> 477 <when value="jaccard"/>
477 </conditional> 478 </conditional>
478 <param argument="top_n_markers" type="integer" optional="true" label="Number of top data-derived marker genes to use" help="By default all calculated marker genes are used. If adj_pval_threshold is set along with top_n_markers, then adj_pval_threshold is ignored."/> 479 <param argument="top_n_markers" type="integer" optional="true" label="Number of top data-derived marker genes to use" help="By default all calculated marker genes are used. If adj_pval_threshold is set along with top_n_markers, then adj_pval_threshold is ignored."/>
479 <param argument="adj_pval_threshold" type="float" optional="true" label="Significance threshold on the adjusted p-values to select marker genes" help=" This can only be used when adjusted p-values are calculated by 'tl.rank_genes_groups'. If adj_pval_threshold is set along with top_n_markers, then adj_pval_threshold is ignored."/> 480 <param argument="adj_pval_threshold" type="float" optional="true" label="Significance threshold on the adjusted p-values to select marker genes" help=" This can only be used when adjusted p-values are calculated by 'tl.rank_genes_groups'. If adj_pval_threshold is set along with top_n_markers, then adj_pval_threshold is ignored."/>
480 <param argument="key_added" type="text" value="" optional="true" label="Key that will contain the marker overlap scores in 'uns'"/> 481 <param argument="key_added" type="text" value="marker_gene_overlap" optional="true" label="Key that will contain the marker overlap scores in 'uns'"/>
481 </when>--> 482 </when>-->
482 <when value="pp.log1p"/> 483 <when value="pp.log1p"/>
483 <when value="pp.scale"> 484 <when value="pp.scale">
484 <param argument="zero_center" type="boolean" truevalue="True" falsevalue="False" checked="true" 485 <param argument="zero_center" type="boolean" truevalue="True" falsevalue="False" checked="true"
485 label="Zero center?" help="If not, it omits zero-centering variables, which allows to handle sparse input efficiently."/> 486 label="Zero center?" help="If not, it omits zero-centering variables, which allows to handle sparse input efficiently."/>
492 </inputs> 493 </inputs>
493 <outputs> 494 <outputs>
494 <expand macro="anndata_outputs"/> 495 <expand macro="anndata_outputs"/>
495 </outputs> 496 </outputs>
496 <tests> 497 <tests>
497 <test> 498 <test expect_num_outputs="2">
498 <!-- test 0 --> 499 <!-- test 1 -->
499 <param name="adata" value="sparce_csr_matrix.h5ad" /> 500 <param name="adata" value="sparce_csr_matrix.h5ad" />
500 <conditional name="method"> 501 <conditional name="method">
501 <param name="method" value="pp.calculate_qc_metrics"/> 502 <param name="method" value="pp.calculate_qc_metrics"/>
502 <param name="expr_type" value="counts"/> 503 <param name="expr_type" value="counts"/>
503 <param name="var_type" value="genes"/> 504 <param name="var_type" value="genes"/>
515 <has_text_matching expression="qc_vars=\['mito', 'negative'\]" /> 516 <has_text_matching expression="qc_vars=\['mito', 'negative'\]" />
516 </assert_contents> 517 </assert_contents>
517 </output> 518 </output>
518 <output name="anndata_out" file="pp.calculate_qc_metrics.sparce_csr_matrix.h5ad" ftype="h5ad" compare="sim_size"/> 519 <output name="anndata_out" file="pp.calculate_qc_metrics.sparce_csr_matrix.h5ad" ftype="h5ad" compare="sim_size"/>
519 </test> 520 </test>
520 <test> 521 <test expect_num_outputs="2">
521 <!-- test 1 --> 522 <!-- test 2 -->
522 <param name="adata" value="pp.recipe_weinreb17.paul15_subsample.h5ad" /> 523 <param name="adata" value="pp.recipe_weinreb17.paul15_subsample.h5ad" />
523 <conditional name="method"> 524 <conditional name="method">
524 <param name="method" value="pp.neighbors"/> 525 <param name="method" value="pp.neighbors"/>
525 <param name="n_neighbors" value="15"/> 526 <param name="n_neighbors" value="15"/>
526 <param name="knn" value="True"/> 527 <param name="knn" value="True"/>
545 <assert_contents> 546 <assert_contents>
546 <has_h5_keys keys="X, obs, obsm, uns, var" /> 547 <has_h5_keys keys="X, obs, obsm, uns, var" />
547 </assert_contents> 548 </assert_contents>
