Mercurial > repos > iuc > rpy_statistics_collection
diff cca.xml @ 0:ffcdde989859 draft
Uploaded
author | iuc |
---|---|
date | Tue, 29 Jul 2014 06:30:45 -0400 |
parents | |
children | 2e7bc1bb2dbe |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cca.xml Tue Jul 29 06:30:45 2014 -0400 @@ -0,0 +1,97 @@ +<tool id="cca1" name="Canonical Correlation Analysis" version="1.1.0"> + <description> </description> + <expand macro="requirements" /> + <macros> + <import>statistic_tools_macros.xml</import> + </macros> + <command interpreter="python"> + cca.py + $input1 + $x_cols + $y_cols + $x_scale + $y_scale + $std_scores + $out_file1 + $out_file2 + </command> + <inputs> + <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/> + <param name="x_cols" label="Select columns containing X variables " type="data_column" data_ref="input1" numerical="True" multiple="true" > + <validator type="no_options" message="Please select at least one column."/> + </param> + <param name="y_cols" label="Select columns containing Y variables " type="data_column" data_ref="input1" numerical="True" multiple="true" > + <validator type="no_options" message="Please select at least one column."/> + </param> + <param name="x_scale" type="select" label="Type of Scaling for X variables" help="Can be used to center and/or scale variables"> + <option value="none" selected="true">None</option> + <option value="center">Center only</option> + <option value="scale">Scale only</option> + <option value="both">Center and Scale</option> + </param> + <param name="y_scale" type="select" label="Type of Scaling for Y variables" help="Can be used to center and/or scale variables"> + <option value="none" selected="true">None</option> + <option value="center">Center only</option> + <option value="scale">Scale only</option> + <option value="both">Center and Scale</option> + </param> + <param name="std_scores" type="select" label="Report standardized scores?" help="Selecting 'Yes' will rescale scores (and coefficients) to produce scores of unit variance"> + <option value="no" selected="true">No</option> + <option value="yes">Yes</option> + </param> + </inputs> + <outputs> + <data format="input" name="out_file1" metadata_source="input1" /> + <data format="pdf" name="out_file2" /> + </outputs> + <tests> + <test> + <param name="input1" value="iris.tabular"/> + <param name="x_cols" value="3,4"/> + <param name="y_cols" value="1,2"/> + <param name="x_scale" value="both"/> + <param name="y_scale" value="scale"/> + <param name="std_scores" value="yes"/> + <output name="out_file1" file="cca_out1.tabular"/> + <output name="out_file2" file="cca_out2.pdf"/> + </test> + </tests> + <help> + + +.. class:: infomark + +**TIP:** If your data is not TAB delimited, use *Edit Datasets->Convert characters* + +----- + +.. class:: infomark + +**What it does** + +This tool uses functions from 'yacca' library from R statistical package to perform Canonical Correlation Analysis (CCA) on the input data. +It outputs two files, one containing the summary statistics of the performed CCA, and the other containing helioplots, which display structural loadings of X and Y variables on different canonical components. + +*Carter T. Butts (2009). yacca: Yet Another Canonical Correlation Analysis Package. R package version 1.1.* + +----- + +.. class:: warningmark + +**Note** + +- This tool currently treats all predictor and response variables as continuous numeric variables. Running the tool on categorical variables might result in incorrect results. + +- Rows containing non-numeric (or missing) data in any of the chosen columns will be skipped from the analysis. + +- The summary statistics in the output are described below: + + - correlation: Canonical correlation between the canonical variates (i.e. transformed variables) + - F-statistic: F-value obtained from F Test for Canonical Correlations Using Rao's Approximation + - p-value: denotes significance of canonical correlations + - Coefficients: represent the coefficients of X and Y variables on each canonical variate + - Loadings: represent the correlations between the original variables in each set and their respective canonical variates + - CrossLoadings: represent the correlations between the original variables in each set and the opposite canonical variates + + </help> +</tool>