# HG changeset patch
# User glogobyte
# Date 1603871374 0
# Node ID d77dace80d5ab50f55d2a2c3b9f1fbea529a7085
# Parent a09d238416babf8a613584709fa5312bf427868f
Deleted selected files
diff -r a09d238416ba -r d77dace80d5a viz.xml
--- a/viz.xml Wed Oct 28 07:42:50 2020 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,54 +0,0 @@
-
- for each sequence in a file
-
- fpdf
- python
- numpy
- matplotlib
- pandas
-
-
- #if $stats.choice == "1":
- python $__tool_directory__/viz_ultra.py -in $input_file -p_value "$stats.pvalue" -fc $log2fc -top $top_mirna -tool_dir $__tool_directory__ -statistic "$stats.choice" -diff_tool "$tool"
- #else:
- python $__tool_directory__/viz_ultra.py -in $input_file -p_value "$stats.padj" -fc $log2fc -top $top_mirna -tool_dir $__tool_directory__ -statistic "$stats.choice" -diff_tool "$tool"
- #end if
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff -r a09d238416ba -r d77dace80d5a viz_graphs.py
--- a/viz_graphs.py Wed Oct 28 07:42:50 2020 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,210 +0,0 @@
-import sys
-
-# Read a file and return it as a list
-def read(path, flag):
- if flag == 0:
- with open(path) as fp:
- file=fp.readlines()
- fp.close()
- return file
-
- if flag == 1:
- with open(path) as fp:
- file = fp.read().splitlines()
- fp.close()
- return file
-
-
-#################################################################################################
-def pdf_before_DE(analysis):
-
- # Import FPDF class
- from fpdf import FPDF, fpdf
-
- # Import glob module to find all the files matching a pattern
- import glob
-
- # Image extensions
- if analysis=="2":
- image_extensions = ("c_hist_red.png","t_hist_red.png","pie_non.png","spider_red.png","spider_non_red.png","c_logo.png","t_logo.png","c_bar.png","t_bar.png")
- else:
- image_extensions = ("c_hist_red.png","t_hist_red.png","pie_tem.png","spider_red.png","spider_non_red.png")
- # This list will hold the images file names
- images = []
-
- # Build the image list by merging the glob results (a list of files)
- # for each extension. We are taking images from current folder.
- for extension in image_extensions:
- images.extend(glob.glob(extension))
- #sys.exit(images)
- # Create instance of FPDF class
- pdf = FPDF('P', 'in', 'A4')
- # Add new page. Without this you cannot create the document.
- pdf.add_page()
- # Set font to Arial, 'B'old, 16 pts
- pdf.set_font('Arial', 'B', 20.0)
-
- # Page header
- pdf.cell(pdf.w-0.5, 0.5, 'IsomiR Profile Report',align='C')
- pdf.ln(0.7)
- pdf.set_font('Arial','', 16.0)
- pdf.cell(pdf.w-0.5, 0.5, 'sRNA Length Distribution',align='C')
-
- # Smaller font for image captions
- pdf.set_font('Arial', '', 11.0)
-
- # Image caption
- pdf.ln(0.5)
-
- yh=FPDF.get_y(pdf)
- pdf.image(images[0],x=0.3,w=4, h=3)
- pdf.image(images[1],x=4,y=yh, w=4, h=3)
- pdf.ln(0.3)
-
- # Image caption
- pdf.cell(0.2)
- pdf.cell(3.0, 0.0, " Mapped and unmapped reads to custom precussor arm reference DB (5p and 3p arms) in Control (left)")