548 </output> 549 </output>
549 </test> 550 </test>
550 <test> 551 <test expect_num_outputs="2">
551 <!-- test 2 --> 552 <!-- test 3 -->
552 <param name="adata" value="pp.recipe_weinreb17.paul15_subsample.h5ad" /> 553 <param name="adata" value="pp.recipe_weinreb17.paul15_subsample.h5ad" />
553 <conditional name="method"> 554 <conditional name="method">
554 <param name="method" value="pp.neighbors"/> 555 <param name="method" value="pp.neighbors"/>
555 <param name="n_neighbors" value="15"/> 556 <param name="n_neighbors" value="15"/>
556 <param name="knn" value="True"/> 557 <param name="knn" value="True"/>
570 <has_text_matching expression="metric='braycurtis'"/> 571 <has_text_matching expression="metric='braycurtis'"/>
571 </assert_contents> 572 </assert_contents>
572 </output> 573 </output>
573 <output name="anndata_out" file="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> 574 <output name="anndata_out" file="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/>
574 </test> 575 </test>
575 <test> 576 <test expect_num_outputs="2">
576 <!-- test 3 --> 577 <!-- test 4 -->
577 <param name="adata" value="krumsiek11.h5ad" /> 578 <param name="adata" value="krumsiek11.h5ad" />
578 <conditional name="method"> 579 <conditional name="method">
579 <param name="method" value="tl.score_genes"/> 580 <param name="method" value="tl.score_genes"/>
580 <param name="gene_list" value="Gata2, Fog1"/> 581 <param name="gene_list" value="Gata2, Fog1"/>
581 <param name="ctrl_size" value="2"/> 582 <param name="ctrl_size" value="2"/>
599 <has_text_matching expression="copy=False" /> 600 <has_text_matching expression="copy=False" />
600 </assert_contents> 601 </assert_contents>
601 </output> 602 </output>
602 <output name="anndata_out" file="tl.score_genes.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> 603 <output name="anndata_out" file="tl.score_genes.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/>
603 </test> 604 </test>
604 <test> 605 <test expect_num_outputs="2">
605 <!-- test 4 --> 606 <!-- test 5 -->
606 <param name="adata" value="krumsiek11.h5ad" /> 607 <param name="adata" value="krumsiek11.h5ad" />
607 <conditional name="method"> 608 <conditional name="method">
608 <param name="method" value="tl.score_genes_cell_cycle"/> 609 <param name="method" value="tl.score_genes_cell_cycle"/>
609 <conditional name='s_genes'> 610 <conditional name='s_genes'>
610 <param name="format" value="text"/> 611 <param name="format" value="text"/>
631 <has_text_matching expression="use_raw=False"/> 632 <has_text_matching expression="use_raw=False"/>
632 </assert_contents> 633 </assert_contents>
633 </output> 634 </output>
634 <output name="anndata_out" file="tl.score_genes_cell_cycle.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> 635 <output name="anndata_out" file="tl.score_genes_cell_cycle.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/>
635 </test> 636 </test>
636 <test> 637 <test expect_num_outputs="2">
637 <!-- test 5 --> 638 <!-- test 6 -->
638 <param name="adata" value="krumsiek11.h5ad" /> 639 <param name="adata" value="krumsiek11.h5ad" />
639 <conditional name="method"> 640 <conditional name="method">
640 <param name="method" value="tl.rank_genes_groups"/> 641 <param name="method" value="tl.rank_genes_groups"/>
641 <param name="groupby" value="cell_type"/> 642 <param name="groupby" value="cell_type"/>
642 <param name="use_raw" value="True"/> 643 <param name="use_raw" value="False"/>
643 <conditional name="ref"> 644 <conditional name="ref">
644 <param name="rest" value="rest"/> 645 <param name="rest" value="rest"/>
645 </conditional> 646 </conditional>
646 <param name="n_genes" value="100"/> 647 <param name="n_genes" value="100"/>
647 <conditional name="tl_rank_genes_groups_method"> 648 <conditional name="tl_rank_genes_groups_method">
654 </section> 655 </section>
655 <output name="hidden_output"> 656 <output name="hidden_output">
656 <assert_contents> 657 <assert_contents>
657 <has_text_matching expression="sc.tl.rank_genes_groups"/> 658 <has_text_matching expression="sc.tl.rank_genes_groups"/>
