Mercurial > repos > iuc > goseq
diff goseq.r @ 2:25e1e7b40e55 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/goseq commit 46c4278d292ab4d76dc5f3f74c3109c3179be7ef
author | iuc |
---|---|
date | Mon, 24 Sep 2018 06:28:44 -0400 |
parents | 084d77515343 |
children | d93aa41a7522 |
line wrap: on
line diff
--- a/goseq.r Sun Jun 11 08:57:24 2017 -0400 +++ b/goseq.r Mon Sep 24 06:28:44 2018 -0400 @@ -6,13 +6,15 @@ suppressPackageStartupMessages({ library("goseq") library("optparse") + library("dplyr") + library("ggplot2") }) option_list <- list( make_option(c("-d", "--dge_file"), type="character", help="Path to file with differential gene expression result"), make_option(c("-w","--wallenius_tab"), type="character", help="Path to output file with P-values estimated using wallenius distribution."), - make_option(c("-s","--sampling_tab"), type="character", default=FALSE, help="Path to output file with P-values estimated using wallenius distribution."), - make_option(c("-n","--nobias_tab"), type="character", default=FALSE, help="Path to output file with P-values estimated using wallenius distribution and no correction for gene length bias."), + make_option(c("-s","--sampling_tab"), type="character", default=FALSE, help="Path to output file with P-values estimated using sampling distribution."), + make_option(c("-n","--nobias_tab"), type="character", default=FALSE, help="Path to output file with P-values estimated using hypergeometric distribution and no correction for gene length bias."), make_option(c("-l","--length_bias_plot"), type="character", default=FALSE, help="Path to length-bias plot."), make_option(c("-sw","--sample_vs_wallenius_plot"), type="character", default=FALSE, help="Path to plot comparing sampling with wallenius p-values."), make_option(c("-r", "--repcnt"), type="integer", default=100, help="Number of repeats for sampling"), @@ -23,7 +25,10 @@ make_option(c("-p", "--p_adj_method"), default="BH", type="character", help="Multiple hypothesis testing correction method to use"), make_option(c("-cat", "--use_genes_without_cat"), default=FALSE, type="logical", help="A large number of gene may have no GO term annotated. If this option is set to FALSE, genes without category will be ignored in the calculation of p-values(default behaviour). If TRUE these genes will count towards the total number of genes outside the tested category (default behaviour prior to version 1.15.2)."), - make_option(c("-plots", "--make_plots"), default=FALSE, type="logical", help="produce diagnostic plots?") + make_option(c("-plots", "--make_plots"), default=FALSE, type="logical", help="produce diagnostic plots?"), + make_option(c("-fc", "--fetch_cats"), default=NULL, type="character", help="Categories to get can include one or more of GO:CC, GO:BP, GO:MF, KEGG"), + make_option(c("-rd", "--rdata"), default=NULL, type="character", help="Path to RData output file."), + make_option(c("-tp", "--top_plot"), default=NULL, type="logical", help="Output PDF with top10 over-rep GO terms?") ) parser <- OptionParser(usage = "%prog [options] file", option_list=option_list) @@ -35,24 +40,36 @@ length_file = args$length_file genome = args$genome gene_id = args$gene_id -wallenius_tab = args$wallenius_tab sampling_tab = args$sampling_tab -nobias_tab = args$nobias_tab length_bias_plot = args$length_bias_plot sample_vs_wallenius_plot = args$sample_vs_wallenius_plot repcnt = args$repcnt p_adj_method = args$p_adj_method use_genes_without_cat = args$use_genes_without_cat make_plots = args$make_plots +rdata = args$rdata + +if (!is.null(args$fetch_cats)) { + fetch_cats = unlist(strsplit(args$fetch_cats, ",")) +} else { + fetch_cats = "Custom" +} # format DE genes into named vector suitable for goseq -dge_table = read.delim(dge_file, header = FALSE, sep="\t") +# check if header is present +first_line = read.delim(dge_file, header = FALSE, nrow=1) +second_col = toupper(first_line[, ncol(first_line)]) +if (second_col == TRUE || second_col == FALSE) { + dge_table = read.delim(dge_file, header = FALSE, sep="\t") +} else { + dge_table = read.delim(dge_file, header = TRUE, sep="\t") +} genes = as.numeric(as.logical(dge_table[,ncol(dge_table)])) # Last