- pdf.ln(0.2)
- pdf.cell(0.2)
- pdf.cell(3.0, 0.0, " and Treated (right) groups")
-
-
- pdf.ln(0.5)
- h1=FPDF.get_y(pdf)
- pdf.image(images[2],x=1, w=6.5, h=5)
- h2=FPDF.get_y(pdf)
- FPDF.set_y(pdf,h1+0.2)
- pdf.set_font('Arial','', 14.0)
- pdf.cell(pdf.w-0.5, 0.5, 'Template and non-template IsomiRs',align='C')
- pdf.set_font('Arial', '', 11.0)
- FPDF.set_y(pdf,h2)
- FPDF.set_y(pdf,9.5)
- # Image caption
- pdf.cell(0.2)
- if analysis=="2":
- pdf.cell(3.0, 0.0, " Template, non-template, miRNA reference and unmapped sequences as percentage of total sRNA")
- else:
- pdf.cell(3.0, 0.0, " Template, miRNA reference and unmapped sequences as percentage of total sRNA")
- pdf.ln(0.2)
- pdf.cell(0.2)
- pdf.cell(3.0, 0.0, " reads in Control (left) and treated (right) groups")
-
-
-
- pdf.add_page()
- pdf.set_font('Arial', 'B', 16.0)
- pdf.cell(pdf.w-0.5, 0.5, "Reference form and isomiR among total miRNA reads",align='C')
- pdf.ln(0.7)
- pdf.set_font('Arial', 'B', 12.0)
- pdf.cell(pdf.w-0.5, 0.5, "Template isomiR profile (redundant)",align='C')
- pdf.ln(0.5)
- pdf.image(images[3],x=1.5, w=5.5, h=4)
- pdf.ln(0.6)
- pdf.cell(pdf.w-0.5, 0.0, "Template isomiR profile (non-redundant)",align='C')
- pdf.set_font('Arial', '', 12.0)
- pdf.ln(0.2)
- pdf.image(images[4],x=1.5, w=5.5, h=4)
- pdf.ln(0.3)
- pdf.set_font('Arial', '', 11.0)
- pdf.cell(0.2)
- pdf.cell(3.0, 0.0, " * IsomiRs potentialy initiated from multiple loci")
-
-
- if analysis=="2":
- pdf.add_page('L')
-
- pdf.set_font('Arial', 'B', 16.0)
- pdf.cell(pdf.w-0.5, 0.5, "Non-template IsomiRs",align='C')
- pdf.ln(0.5)
- pdf.set_font('Arial', 'B', 12.0)
- pdf.cell(pdf.w-0.5, 0.5, "3' Additions of reference of isomiR sequence",align='C')
- pdf.ln(0.7)
-
- yh=FPDF.get_y(pdf)
- pdf.image(images[5],x=1.5,w=3.65, h=2.65)
- pdf.image(images[7],x=6.5,y=yh, w=3.65, h=2.65)
- pdf.ln(0.5)
- yh=FPDF.get_y(pdf)
- pdf.image(images[6],x=1.5,w=3.65, h=2.65)
- pdf.image(images[8],x=6.5,y=yh, w=3.65, h=2.65)
-
- pdf.close()
- pdf.output('report1.pdf','F')
-
-
-
-
-#############################################################################################################################################################3
-
-def pdf_after_DE(analysis,top):
-
- # Import FPDF class
- from fpdf import FPDF
-
- # Import glob module to find all the files matching a pattern
- import glob
-
- # Image extensions
- if analysis=="2":
- image_extensions = ("tem.png","a2.png","non.png")
- else:
- image_extensions = ("tem.png","a2.png")
-
- # This list will hold the images file names
- images = []
-
- # Build the image list by merging the glob results (a list of files)
- # for each extension. We are taking images from current folder.
- for extension in image_extensions:
- images.extend(glob.glob(extension))
- #sys.exit(images)
- # Create instance of FPDF class
- pdf = FPDF('P', 'in', 'letter')
- # Add new page. Without this you cannot create the document.