658 <has_text_matching expression="groupby='cell_type'"/> 659 <has_text_matching expression="groupby='cell_type'"/>
659 <has_text_matching expression="use_raw=True"/> 660 <has_text_matching expression="use_raw=False"/>
660 <has_text_matching expression="reference='rest'"/> 661 <has_text_matching expression="reference='rest'"/>
661 <has_text_matching expression="n_genes=100"/> 662 <has_text_matching expression="n_genes=100"/>
662 <has_text_matching expression="method='t-test_overestim_var'"/> 663 <has_text_matching expression="method='t-test_overestim_var'"/>
663 <has_text_matching expression="corr_method='benjamini-hochberg'"/> 664 <has_text_matching expression="corr_method='benjamini-hochberg'"/>
664 </assert_contents> 665 </assert_contents>
665 </output> 666 </output>
666 <output name="anndata_out" file="tl.rank_genes_groups.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> 667 <output name="anndata_out" file="tl.rank_genes_groups.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/>
667 </test> 668 </test>
668 <test> 669 <test expect_num_outputs="2">
669 <!-- test 6 --> 670 <!-- test 7 -->
670 <param name="adata" value="pbmc68k_reduced.h5ad" /> 671 <param name="adata" value="pbmc68k_reduced.h5ad" />
671 <conditional name="method"> 672 <conditional name="method">
672 <param name="method" value="tl.rank_genes_groups"/> 673 <param name="method" value="tl.rank_genes_groups"/>
673 <param name="groupby" value="louvain"/> 674 <param name="groupby" value="louvain"/>
674 <param name="use_raw" value="True"/> 675 <param name="use_raw" value="True"/>
712 <assert_contents> 713 <assert_contents>
713 <has_h5_keys keys="X, obs, obsm, raw/X, raw/var, uns, var" /> 714 <has_h5_keys keys="X, obs, obsm, raw/X, raw/var, uns, var" />
714 </assert_contents> 715 </assert_contents>
715 </output> 716 </output>
716 </test> 717 </test>
717 <test> 718 <test expect_num_outputs="2">
718 <!-- test 7 --> 719 <!-- test 8 -->
719 <param name="adata" value="pbmc68k_reduced.h5ad" /> 720 <param name="adata" value="pbmc68k_reduced.h5ad" />
720 <conditional name="method"> 721 <conditional name="method">
721 <param name="method" value="tl.rank_genes_groups"/> 722 <param name="method" value="tl.rank_genes_groups"/>
722 <param name="groupby" value="louvain"/> 723 <param name="groupby" value="louvain"/>
723 <param name="use_raw" value="True"/> 724 <param name="use_raw" value="True"/>
767 <assert_contents> 768 <assert_contents>
768 <has_h5_keys keys="X, obs, obsm, raw/X, raw/var, uns, var" /> 769 <has_h5_keys keys="X, obs, obsm, raw/X, raw/var, uns, var" />
769 </assert_contents> 770 </assert_contents>
770 </output> 771 </output>
771 </test> 772 </test>
772 <!--<test> 773 <!-- test expect_num_outputs="2">
773 < test 9 > 774 < test 9 tl.marker_gene_overlap function was commented because inpace=True does not work>
774 <param name="adata" value="tl.rank_genes_groups.louvain.neighbors.pca.pbmc68k_reduced.h5ad" /> 775 <param name="adata" value="tl.rank_genes_groups.newton-cg.pbmc68k_reduced.h5ad" />
775 <conditional name="method"> 776 <conditional name="method">
776 <param name="method" value="tl.marker_gene_overlap"/> 777 <param name="method" value="tl.marker_gene_overlap"/>
777 <repeat name="reference_markers"> 778 <repeat name="reference_markers">
778 <param name="key" value="CD4 T cells"/> 779 <param name="key" value="CD4 T cells"/>
779 <param name="value" value="IL7R"/> 780 <param name="value" value="IL7R"/>
785 <repeat name="reference_markers"> 786 <repeat name="reference_markers">
786 <param name="key" value="B cells"/> 787 <param name="key" value="B cells"/>
787 <param name="value" value="MS4A1"/> 788 <param name="value" value="MS4A1"/>
788 </repeat> 789 </repeat>
789 <conditional name="overlap"> 790 <conditional name="overlap">
790 <param argument="method" value="overlap_count"/> 791 <param name="method" value="overlap_count"/>
791 <param argument="normalize" value="None"/> 792 <param name="normalize" value="None"/>
792 </conditional> 793 </conditional>
793 </conditional> 794 </conditional>
794 <assert_stdout> 795 <assert_stdout>
795 <has_text_matching expression="tl.marker_gene_overlap"/> 796 <has_text_matching expression="tl.marker_gene_overlap"/>
