Mercurial > repos > iuc > rpy_statistics_collection
comparison partialR_square.py @ 0:ffcdde989859 draft
Uploaded
author | iuc |
---|---|
date | Tue, 29 Jul 2014 06:30:45 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:ffcdde989859 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 #from galaxy import eggs | |
4 | |
5 import sys, string | |
6 #from rpy import * | |
7 | |
8 import rpy2.robjects as robjects | |
9 import rpy2.rlike.container as rlc | |
10 r = robjects.r | |
11 import numpy | |
12 | |
13 #export PYTHONPATH=~/galaxy/lib/ | |
14 #running command python partialR_square.py reg_inp.tab 4 1,2,3 partialR_result.tabular | |
15 | |
16 def stop_err(msg): | |
17 sys.stderr.write(msg) | |
18 sys.exit() | |
19 | |
20 def sscombs(s): | |
21 if len(s) == 1: | |
22 return [s] | |
23 else: | |
24 ssc = sscombs(s[1:]) | |
25 return [s[0]] + [s[0]+comb for comb in ssc] + ssc | |
26 | |
27 | |
28 infile = sys.argv[1] | |
29 y_col = int(sys.argv[2])-1 | |
30 x_cols = sys.argv[3].split(',') | |
31 outfile = sys.argv[4] | |
32 | |
33 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
34 fout = open(outfile,'w') | |
35 | |
36 for i, line in enumerate( file ( infile )): | |
37 line = line.rstrip('\r\n') | |
38 if len( line )>0 and not line.startswith( '#' ): | |
39 elems = line.split( '\t' ) | |
40 break | |
41 if i == 30: | |
42 break # Hopefully we'll never get here... | |
43 | |
44 if len( elems )<1: | |
45 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
46 | |
47 y_vals = [] | |
48 x_vals = [] | |
49 x_vector = [] | |
50 for k,col in enumerate(x_cols): | |
51 x_cols[k] = int(col)-1 | |
52 x_vals.append([]) | |
53 """ | |
54 try: | |
55 float( elems[x_cols[k]] ) | |
56 except: | |
57 try: | |
58 msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." %( col, elems[x_cols[k]] ) | |
59 except: | |
60 msg = "This operation cannot be performed on non-numeric data." | |
61 stop_err( msg ) | |
62 """ | |
63 NA = 'NA' | |
64 for ind,line in enumerate( file( infile )): | |
65 if line and not line.startswith( '#' ): | |
66 try: | |
67 fields = line.split("\t") | |
68 try: | |
69 yval = float(fields[y_col]) | |
70 except Exception, ey: | |
71 yval = r('NA') | |
72 #print >>sys.stderr, "ey = %s" %ey | |
73 y_vals.append(yval) | |
74 for k,col in enumerate(x_cols): | |
75 try: | |
76 xval = float(fields[col]) | |
77 except Exception, ex: | |
78 xval = r('NA') | |
79 #print >>sys.stderr, "ex = %s" %ex | |
80 x_vals[k].append(xval) | |
81 x_vector.append(xval) | |
82 except: | |
83 pass | |
84 | |
85 #x_vals1 = numpy.asarray(x_vals).transpose() | |
86 #dat= r.list(x=array(x_vals1), y=y_vals) | |
87 | |
88 #set_default_mode(NO_CONVERSION) | |
89 #try: | |
90 # full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user | |
91 #except RException, rex: | |
92 # stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") | |
93 #set_default_mode(BASIC_CONVERSION) | |
94 | |
95 fv = robjects.FloatVector(x_vector) | |
96 m = r['matrix'](fv, ncol=len(x_cols),byrow=True) | |
97 # ensure order for generating formula | |
98 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) | |
99 dat = robjects.DataFrame(od) | |
100 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' | |
101 formula = ' + '.join(dat.names).replace('+','~',1) | |
102 try: | |
103 full = r.lm(formula, data = r['na.exclude'](dat)) | |
104 except RException, rex: | |
105 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
106 | |
107 | |
108 | |
109 summary = r.summary(full) | |
110 #fullr2 = summary.get('r.squared','NA') | |
111 fullr2 = summary.rx2('r.squared')[0] | |
112 | |
113 if fullr2 == 'NA': | |
114 stop_error("Error in linear regression") | |
115 | |
116 if len(x_vals) < 10: | |
117 s = "" | |
118 for ch in range(len(x_vals)): | |
119 s += str(ch) | |
120 else: | |
121 stop_err("This tool only works with less than 10 predictors.") | |
122 | |
123 print >>fout, "#Model\tR-sq\tpartial_R_Terms\tpartial_R_Value" | |
124 all_combos = sorted(sscombs(s), key=len) | |
125 all_combos.reverse() | |
126 for j,cols in enumerate(all_combos): | |
127 #if len(cols) == len(s): #Same as the full model above | |
128 # continue | |
129 if len(cols) == 1: | |
130 #x_vals1 = x_vals[int(cols)] | |
131 x_v = x_vals[int(cols)] | |
132 else: | |
133 x_v = [] | |
134 for col in cols: | |
135 #x_v.append(x_vals[int(col)]) | |
136 x_v.extend(x_vals[int(col)]) | |
137 #x_vals1 = numpy.asarray(x_v).transpose() | |
138 #dat= r.list(x=array(x_vals1), y=y_vals) | |
139 #set_default_mode(NO_CONVERSION) | |
140 #red = r.lm(r("y ~ x"), data= dat) #Reduced model | |
141 #set_default_mode(BASIC_CONVERSION) | |
142 fv = robjects.FloatVector(x_v) | |
143 m = r['matrix'](fv, ncol=len(cols),byrow=False) | |
144 # ensure order for generating formula | |
145 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) | |
146 dat = robjects.DataFrame(od) | |
147 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' | |
148 formula = ' + '.join(dat.names).replace('+','~',1) | |
149 try: | |
150 red = r.lm(formula, data = r['na.exclude'](dat)) | |
151 except RException, rex: | |
152 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
153 | |
154 | |
155 summary = r.summary(red) | |
156 #redr2 = summary.get('r.squared','NA') | |
157 redr2 = summary.rx2('r.squared')[0] | |
158 | |
159 try: | |
160 partial_R = (float(fullr2)-float(redr2))/(1-float(redr2)) | |
161 except: | |
162 partial_R = 'NA' | |
163 col_str = "" | |
164 for col in cols: | |
165 col_str = col_str + str(int(x_cols[int(col)]) + 1) + " " | |
166 col_str.strip() | |
167 partial_R_col_str = "" | |
168 for col in s: | |
169 if col not in cols: | |
170 partial_R_col_str = partial_R_col_str + str(int(x_cols[int(col)]) + 1) + " " | |
171 partial_R_col_str.strip() | |
172 if len(cols) == len(s): #full model | |
173 partial_R_col_str = "-" | |
174 partial_R = "-" | |
175 try: | |
176 redr2 = "%.4f" %(float(redr2)) | |
177 except: | |
178 pass | |
179 try: | |
180 partial_R = "%.4f" %(float(partial_R)) | |
181 except: | |
182 pass | |
183 print >>fout, "%s\t%s\t%s\t%s" %(col_str,redr2,partial_R_col_str,partial_R) |