- pdf.add_page()
- # Set font to Arial, 'B'old, 16 pts
- pdf.set_font('Arial', 'B', 16.0)
-
- # Page header
- pdf.cell(pdf.w-0.5, 0.5, 'Differential expression of miRNAs and Isoforms',align='C')
- #pdf.ln(0.25)
-
- pdf.ln(0.7)
- pdf.set_font('Arial','B', 12.0)
- if "tem.png" in images:
- pdf.cell(pdf.w-0.5, 0.5, 'Top '+top+' most differentially expressed miRNA and template isoforms',align='C')
- # Smaller font for image captions
- pdf.set_font('Arial', '', 10.0)
- # Image caption
- pdf.ln(0.4)
- pdf.image(images[images.index("tem.png")],x=0.8, w=7, h=8)
- pdf.ln(0.3)
- pdf.set_font('Arial','B', 12.0)
- else:
- print("WARNING: There aren't miRNAs which fullfiled these criteria" )
-
- if "non.png" in images and analysis=="2":
- if "tem.png" in images: pdf.add_page()
- pdf.ln(0.7)
- pdf.cell(pdf.w-0.5, 0.5, 'Top '+top+' most differentially expressed non-template isomiRs',align='C')
- pdf.ln(0.4)
- pdf.image(images[images.index("non.png")],x=0.5, w=7.5, h=6.5)
- else:
- print("WARNING: There aren't non-template miRNAs which fullfiled these criteria" )
-
-
- if "a2.png" in images:
- if len(images)>=2: pdf.add_page()
- pdf.ln(0.5)
- pdf.cell(pdf.w-0.5, 0.5, 'Top '+top+' most differentially expressed miRNAs and isomiRs grouped by arm',align='C')
- pdf.ln(0.4)
- pdf.image(images[images.index("a2.png")],x=0.8, w=7, h=8)
- pdf.ln(0.3)
- else:
- print("WARNING: There aren't non-template miRNAs which fullfiled these criteria" )
-
-
- pdf.output('report2.pdf', 'F')
-
-
-
diff -r a09d238416ba -r d77dace80d5a viz_ultra.py
--- a/viz_ultra.py Wed Oct 28 07:42:50 2020 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,270 +0,0 @@
-import argparse
-from viz_graphs import *
-import sys
-import pandas as pd
-import matplotlib.pyplot as plt
-import matplotlib.patches as mpatches
-import matplotlib.font_manager as font_manager
-import time
-from multiprocessing import Process, Queue, Lock, Pool, Manager, Value
-
-
-##################################################################################################################################################################################################################
-
-def top_diff(miRNA_info, number,flag,l):
-
- Kind=[]
-
- miRNA_info.sort(key = lambda x: abs(x[1]),reverse=True)
- miRNA_info = miRNA_info[:number]
- miRNA_info.sort(key = lambda x: x[0])
-
- for x in miRNA_info:
- if x[1] > 0:
- Kind.append(True)
- elif x[1] < 0:
- Kind.append(False)
- else:
- Kind.append("Zero")
-
- top_miRNA = {"Names": [x[0] for x in miRNA_info],
- "Log2FC": [x[1] for x in miRNA_info],
- "Kind": Kind};
-
- df_miRNA = pd.DataFrame(data=top_miRNA)
- df_miRNA = df_miRNA.sort_values(by=['Names'])
- if df_miRNA.empty==False:
- h1=df_miRNA.plot.barh(x= 'Names',y='Log2FC',color=df_miRNA.Kind.map({True: 'g', False: 'r', 'Zero':'k'}))
- figure = plt.gcf() # get current figure
- figure.set_size_inches(5, 12) # set figure's size manually to your full screen (32x18)
- up_reg = mpatches.Patch(color='green', label='Upregulated')
- down_reg = mpatches.Patch(color='red', label='Downregulated')
- font = font_manager.FontProperties(weight='bold', style='normal')
- l3 = plt.legend(handles=[up_reg,down_reg],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)
- h1.set_ylabel(" ", fontsize=3, fontweight='bold')
- h1.set_xlabel("Log2FC", fontsize=12, fontweight='bold')
- plt.axvline(x=0, color="k")
-
- plt.grid(axis='y', linewidth=0.2)
- plt.grid(axis='x', linewidth=0.2)
- if flag=='t':
- plt.savefig('tem.png', bbox_inches='tight', dpi=300)
- if flag=='nt':
- plt.savefig('non.png', bbox_inches='tight', dpi=300)
-
-####################################################################################################################################################################################################################
-
-def unique(sequence):
- seen = set()
- return [x for x in sequence if not (x in seen or seen.add(x))]
-
-###########################################################################################################################################################################################################################################################################
-
-def top_scatter_non(matures,isoforms,non_temp,uni_names,number):
-
- mat_names=[]
- mat_log2fc=[]
-
- iso_names=[]
- iso_log2fc=[]
-
- non_temp_names=[]
- non_temp_log2fc=[]
-
- count=0
- for x in uni_names:
- flag = False
- if countlog2fc and float(x[2])log2fc and float(x[2])log2fc and float(x[2])1 and float(x[2])1 and float(x[2])1 and float(x[2])