796 <has_text_matching expression="key='rank_genes_groups'"/> 797 <has_text_matching expression="key='rank_genes_groups'"/>
797 <has_text_matching expression="method='overlap_count'"/> 798 <has_text_matching expression="method='overlap_count'"/>
798 </assert_stdout> 799 </assert_stdout>
800 <output name="anndata_out" file="tl.marker_gene_overlap.pbmc68k_reduced.h5ad" ftype="h5ad" compare="sim_size"/>
801 </test> -->
802 <test expect_num_outputs="2">
803 <!-- test 10 -->
804 <param name="adata" value="krumsiek11.h5ad" />
805 <conditional name="method">
806 <param name="method" value="pp.log1p"/>
807 </conditional>
808 <section name="advanced_common">
809 <param name="show_log" value="true" />
810 </section>
811 <output name="hidden_output">
812 <assert_contents>
813 <has_text_matching expression="sc.pp.log1p"/>
814 </assert_contents>
815 </output>
799 <output name="anndata_out" file="pp.log1p.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> 816 <output name="anndata_out" file="pp.log1p.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/>
800 </test>--> 817 </test>
801 <test> 818 <test expect_num_outputs="2">
802 <!-- test 8 --> 819 <!-- test 11 -->
803 <param name="adata" value="krumsiek11.h5ad" />
804 <conditional name="method">
805 <param name="method" value="pp.log1p"/>
806 </conditional>
807 <section name="advanced_common">
808 <param name="show_log" value="true" />
809 </section>
810 <output name="hidden_output">
811 <assert_contents>
812 <has_text_matching expression="sc.pp.log1p"/>
813 </assert_contents>
814 </output>
815 <output name="anndata_out" file="pp.log1p.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/>
816 </test>
817 <test>
818 <!-- test 9 -->
819 <param name="adata" value="krumsiek11.h5ad" /> 820 <param name="adata" value="krumsiek11.h5ad" />
820 <conditional name="method"> 821 <conditional name="method">
821 <param name="method" value="pp.scale"/> 822 <param name="method" value="pp.scale"/>
822 <param name="zero_center" value="true"/> 823 <param name="zero_center" value="true"/>
823 </conditional> 824 </conditional>
830 <has_text_matching expression="zero_center=True"/> 831 <has_text_matching expression="zero_center=True"/>
831 </assert_contents> 832 </assert_contents>
832 </output> 833 </output>
833 <output name="anndata_out" file="pp.scale.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> 834 <output name="anndata_out" file="pp.scale.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/>
834 </test> 835 </test>
835 <test> 836 <test expect_num_outputs="2">
836 <!-- test 10 --> 837 <!-- test 12 -->
837 <param name="adata" value="krumsiek11.h5ad" /> 838 <param name="adata" value="krumsiek11.h5ad" />
838 <conditional name="method"> 839 <conditional name="method">
839 <param name="method" value="pp.scale"/> 840 <param name="method" value="pp.scale"/>
840 <param name="zero_center" value="true"/> 841 <param name="zero_center" value="true"/>
841 <param name="max_value" value="10"/> 842 <param name="max_value" value="10"/>
850 <has_text_matching expression="max_value=10.0"/> 851 <has_text_matching expression="max_value=10.0"/>
851 </assert_contents> 852 </assert_contents>
852 </output> 853 </output>
853 <output name="anndata_out" file="pp.scale_max_value.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> 854 <output name="anndata_out" file="pp.scale_max_value.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/>
854 </test> 855 </test>
855 <test> 856 <test expect_num_outputs="2">
856 <!-- test 11 --> 857 <!-- test 13 -->
857 <param name="adata" value="krumsiek11.h5ad" /> 858 <param name="adata" value="krumsiek11.h5ad" />
858 <conditional name="method"> 859 <conditional name="method">
859 <param name="method" value="pp.sqrt"/> 860 <param name="method" value="pp.sqrt"/>
860 </conditional> 861 </conditional>
861 <section name="advanced_common"> 862 <section name="advanced_common">
865 <assert_contents> 866 <assert_contents>
866 <has_text_matching expression="sc.pp.sqrt"/> 867 <has_text_matching expression="sc.pp.sqrt"/>
867 </assert_contents> 868 </assert_contents>
868 </output> 869 </output>
