comparison partialR_square.py @ 0:ffcdde989859 draft

Uploaded
author iuc
date Tue, 29 Jul 2014 06:30:45 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:ffcdde989859
1 #!/usr/bin/env python
2
3 #from galaxy import eggs
4
5 import sys, string
6 #from rpy import *
7
8 import rpy2.robjects as robjects
9 import rpy2.rlike.container as rlc
10 r = robjects.r
11 import numpy
12
13 #export PYTHONPATH=~/galaxy/lib/
14 #running command python partialR_square.py reg_inp.tab 4 1,2,3 partialR_result.tabular
15
16 def stop_err(msg):
17 sys.stderr.write(msg)
18 sys.exit()
19
20 def sscombs(s):
21 if len(s) == 1:
22 return [s]
23 else:
24 ssc = sscombs(s[1:])
25 return [s[0]] + [s[0]+comb for comb in ssc] + ssc
26
27
28 infile = sys.argv[1]
29 y_col = int(sys.argv[2])-1
30 x_cols = sys.argv[3].split(',')
31 outfile = sys.argv[4]
32
33 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
34 fout = open(outfile,'w')
35
36 for i, line in enumerate( file ( infile )):
37 line = line.rstrip('\r\n')
38 if len( line )>0 and not line.startswith( '#' ):
39 elems = line.split( '\t' )
40 break
41 if i == 30:
42 break # Hopefully we'll never get here...
43
44 if len( elems )<1:
45 stop_err( "The data in your input dataset is either missing or not formatted properly." )
46
47 y_vals = []
48 x_vals = []
49 x_vector = []
50 for k,col in enumerate(x_cols):
51 x_cols[k] = int(col)-1
52 x_vals.append([])
53 """
54 try:
55 float( elems[x_cols[k]] )
56 except:
57 try:
58 msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." %( col, elems[x_cols[k]] )
59 except:
60 msg = "This operation cannot be performed on non-numeric data."
61 stop_err( msg )
62 """
63 NA = 'NA'
64 for ind,line in enumerate( file( infile )):
65 if line and not line.startswith( '#' ):
66 try:
67 fields = line.split("\t")
68 try:
69 yval = float(fields[y_col])
70 except Exception, ey:
71 yval = r('NA')
72 #print >>sys.stderr, "ey = %s" %ey
73 y_vals.append(yval)
74 for k,col in enumerate(x_cols):
75 try:
76 xval = float(fields[col])
77 except Exception, ex:
78 xval = r('NA')
79 #print >>sys.stderr, "ex = %s" %ex
80 x_vals[k].append(xval)
81 x_vector.append(xval)
82 except:
83 pass
84
85 #x_vals1 = numpy.asarray(x_vals).transpose()
86 #dat= r.list(x=array(x_vals1), y=y_vals)
87
88 #set_default_mode(NO_CONVERSION)
89 #try:
90 # full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user
91 #except RException, rex:
92 # stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.")
93 #set_default_mode(BASIC_CONVERSION)
94
95 fv = robjects.FloatVector(x_vector)
96 m = r['matrix'](fv, ncol=len(x_cols),byrow=True)
97 # ensure order for generating formula
98 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
99 dat = robjects.DataFrame(od)
100 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
101 formula = ' + '.join(dat.names).replace('+','~',1)
102 try:
103 full = r.lm(formula, data = r['na.exclude'](dat))
104 except RException, rex:
105 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
106
107
108
109 summary = r.summary(full)
110 #fullr2 = summary.get('r.squared','NA')
111 fullr2 = summary.rx2('r.squared')[0]
112
113 if fullr2 == 'NA':
114 stop_error("Error in linear regression")
115
116 if len(x_vals) < 10:
117 s = ""
118 for ch in range(len(x_vals)):
119 s += str(ch)
120 else:
121 stop_err("This tool only works with less than 10 predictors.")
122
123 print >>fout, "#Model\tR-sq\tpartial_R_Terms\tpartial_R_Value"
124 all_combos = sorted(sscombs(s), key=len)
125 all_combos.reverse()
126 for j,cols in enumerate(all_combos):
127 #if len(cols) == len(s): #Same as the full model above
128 # continue
129 if len(cols) == 1:
130 #x_vals1 = x_vals[int(cols)]
131 x_v = x_vals[int(cols)]
132 else:
133 x_v = []
134 for col in cols:
135 #x_v.append(x_vals[int(col)])
136 x_v.extend(x_vals[int(col)])
137 #x_vals1 = numpy.asarray(x_v).transpose()
138 #dat= r.list(x=array(x_vals1), y=y_vals)
139 #set_default_mode(NO_CONVERSION)
140 #red = r.lm(r("y ~ x"), data= dat) #Reduced model
141 #set_default_mode(BASIC_CONVERSION)
142 fv = robjects.FloatVector(x_v)
143 m = r['matrix'](fv, ncol=len(cols),byrow=False)
144 # ensure order for generating formula
145 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
146 dat = robjects.DataFrame(od)
147 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
148 formula = ' + '.join(dat.names).replace('+','~',1)
149 try:
150 red = r.lm(formula, data = r['na.exclude'](dat))
151 except RException, rex:
152 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
153
154
155 summary = r.summary(red)
156 #redr2 = summary.get('r.squared','NA')
157 redr2 = summary.rx2('r.squared')[0]
158
159 try:
160 partial_R = (float(fullr2)-float(redr2))/(1-float(redr2))
161 except:
162 partial_R = 'NA'
163 col_str = ""
164 for col in cols:
165 col_str = col_str + str(int(x_cols[int(col)]) + 1) + " "
166 col_str.strip()
167 partial_R_col_str = ""
168 for col in s:
169 if col not in cols:
170 partial_R_col_str = partial_R_col_str + str(int(x_cols[int(col)]) + 1) + " "
171 partial_R_col_str.strip()
172 if len(cols) == len(s): #full model
173 partial_R_col_str = "-"
174 partial_R = "-"
175 try:
176 redr2 = "%.4f" %(float(redr2))
177 except:
178 pass
179 try:
180 partial_R = "%.4f" %(float(partial_R))
181 except:
182 pass
183 print >>fout, "%s\t%s\t%s\t%s" %(col_str,redr2,partial_R_col_str,partial_R)