Mercurial > repos > greg > ks_distribution
comparison ks_distribution.R @ 4:a91bd45aa8b1 draft
Uploaded
| author | greg |
|---|---|
| date | Wed, 31 May 2017 07:55:32 -0400 |
| parents | 5ace8af6edb6 |
| children | 22cae2172406 |
comparison
equal
deleted
inserted
replaced
| 3:e293a5736ae9 | 4:a91bd45aa8b1 |
|---|---|
| 15 | 15 |
| 16 get_num_components = function(components_data) | 16 get_num_components = function(components_data) |
| 17 { | 17 { |
| 18 # Get the max of the number_comp column. | 18 # Get the max of the number_comp column. |
| 19 number_comp = components_data[, 3] | 19 number_comp = components_data[, 3] |
| 20 num_components <- max(number_comp, na.rm=TRUE); | 20 num_components <- max(number_comp, na.rm=TRUE) |
| 21 num_components | 21 return(num_components) |
| 22 } | 22 } |
| 23 | 23 |
| 24 get_pi_mu_var = function(components_data, num_components) | 24 get_pi_mu_var = function(components_data, num_components) |
| 25 { | 25 { |
| 26 # FixMe: enhance this to generically handle any integer value for num_components. | 26 # FixMe: enhance this to generically handle any integer value for num_components. |
| 27 if (num_components == 1) | 27 if (num_components == 1) |
| 28 { | 28 { |
| 29 pi <- c(components_data[1, 9]); | 29 pi <- c(components_data[1, 9]) |
| 30 mu <- c(components_data[1, 7]); | 30 mu <- c(components_data[1, 7]) |
| 31 var <- c(components_data[1, 8]); | 31 var <- c(components_data[1, 8]) |
| 32 } | 32 } |
| 33 else if (num_components == 2) | 33 else if (num_components == 2) |
| 34 { | 34 { |
| 35 pi <- c(components_data[2, 9], components_data[3, 9]); | 35 pi <- c(components_data[2, 9], components_data[3, 9]) |
| 36 mu <- c(components_data[2, 7], components_data[3, 7]); | 36 mu <- c(components_data[2, 7], components_data[3, 7]) |
| 37 var <- c(components_data[2, 8], components_data[3, 8]); | 37 var <- c(components_data[2, 8], components_data[3, 8]) |
| 38 } | 38 } |
| 39 else if (num_components == 3) | 39 else if (num_components == 3) |
| 40 { | 40 { |
| 41 pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]); | 41 pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]) |
| 42 mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]); | 42 mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]) |
| 43 var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]); | 43 var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]) |
| 44 } | 44 } |
| 45 else if (num_components == 4) | 45 else if (num_components == 4) |
| 46 { | 46 { |
| 47 pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]); | 47 pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]) |
| 48 mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]); | 48 mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]) |
| 49 var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]); | 49 var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]) |
| 50 } | 50 } |
| 51 return = c(pi, mu, var) | 51 else if (num_components == 5) |
| 52 return | 52 { |
| 53 pi <- c(components_data[11, 9], components_data[12, 9], components_data[13, 9], components_data[14, 9], components_data[15, 9]) | |
| 54 mu <- c(components_data[11, 7], components_data[12, 7], components_data[13, 7], components_data[14, 7], components_data[15, 7]) | |
| 55 var <- c(components_data[11, 8], components_data[12, 8], components_data[13, 8], components_data[14, 8], components_data[15, 8]) | |
| 56 } | |
| 57 else if (num_components == 6) | |
| 58 { | |
| 59 pi <- c(components_data[16, 9], components_data[17, 9], components_data[18, 9], components_data[19, 9], components_data[20, 9], components_data[21, 9]) | |
| 60 mu <- c(components_data[16, 7], components_data[17, 7], components_data[18, 7], components_data[19, 7], components_data[20, 7], components_data[21, 7]) | |
| 61 var <- c(components_data[16, 8], components_data[17, 8], components_data[18, 8], components_data[19, 8], components_data[20, 8], components_data[21, 8]) | |
| 62 } | |
| 63 results = c(pi, mu, var) | |