869 <output name="anndata_out" file="pp.sqrt.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> 870 <output name="anndata_out" file="pp.sqrt.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/>
871 </test>
872 <test expect_num_outputs="2">
873 <!-- test 13 -->
874 <param name="adata" value="sparce_csr_matrix.h5ad" />
875 <conditional name="method">
876 <param name="method" value="pp.calculate_qc_metrics"/>
877 <param name="expr_type" value="counts"/>
878 <param name="var_type" value="genes"/>
879 <param name="qc_vars" value="mito,negative"/>
880 <param name="percent_top" value="50,100,200,300"/>
881 </conditional>
882 <section name="advanced_common">
883 <param name="show_log" value="true" />
884 </section>
885 <output name="hidden_output">
886 <assert_contents>
887 <has_text_matching expression="sc.pp.calculate_qc_metrics" />
888 <has_text_matching expression="expr_type='counts'" />
889 <has_text_matching expression="var_type='genes'" />
890 <has_text_matching expression="qc_vars=\['mito', 'negative'\]" />
891 <has_text_matching expression="percent_top=\[50, 100, 200, 300\]" />
892 </assert_contents>
893 </output>
894 <output name="anndata_out" file="pp.calculate_qc_metrics.sparce_csr_matrix.h5ad" ftype="h5ad" compare="sim_size"/>
870 </test> 895 </test>
871 </tests> 896 </tests>
872 <help><![CDATA[ 897 <help><![CDATA[
873 Calculate quality control metrics., using `pp.calculate_qc_metrics` 898 Calculate quality control metrics., using `pp.calculate_qc_metrics`
874 =================================================================== 899 ===================================================================
890 - mean_{expr_type} (e.g. "mean counts", mean expression over all cells) 915 - mean_{expr_type} (e.g. "mean counts", mean expression over all cells)
891 - n_cells_by_{expr_type} (e.g. "n_cells_by_counts", number of cells this expression is measured in) 916 - n_cells_by_{expr_type} (e.g. "n_cells_by_counts", number of cells this expression is measured in)
892 - pct_dropout_by_{expr_type} (e.g. "pct_dropout_by_counts", percentage of cells this feature does not appear in) 917 - pct_dropout_by_{expr_type} (e.g. "pct_dropout_by_counts", percentage of cells this feature does not appear in)
893 918
894 More details on the `scanpy documentation 919 More details on the `scanpy documentation
895 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.pp.calculate_qc_metrics.html>`__ 920 <https://scanpy.readthedocs.io/en/stable/api/scanpy.pp.calculate_qc_metrics.html>`__
896 921
897 Compute a neighborhood graph of observations, using `pp.neighbors` 922 Compute a neighborhood graph of observations, using `pp.neighbors`
898 ================================================================== 923 ==================================================================
899 924
900 The neighbor search efficiency of this heavily relies on UMAP (McInnes et al, 2018), 925 The neighbor search efficiency of this heavily relies on UMAP (McInnes et al, 2018),
909 - Distances for each pair of neighbors (distances) 934 - Distances for each pair of neighbors (distances)
910 935
911 This data are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects 936 This data are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects
912 937
913 More details on the `scanpy documentation 938 More details on the `scanpy documentation
914 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.pp.neighbors.html>`__ 939 <https://scanpy.readthedocs.io/en/stable/api/generated/scanpy.pp.neighbors.html>`__
915 940
916 Score a set of genes, using `tl.score_genes` 941 Score a set of genes, using `tl.score_genes`
917 ============================================ 942 ============================================
918 943
919 The score is the average expression of a set of genes subtracted with the 944 The score is the average expression of a set of genes subtracted with the
922 947
923 This reproduces the approach in Seurat (Satija et al, 2015) and has been implemented 948 This reproduces the approach in Seurat (Satija et al, 2015) and has been implemented
924 for Scanpy by Davide Cittaro. 949 for Scanpy by Davide Cittaro.
