comparison heatmap2.xml @ 9:ee1c90c1c6cc draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/heatmap2 commit e3d7e01c96e49e65000f45d07e453d9f2625651a
author iuc
date Tue, 12 Nov 2024 16:44:29 +0000
parents 81988aed29bd
children 59c85accc8d6
comparison
equal deleted inserted replaced
8:81988aed29bd 9:ee1c90c1c6cc
1 <tool id="ggplot2_heatmap2" name="heatmap2" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="22.01"> 1 <tool id="ggplot2_heatmap2" name="heatmap2" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="22.01">
2 <macros> 2 <macros>
3 <token name="@TOOL_VERSION@">3.2.0</token> 3 <token name="@TOOL_VERSION@">3.2.0</token>
4 <token name="@VERSION_SUFFIX@">0</token> 4 <token name="@VERSION_SUFFIX@">1</token>
5 </macros> 5 </macros>
6 <requirements> 6 <requirements>
7 <requirement type="package" version="@TOOL_VERSION@">r-gplots</requirement> 7 <requirement type="package" version="@TOOL_VERSION@">r-gplots</requirement>
8 <requirement type="package" version="1.1_3">r-rcolorbrewer</requirement> 8 <requirement type="package" version="1.1_3">r-rcolorbrewer</requirement>
9 </requirements> 9 </requirements>
77 #if $cluster_cond.cluster == "yes": 77 #if $cluster_cond.cluster == "yes":
78 dendrogramtoplot <- "$cluster_cond.cluster_cols_rows" 78 dendrogramtoplot <- "$cluster_cond.cluster_cols_rows"
79 #if $cluster_cond.cluster_cols_rows == "both" 79 #if $cluster_cond.cluster_cols_rows == "both"
80 reorder_cols <- TRUE 80 reorder_cols <- TRUE
81 reorder_rows <- TRUE 81 reorder_rows <- TRUE
82 # Layout is:
83 # 4 = color key | 3 = dendrogram for columns
84 # 2 = dendrogram for rows | 1 = heatmap
82 layout_matrix <- rbind(c(4,3), c(2,1)) 85 layout_matrix <- rbind(c(4,3), c(2,1))
83 key_margins <- list(mar=c(4,0.5,2,1)) 86 key_margins <- list(mar=c(4,0.5,2,1))
84 lheight <- c(1, 5) 87 lheight <- c(1, 5)
85 lwidth <- c(1,3) 88 lwidth <- c(1,3)
86 #elif $cluster_cond.cluster_cols_rows == "row" 89 #elif $cluster_cond.cluster_cols_rows == "row"
87 reorder_cols <- FALSE 90 reorder_cols <- FALSE
88 reorder_rows <- TRUE 91 reorder_rows <- TRUE
92 # Layout is:
93 # 3 = dendrogram for columns (not plotted) + title | 4 = color key
94 # 2 = dendrogram for rows | 1 = heatmap
89 layout_matrix <- rbind(c(3,4), c(2,1)) 95 layout_matrix <- rbind(c(3,4), c(2,1))
90 key_margins <- list(mar=c(3,5,1,10)) 96 key_margins <- list(mar=c(3,5,1,10))
91 lheight <- c(1,7) 97 lheight <- c(1,7)
92 lwidth <- c(1,3) 98 lwidth <- c(1,3)
93 #elif $cluster_cond.cluster_cols_rows == "column" 99 #elif $cluster_cond.cluster_cols_rows == "column"
94 reorder_cols <- TRUE 100 reorder_cols <- TRUE
95 reorder_rows <- FALSE 101 reorder_rows <- FALSE
96 layout_matrix <- rbind(c(4), c(3), c(1), c(2)) 102 # Layout is:
97 key_margins <- list(mar=c(4,0.5,2,1)) 103 # nothing | 4 = color key
98 lheight <- c(0.3, 2, 6, 1) 104 # nothing | 3 = dendrogram for columns
99 lwidth <- c(1) 105 # 2 = dendrogram for rows (not plotted) | 1 = heatmap
106 layout_matrix <- rbind(c(0, 4), c(0, 3), c(2, 1))
107 key_margins <- list(mar=c(1, 5, 1, 10))
108 lheight <- c(0.5, 1, 5)
109 lwidth <- c(0.01, 1)
100 #end if 110 #end if
101 hclust_fun <- function(x) hclust(x, method='$cluster_cond.clustering') 111 hclust_fun <- function(x) hclust(x, method='$cluster_cond.clustering')
102 #if $cluster_cond.distance == 'pearson_correlation': 112 #if $cluster_cond.distance == 'pearson_correlation':
103 dist_fun <- function(x) as.dist(1 - cor(t(x))) 113 dist_fun <- function(x) as.dist(1 - cor(t(x)))
104 #elif $cluster_cond.distance == 'spearmann_correlation': 114 #elif $cluster_cond.distance == 'spearmann_correlation':
281 </test> 291 </test>
282 <test> 292 <test>
283 <param name="input1" value="mtcars.txt"/> 293 <param name="input1" value="mtcars.txt"/>
284 <param name="cluster" value="no"/> 294 <param name="cluster" value="no"/>
285 <param name="image_file_format" value="png"/> 295 <param name="image_file_format" value="png"/>
286 <output name="output1" file="result2.png" compare="sim_size" delta="12000" /> 296 <output name="output1" file="result2.png" compare="image_diff" />
287 </test> 297 </test>
288 <test> 298 <test>
