Mercurial > repos > iuc > rpy_statistics_collection
comparison linear_regression.py @ 0:ffcdde989859 draft
Uploaded
author | iuc |
---|---|
date | Tue, 29 Jul 2014 06:30:45 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:ffcdde989859 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import sys, string | |
4 import rpy2.robjects as robjects | |
5 import rpy2.rlike.container as rlc | |
6 from rpy2.robjects.packages import importr | |
7 r = robjects.r | |
8 grdevices = importr('grDevices') | |
9 # from rpy import * | |
10 import numpy | |
11 | |
12 | |
13 def stop_err(msg): | |
14 sys.stderr.write(msg) | |
15 sys.exit() | |
16 | |
17 infile = sys.argv[1] | |
18 y_col = int(sys.argv[2])-1 | |
19 x_cols = sys.argv[3].split(',') | |
20 outfile = sys.argv[4] | |
21 outfile2 = sys.argv[5] | |
22 | |
23 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
24 fout = open(outfile,'w') | |
25 elems = [] | |
26 for i, line in enumerate( file ( infile )): | |
27 line = line.rstrip('\r\n') | |
28 if len( line )>0 and not line.startswith( '#' ): | |
29 elems = line.split( '\t' ) | |
30 break | |
31 if i == 30: | |
32 break # Hopefully we'll never get here... | |
33 | |
34 if len( elems )<1: | |
35 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
36 | |
37 y_vals = [] | |
38 x_vals = [] | |
39 | |
40 for k,col in enumerate(x_cols): | |
41 x_cols[k] = int(col)-1 | |
42 # x_vals.append([]) | |
43 | |
44 NA = 'NA' | |
45 for ind,line in enumerate( file( infile )): | |
46 if line and not line.startswith( '#' ): | |
47 try: | |
48 fields = line.split("\t") | |
49 try: | |
50 yval = float(fields[y_col]) | |
51 except: | |
52 yval = r('NA') | |
53 y_vals.append(yval) | |
54 for k,col in enumerate(x_cols): | |
55 try: | |
56 xval = float(fields[col]) | |
57 except: | |
58 xval = r('NA') | |
59 # x_vals[k].append(xval) | |
60 x_vals.append(xval) | |
61 except: | |
62 pass | |
63 # x_vals1 = numpy.asarray(x_vals).transpose() | |
64 # dat= r.list(x=array(x_vals1), y=y_vals) | |
65 fv = robjects.FloatVector(x_vals) | |
66 m = r['matrix'](fv, ncol=len(x_cols),byrow=True) | |
67 # ensure order for generating formula | |
68 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) | |
69 dat = robjects.DataFrame(od) | |
70 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' | |
71 formula = ' + '.join(dat.names).replace('+','~',1) | |
72 | |
73 #set_default_mode(NO_CONVERSION) | |
74 try: | |
75 #linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) | |
76 linear_model = r.lm(formula, data = r['na.exclude'](dat)) | |
77 except RException, rex: | |
78 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
79 #set_default_mode(BASIC_CONVERSION) | |
80 | |
81 #coeffs=linear_model.as_py()['coefficients'] | |
82 #yintercept= coeffs['(Intercept)'] | |
83 coeffs=linear_model.rx2('coefficients') | |
84 yintercept= coeffs.rx2('(Intercept)')[0] | |
85 summary = r.summary(linear_model) | |
86 | |
87 #co = summary.get('coefficients', 'NA') | |
88 co = summary.rx2("coefficients") | |
89 | |
90 """ | |
91 if len(co) != len(x_vals)+1: | |
92 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
93 """ | |
94 #print >>fout, "p-value (Y-intercept)\t%s" %(co[0][3]) | |
95 print >>fout, "p-value (Y-intercept)\t%s" %(co.rx(1,4)[0]) | |
96 | |
97 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
98 try: | |
99 #slope = coeffs['x'] | |
100 slope = r.round(float(coeffs.rx2('x')[0]), digits=10) | |
101 except: | |
102 slope = 'NA' | |
103 try: | |
104 #pval = co[1][3] | |
105 pval = r.round(float(co.rx(2,4)[0]), digits=10) | |
106 except: | |
107 pval = 'NA' | |
108 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) | |
109 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) | |
110 else: #Multiple regression case with >1 predictors | |
111 ind=1 | |
112 #while ind < len(coeffs.keys()): | |
113 while ind < len(coeffs.names): | |
114 # print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs['x'+str(ind)]) | |
115 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs.rx2(coeffs.names[ind])[0]) | |
116 try: | |
117 #pval = co[ind][3] | |
118 pval = r.round(float(co.rx(ind+1,4)[0]), digits=10) | |
119 except: | |
120 pval = 'NA' | |
121 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) | |
122 ind+=1 | |
123 | |
124 rsq = summary.rx2('r.squared')[0] | |
125 adjrsq = summary.rx2('adj.r.squared')[0] | |
126 fstat = summary.rx2('fstatistic').rx2('value')[0] | |
127 sigma = summary.rx2('sigma')[0] | |
128 | |
129 try: | |
130 rsq = r.round(float(rsq), digits=5) | |
131 adjrsq = r.round(float(adjrsq), digits=5) | |
132 fval = r.round(fstat['value'], digits=5) | |
133 fstat['value'] = str(fval) | |
134 sigma = r.round(float(sigma), digits=10) | |
135 except: | |
136 pass | |
137 | |
138 print >>fout, "R-squared\t%s" %(rsq) | |
139 print >>fout, "Adjusted R-squared\t%s" %(adjrsq) | |
140 print >>fout, "F-statistic\t%s" %(fstat) | |
141 print >>fout, "Sigma\t%s" %(sigma) | |
142 | |
143 r.pdf( outfile2, 8, 8 ) | |
144 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
145 sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept) | |
146 try: | |
147 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") | |
148 r.abline(a=yintercept, b=slope, col="red") | |
149 except: | |
150 pass | |
151 else: | |
152 r.pairs(dat, main="Scatterplot Matrix", col="blue") | |
153 try: | |
154 r.plot(linear_model) | |
155 except: | |
156 pass | |
157 #r.dev_off() | |
158 grdevices.dev_off() |