925 950
926 More details on the `scanpy documentation 951 More details on the `scanpy documentation
927 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.score_genes.html>`__ 952 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.score_genes.html>`__
928 953
929 Score cell cycle genes, using `tl.score_genes_cell_cycle` 954 Score cell cycle genes, using `tl.score_genes_cell_cycle`
930 ========================================================= 955 =========================================================
931 956
932 Given two lists of genes associated to S phase and G2M phase, calculates 957 Given two lists of genes associated to S phase and G2M phase, calculates
933 scores and assigns a cell cycle phase (G1, S or G2M). See 958 scores and assigns a cell cycle phase (G1, S or G2M). See
934 `score_genes` for more explanation. 959 `score_genes` for more explanation.
935 960
936 More details on the `scanpy documentation 961 More details on the `scanpy documentation
937 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.score_genes_cell_cycle.html>`__ 962 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.score_genes_cell_cycle.html>`__
938 963
939 Rank genes for characterizing groups, using `tl.rank_genes_groups` 964 Rank genes for characterizing groups, using `tl.rank_genes_groups`
940 ================================================================== 965 ==================================================================
941 966
942 The returned AnnData object contains: 967 The returned AnnData object contains:
948 - Ajusted p-values 973 - Ajusted p-values
949 974
950 This data are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects 975 This data are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects
951 976
952 More details on the `scanpy documentation 977 More details on the `scanpy documentation
953 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.rank_genes_groups.html>`__ 978 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.rank_genes_groups.html>`__
954 979
955 980
956 Calculate an overlap score between data-deriven marker genes and provided markers (`tl.marker_gene_overlap`) 981 Calculate an overlap score between data-deriven marker genes and provided markers (`tl.marker_gene_overlap`)
957 ============================================================================================================ 982 ============================================================================================================
958 983
961 986
962 Logarithmize the data matrix (`pp.log1p`) 987 Logarithmize the data matrix (`pp.log1p`)
963 ========================================= 988 =========================================
964 989
965 More details on the `scanpy documentation 990 More details on the `scanpy documentation
966 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.pp.log1p.html>`__ 991 <https://scanpy.readthedocs.io/en/stable/api/scanpy.pp.log1p.html>`__
967 992
968 Scale data to unit variance and zero mean (`pp.scale`) 993 Scale data to unit variance and zero mean (`pp.scale`)
969 ====================================================== 994 ======================================================
970 995
971 More details on the `scanpy documentation 996 More details on the `scanpy documentation
972 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.pp.scale.html>`__ 997 <https://scanpy.readthedocs.io/en/stable/api/scanpy.pp.scale.html>`__
973 998
974 Computes the square root the data matrix (`pp.sqrt`) 999 Computes the square root the data matrix (`pp.sqrt`)
975 ==================================================== 1000 ====================================================
976 1001
977 `X = sqrt(X)` 1002 `X = sqrt(X)`