Mercurial > repos > greg > kaks_analysis_barplot
comparison kaks_analysis_barplot.R @ 0:844acb833219 draft
Uploaded
| author | greg |
|---|---|
| date | Wed, 08 Mar 2017 08:55:19 -0500 |
| parents | |
| children | b4f599423810 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:844acb833219 |
|---|---|
| 1 #!/usr/bin/env Rscript | |
| 2 | |
| 3 suppressPackageStartupMessages(library("optparse")) | |
| 4 | |
| 5 option_list <- list( | |
| 6 make_option(c("-c", "--components"), action="store", dest="components", help="Ks significant components input dataset"), | |
| 7 make_option(c("-o", "--output"), action="store", dest="output", default=NULL, help="Output dataset"), | |
| 8 ) | |
| 9 | |
| 10 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) | |
| 11 args <- parse_args(parser, positional_arguments=TRUE) | |
| 12 opt <- args$options | |
| 13 | |
| 14 | |
| 15 get_num_components=function(components_dataset) | |
| 16 { | |
| 17 # Read in the components data. | |
| 18 components_data <- read.delim(components_dataset, header=TRUE); | |
| 19 # Get the max of the number_comp column. | |
| 20 num_components <- max(components_data[3, ], na.rm=TRUE); | |
| 21 return = c(components_data, num_components) | |
| 22 return | |
| 23 } | |
| 24 | |
| 25 get_pi_mu_var = function(components_data, num_components) { | |
| 26 # FixMe: enhance this to generically handle any integer value for num_components. | |
| 27 if (num_components == 1) { | |
| 28 pi <- c(components_data[1, 9]); | |
| 29 mu <- c(components_data[1, 7]); | |
| 30 var <- c(components_data[1, 8]); | |
| 31 } else if (num_components == 2) { | |
| 32 pi <- c(components_data[2, 9], components_data[3, 9]); | |
| 33 mu <- c(components_data[2, 7], components_data[3, 7]); | |
| 34 var <- c(components_data[2, 8], components_data[3, 8]); | |
| 35 } else if (num_components == 3) { | |
| 36 pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]); | |
| 37 mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]); | |
| 38 var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]); | |
| 39 } else if (num_components == 4) { | |
| 40 pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]); | |
| 41 mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]); | |
| 42 var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]); | |
| 43 return = c(pi, mu, var) | |
| 44 return | |
| 45 } | |
| 46 | |
| 47 plot_ks<-function(ksfile, pi, mu, var) { | |
| 48 #change bin width | |
| 49 bin <- 0.05 * seq(0, 40); | |
| 50 kaks <- read.table(file=ksfile, header=T); | |
| 51 kaks <- kaks[kaks$Ks<2,]; | |
| 52 h.kst <- hist(kaks$Ks, breaks=bin, plot=F); | |
| 53 nc <- h.kst$counts; | |
| 54 vx <- h.kst$mids; | |
| 55 ntot <- sum(nc); | |
| 56 # Set margin for plot bottom, left top, right. | |
| 57 par(mai=c(0.5, 0.5, 0, 0)); | |
| 58 # Plot dimension in inches. | |
| 59 par(pin=c(2.5, 2.5)); | |
| 60 g <- calculate_fitted_density(pi, mu, var); | |
| 61 h <- ntot * 2.5 / sum(g); | |
| 62 vx <- seq(1, 100) * 0.02; | |
| 63 ymax <- max(nc) + 5; | |
| 64 barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax)); | |
| 65 # Add x-axis. | |
| 66 axis(1); | |
| 67 color <- c('green', 'blue', 'black', 'red'); | |
| 68 for (i in 1:length(mu)) { | |
| 69 lines(vx, g[,i] * h, lwd=2, col=color[i]); | |
| 70 } | |
| 71 }; | |
| 72 | |
| 73 calculate_fitted_density <- function(pi, mu, var) { | |
| 74 comp <- length(pi); | |
| 75 var <- var/mu^2; | |
| 76 mu <- log(mu);; | |
| 77 #calculate lognormal density | |
| 78 vx <- seq(1, 100) * 0.02; | |
| 79 fx <- matrix(0, 100, comp); | |
| 80 for (i in 1:100) { | |
| 81 for (j in 1:comp) { | |
| 82 fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))); | |
| 83 }; | |
| 84 }; | |
| 85 fx; | |
| 86 } | |
| 87 | |
| 88 # Read in the components data and get the number of components. | |
| 89 items <- get_num_components(opt$components) | |
| 90 components_data <- items[1] | |
| 91 num_components <- items[2] | |
| 92 | |
| 93 # Set output file name. | |
| 94 if (is.null(opt$output)) { | |
| 95 # Name the output file based on the name of the | |
| 96 # input file, properly handling full path if passed. | |
| 97 input_filename = basename(opt$components) | |
| 98 items = strsplit(input_filename, ".") | |
| 99 output_filename <- paste(items[1], ".components.", num_components, ".pdf") | |
| 100 } else { | |
| 101 output_filename <- opt$output | |
| 102 } | |
| 103 | |
| 104 # Set pi, mu, var. | |
| 105 items <- get_pi_mu_var(components_data, num_components) | |
| 106 pi <- items[1] | |
| 107 mu <- items[2] | |
| 108 var <- items[3] | |
| 109 | |
| 110 # Plot the output. | |
| 111 plot_ks(output_filename, pi, mu, var) |