| 64 return(results) | |
| 53 } | 65 } |
| 54 | 66 |
| 55 plot_ks<-function(kaks_input, output, pi, mu, var) | 67 plot_ks<-function(kaks_input, output, pi, mu, var, max_ks) |
| 56 { | 68 { |
| 57 # Start PDF device driver to save charts to output. | 69 # Start PDF device driver to save charts to output. |
| 58 pdf(file=output, bg="white") | 70 pdf(file=output, bg="white") |
| 71 kaks <- read.table(file=kaks_input, header=T) | |
| 72 max_ks <- max(kaks$Ks, na.rm=TRUE) | |
| 59 # Change bin width | 73 # Change bin width |
| 60 bin <- 0.05 * seq(0, 40); | 74 max_bin_range <- as.integer(max_ks / 0.05) |
| 61 kaks <- read.table(file=kaks_input, header=T); | 75 bin <- 0.05 * seq(0, max_bin_range) |
| 62 kaks <- kaks[kaks$Ks<2,]; | 76 kaks <- kaks[kaks$Ks<max_ks,]; |
| 63 h.kst <- hist(kaks$Ks, breaks=bin, plot=F); | 77 h.kst <- hist(kaks$Ks, breaks=bin, plot=F) |
| 64 nc <- h.kst$counts; | 78 nc <- h.kst$counts |
| 65 vx <- h.kst$mids; | 79 vx <- h.kst$mids |
| 66 ntot <- sum(nc); | 80 ntot <- sum(nc) |
| 67 # Set margin for plot bottom, left top, right. | 81 # Set margin for plot bottom, left top, right. |
| 68 par(mai=c(0.5, 0.5, 0, 0)); | 82 par(mai=c(0.5, 0.5, 0, 0)) |
| 69 # Plot dimension in inches. | 83 # Plot dimension in inches. |
| 70 par(pin=c(2.5, 2.5)); | 84 par(pin=c(2.5, 2.5)) |
| 71 g <- calculate_fitted_density(pi, mu, var); | 85 g <- calculate_fitted_density(pi, mu, var) |
| 72 h <- ntot * 2.5 / sum(g); | 86 h <- ntot * 2.5 / sum(g) |
| 73 vx <- seq(1, 100) * 0.02; | 87 vx <- seq(1, 100) * 0.02 |
| 74 ymax <- max(nc) + 5; | 88 ymax <- max(nc) + 5 |
| 75 barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax)); | 89 barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0, max_ks), ylim=c(0, ymax), col="lightpink1", border="lightpink3") |
| 76 # Add x-axis. | 90 # Add x-axis. |
| 77 axis(1); | 91 axis(1) |
| 78 color <- c('green', 'blue', 'black', 'red'); | 92 color <- c('red', 'yellow','green','black','blue', 'darkorange' ) |
| 79 for (i in 1:length(mu)) | 93 for (i in 1:length(mu)) |
| 80 { | 94 { |
| 81 lines(vx, g[,i] * h, lwd=2, col=color[i]); | 95 lines(vx, g[,i] * h, lwd=2, col=color[i]) |
| 82 } | 96 } |
| 83 }; | 97 } |
| 84 | 98 |
| 85 calculate_fitted_density <- function(pi, mu, var) | 99 calculate_fitted_density <- function(pi, mu, var) |
| 86 { | 100 { |
| 87 comp <- length(pi); | 101 comp <- length(pi) |
| 88 var <- var/mu^2; | 102 var <- var/mu^2 |
| 89 mu <- log(mu); | 103 mu <- log(mu) |
| 90 #calculate lognormal density | 104 # Calculate lognormal density. |
| 91 vx <- seq(1, 100) * 0.02; | 105 vx <- seq(1, 100) * 0.02 |
| 92 fx <- matrix(0, 100, comp); | 106 fx <- matrix(0, 100, comp) |
| 93 for (i in 1:100) | 107 for (i in 1:100) |
| 94 { | 108 { |
| 95 for (j in 1:comp) | 109 for (j in 1:comp) |
| 96 { | 110 { |
| 97 fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))); | 111 fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))) |
| 98 }; | 112 if (is.nan(fx[i,j])) fx[i,j]<-0 |
| 99 }; | 113 } |
| 100 fx; | 114 } |
| 115 return(fx) | |
| 101 } | 116 } |
| 102 | 117 |
| 103 # Read in the components data. | 118 # Read in the components data. |
| 104 components_data <- read.delim(opt$components_input, header=TRUE); | 119 components_data <- read.delim(opt$components_input, header=TRUE) |
| 105 # Get the number of components. | 120 # Get the number of components. |
| 106 num_components <- get_num_components(components_data) | 121 num_components <- get_num_components(components_data) |
| 107 | 122 |
| 108 # Set pi, mu, var. | 123 # Set pi, mu, var. |
| 109 items <- get_pi_mu_var(components_data, num_components); | 124 items <- get_pi_mu_var(components_data, num_components) |
| 110 pi <- items[1]; | 125 pi <- items[1:3] |
| 111 mu <- items[2]; | 126 mu <- items[4:6] |
| 112 var <- items[3]; | 127 var <- items[7:9] |
| 113 | 128 |
| 114 # Plot the output. | 129 # Plot the output. |
| 115 plot_ks(opt$kaks_input, opt$output, pi, mu, var); | 130 plot_ks(opt$kaks_input, opt$output, pi, mu, var, max_ks) |