column contains TRUE/FALSE names(genes) = dge_table[,1] # Assuming first column contains gene names # gene lengths, assuming last column if (length_file != "FALSE" ) { - first_line = read.delim(dge_file, header = FALSE, nrow=1) + first_line = read.delim(length_file, header = FALSE, nrow=1) if (is.numeric(first_line[, ncol(first_line)])) { length_table = read.delim(length_file, header=FALSE, sep="\t", check.names=FALSE) } else { @@ -66,15 +83,17 @@ # Estimate PWF -if (make_plots == TRUE) { +if (make_plots != 'false') { pdf(length_bias_plot) } pwf=nullp(genes, genome = genome, id = gene_id, bias.data = gene_lengths, plot.fit=make_plots) -graphics.off() +if (make_plots != 'false') { + dev.off() +} # Fetch GO annotations if category_file hasn't been supplied: if (category_file == "FALSE") { - go_map=getgo(genes = names(genes), genome = genome, id = gene_id, fetch.cats=c("GO:CC", "GO:BP", "GO:MF", "KEGG")) + go_map=getgo(genes = names(genes), genome=genome, id=gene_id, fetch.cats=fetch_cats) } else { # check for header: first entry in first column must be present in genes, else it's a header first_line = read.delim(category_file, header = FALSE, nrow=1) @@ -85,25 +104,35 @@ } } +results <- list() + # wallenius approximation of p-values -if (wallenius_tab != "" && wallenius_tab!="None") { +if (!is.null(args$wallenius_tab)) { GO.wall=goseq(pwf, genome = genome, id = gene_id, use_genes_without_cat = use_genes_without_cat, gene2cat=go_map) GO.wall$p.adjust.over_represented = p.adjust(GO.wall$over_represented_pvalue, method=p_adj_method) GO.wall$p.adjust.under_represented = p.adjust(GO.wall$under_represented_pvalue, method=p_adj_method) - write.table(GO.wall, wallenius_tab, sep="\t", row.names = FALSE, quote = FALSE) + write.table(GO.wall, args$wallenius_tab, sep="\t", row.names = FALSE, quote = FALSE) + results[['Wallenius']] <- GO.wall } # hypergeometric (no length bias correction) -if (nobias_tab != "" && nobias_tab != "None") { +if (!is.null(args$nobias_tab)) { GO.nobias=goseq(pwf, genome = genome, id = gene_id, method="Hypergeometric", use_genes_without_cat = use_genes_without_cat, gene2cat=go_map) GO.nobias$p.adjust.over_represented = p.adjust(GO.nobias$over_represented_pvalue, method=p_adj_method) GO.nobias$p.adjust.under_represented = p.adjust(GO.nobias$under_represented_pvalue, method=p_adj_method) - write.table(GO.nobias, nobias_tab, sep="\t", row.names = FALSE, quote = FALSE) + write.table(GO.nobias, args$nobias_tab, sep="\t", row.names = FALSE, quote = FALSE) + results[['Hypergeometric']] <- GO.nobias } # Sampling distribution if (repcnt > 0) { + + # capture the sampling progress so it doesn't fill stdout + zz <- file("/dev/null", open = "wt") + sink(zz) GO.samp=goseq(pwf, genome = genome, id = gene_id, method="Sampling", repcnt=repcnt, use_genes_without_cat = use_genes_without_cat, gene2cat=go_map) + sink() + GO.samp$p.adjust.over_represented = p.adjust(GO.samp$over_represented_pvalue, method=p_adj_method) GO.samp$p.adjust.under_represented = p.adjust(GO.samp$under_represented_pvalue, method=p_adj_method) write.table(GO.samp, sampling_tab, sep="\t", row.names = FALSE, quote = FALSE) @@ -114,8 +143,35 @@ xlab="log10(Wallenius p-values)",ylab="log10(Sampling p-values)", xlim=c(-3,0)) abline(0,1,col=3,lty=2) - graphics.off() + dev.off() } + results[['Sampling']] <- GO.samp } +if (!is.null(args$top_plot)) { + # modified from https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/RNASeq2018/html/06_Gene_set_testing.nb.html + pdf("top10.pdf") + for (m in names(results)) { + p <- results[[m]] %>% + top_n(10, wt=-p.adjust.over_represented) %>% + mutate(hitsPerc=numDEInCat*100/numInCat) %>% + ggplot(aes(x=hitsPerc, + y=term, + colour=p.adjust.over_represented, + size=numDEInCat)) + + geom_point() + + expand_limits(x=0) + + labs(x="% DE in category", y="Category", colour="adj. P value", size="Count", title=paste("Top over-represented categories in", fetch_cats), subtitle=paste(m, " method")) + + theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5)) + print(p) + } + dev.off() +} + +# Output RData file +if (!is.null(args$rdata)) { + save.image(file = "goseq_analysis.RData") +} + + sessionInfo()