289 <param name="input1" value="mtcars.txt"/> 299 <param name="input1" value="mtcars.txt"/>
290 <param name="zscore" value="cols"/> 300 <param name="zscore" value="cols"/>
291 <param name="cluster" value="yes"/> 301 <param name="cluster" value="yes"/>
292 <param name="cluster_cols_rows" value="row"/> 302 <param name="cluster_cols_rows" value="row"/>
293 <param name="labels" value="rows"/> 303 <param name="labels" value="rows"/>
294 <param name="type" value="three"/> 304 <param name="type" value="three"/>
295 <param name="image_file_format" value="png"/> 305 <param name="image_file_format" value="png"/>
296 <output name="output1" file="result3.png" compare="sim_size"/> 306 <output name="output1" file="result3.png" compare="image_diff"/>
297 </test> 307 </test>
298 <test> 308 <test>
299 <param name="input1" value="mtcars.txt"/> 309 <param name="input1" value="mtcars.txt"/>
300 <param name="cluster" value="yes"/> 310 <param name="cluster" value="yes"/>
301 <param name="distance" value="pearson_correlation"/> 311 <param name="distance" value="pearson_correlation"/>
305 <test> 315 <test>
306 <param name="input1" value="mtcars.txt"/> 316 <param name="input1" value="mtcars.txt"/>
307 <param name="zscore" value="rows"/> 317 <param name="zscore" value="rows"/>
308 <param name="type" value="three"/> 318 <param name="type" value="three"/>
309 <param name="image_file_format" value="png"/> 319 <param name="image_file_format" value="png"/>
310 <output name="output1" file="result4.png" compare="sim_size" delta="12000" /> 320 <output name="output1" file="result4.png" compare="image_diff" />
311 </test> 321 </test>
312 <test> 322 <test>
313 <param name="input1" value="mtcars.txt"/> 323 <param name="input1" value="mtcars.txt"/>
314 <param name="cluster" value="yes"/> 324 <param name="cluster" value="yes"/>
315 <param name="distance" value="pearson_correlation"/> 325 <param name="distance" value="pearson_correlation"/>
316 <param name="scale" value="row"/> 326 <param name="scale" value="row"/>
317 <param name="type" value="three"/> 327 <param name="type" value="three"/>
318 <param name="image_file_format" value="png"/> 328 <param name="image_file_format" value="png"/>
319 <output name="output1" file="result5.png" compare="sim_size" delta="12000" /> 329 <output name="output1" file="result5.png" compare="image_diff" />
320 </test> 330 </test>
321 <test> 331 <test>
322 <param name="input1" value="mtcars.txt"/> 332 <param name="input1" value="mtcars.txt"/>
323 <param name="cluster" value="yes"/> 333 <param name="cluster" value="yes"/>
324 <param name="distance" value="spearmann_correlation"/> 334 <param name="distance" value="spearmann_correlation"/>
325 <param name="scale" value="column"/> 335 <param name="scale" value="column"/>
326 <param name="type" value="three"/> 336 <param name="type" value="three"/>
327 <param name="image_file_format" value="png"/> 337 <param name="image_file_format" value="png"/>
328 <output name="output1" file="result6.png" compare="sim_size" delta="12000" /> 338 <output name="output1" file="result6.png" compare="image_diff" />
339 </test>
340 <test>
341 <param name="input1" value="mtcars.txt"/>
342 <param name="cluster" value="yes"/>
343 <param name="cluster_cols_rows" value="column"/>
344 <param name="distance" value="pearson_correlation"/>
345 <param name="scale" value="row"/>
346 <param name="type" value="palettes"/>
347 <param name="name" value="YlOrBr"/>
348 <param name="image_file_format" value="png"/>
349 <output name="output1" file="result7.png" compare="image_diff" />
329 </test> 350 </test>
330 </tests> 351 </tests>
331 <help><![CDATA[ 352 <help><![CDATA[
332 This tool employs the heatmap.2 function from the R gplots package and will generate a heatmap of your data. If clustering is enabled, the heatmap uses the Euclidean distance method and the Complete hierarchical clustering method by default. 353 This tool employs the heatmap.2 function from the R gplots package and will generate a heatmap of your data. If clustering is enabled, the heatmap uses the Euclidean distance method and the Complete hierarchical clustering method by default.
333 354