comparison linear_regression.py @ 0:ffcdde989859 draft

Uploaded
author iuc
date Tue, 29 Jul 2014 06:30:45 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:ffcdde989859
1 #!/usr/bin/env python
2
3 import sys, string
4 import rpy2.robjects as robjects
5 import rpy2.rlike.container as rlc
6 from rpy2.robjects.packages import importr
7 r = robjects.r
8 grdevices = importr('grDevices')
9 # from rpy import *
10 import numpy
11
12
13 def stop_err(msg):
14 sys.stderr.write(msg)
15 sys.exit()
16
17 infile = sys.argv[1]
18 y_col = int(sys.argv[2])-1
19 x_cols = sys.argv[3].split(',')
20 outfile = sys.argv[4]
21 outfile2 = sys.argv[5]
22
23 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
24 fout = open(outfile,'w')
25 elems = []
26 for i, line in enumerate( file ( infile )):
27 line = line.rstrip('\r\n')
28 if len( line )>0 and not line.startswith( '#' ):
29 elems = line.split( '\t' )
30 break
31 if i == 30:
32 break # Hopefully we'll never get here...
33
34 if len( elems )<1:
35 stop_err( "The data in your input dataset is either missing or not formatted properly." )
36
37 y_vals = []
38 x_vals = []
39
40 for k,col in enumerate(x_cols):
41 x_cols[k] = int(col)-1
42 # x_vals.append([])
43
44 NA = 'NA'
45 for ind,line in enumerate( file( infile )):
46 if line and not line.startswith( '#' ):
47 try:
48 fields = line.split("\t")
49 try:
50 yval = float(fields[y_col])
51 except:
52 yval = r('NA')
53 y_vals.append(yval)
54 for k,col in enumerate(x_cols):
55 try:
56 xval = float(fields[col])
57 except:
58 xval = r('NA')
59 # x_vals[k].append(xval)
60 x_vals.append(xval)
61 except:
62 pass
63 # x_vals1 = numpy.asarray(x_vals).transpose()
64 # dat= r.list(x=array(x_vals1), y=y_vals)
65 fv = robjects.FloatVector(x_vals)
66 m = r['matrix'](fv, ncol=len(x_cols),byrow=True)
67 # ensure order for generating formula
68 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
69 dat = robjects.DataFrame(od)
70 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
71 formula = ' + '.join(dat.names).replace('+','~',1)
72
73 #set_default_mode(NO_CONVERSION)
74 try:
75 #linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat))
76 linear_model = r.lm(formula, data = r['na.exclude'](dat))
77 except RException, rex:
78 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
79 #set_default_mode(BASIC_CONVERSION)
80
81 #coeffs=linear_model.as_py()['coefficients']
82 #yintercept= coeffs['(Intercept)']
83 coeffs=linear_model.rx2('coefficients')
84 yintercept= coeffs.rx2('(Intercept)')[0]
85 summary = r.summary(linear_model)
86
87 #co = summary.get('coefficients', 'NA')
88 co = summary.rx2("coefficients")
89
90 """
91 if len(co) != len(x_vals)+1:
92 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.")
93 """
94 #print >>fout, "p-value (Y-intercept)\t%s" %(co[0][3])
95 print >>fout, "p-value (Y-intercept)\t%s" %(co.rx(1,4)[0])
96
97 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable
98 try:
99 #slope = coeffs['x']
100 slope = r.round(float(coeffs.rx2('x')[0]), digits=10)
101 except:
102 slope = 'NA'
103 try:
104 #pval = co[1][3]
105 pval = r.round(float(co.rx(2,4)[0]), digits=10)
106 except:
107 pval = 'NA'
108 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope)
109 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval)
110 else: #Multiple regression case with >1 predictors
111 ind=1
112 #while ind < len(coeffs.keys()):
113 while ind < len(coeffs.names):
114 # print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs['x'+str(ind)])
115 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs.rx2(coeffs.names[ind])[0])
116 try:
117 #pval = co[ind][3]
118 pval = r.round(float(co.rx(ind+1,4)[0]), digits=10)
119 except:
120 pval = 'NA'
121 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval)
122 ind+=1
123
124 rsq = summary.rx2('r.squared')[0]
125 adjrsq = summary.rx2('adj.r.squared')[0]
126 fstat = summary.rx2('fstatistic').rx2('value')[0]
127 sigma = summary.rx2('sigma')[0]
128
129 try:
130 rsq = r.round(float(rsq), digits=5)
131 adjrsq = r.round(float(adjrsq), digits=5)
132 fval = r.round(fstat['value'], digits=5)
133 fstat['value'] = str(fval)
134 sigma = r.round(float(sigma), digits=10)
135 except:
136 pass
137
138 print >>fout, "R-squared\t%s" %(rsq)
139 print >>fout, "Adjusted R-squared\t%s" %(adjrsq)
140 print >>fout, "F-statistic\t%s" %(fstat)
141 print >>fout, "Sigma\t%s" %(sigma)
142
143 r.pdf( outfile2, 8, 8 )
144 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable
145 sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept)
146 try:
147 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression")
148 r.abline(a=yintercept, b=slope, col="red")
149 except:
150 pass
151 else:
152 r.pairs(dat, main="Scatterplot Matrix", col="blue")
153 try:
154 r.plot(linear_model)
155 except:
156 pass
157 #r.dev_off()
158 grdevices.dev_off()