# HG changeset patch # User glogobyte # Date 1603871374 0 # Node ID d77dace80d5ab50f55d2a2c3b9f1fbea529a7085 # Parent a09d238416babf8a613584709fa5312bf427868f Deleted selected files diff -r a09d238416ba -r d77dace80d5a viz.xml --- a/viz.xml Wed Oct 28 07:42:50 2020 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,54 +0,0 @@ - - for each sequence in a file - - fpdf - python - numpy - matplotlib - pandas - - - #if $stats.choice == "1": - python $__tool_directory__/viz_ultra.py -in $input_file -p_value "$stats.pvalue" -fc $log2fc -top $top_mirna -tool_dir $__tool_directory__ -statistic "$stats.choice" -diff_tool "$tool" - #else: - python $__tool_directory__/viz_ultra.py -in $input_file -p_value "$stats.padj" -fc $log2fc -top $top_mirna -tool_dir $__tool_directory__ -statistic "$stats.choice" -diff_tool "$tool" - #end if - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff -r a09d238416ba -r d77dace80d5a viz_graphs.py --- a/viz_graphs.py Wed Oct 28 07:42:50 2020 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,210 +0,0 @@ -import sys - -# Read a file and return it as a list -def read(path, flag): - if flag == 0: - with open(path) as fp: - file=fp.readlines() - fp.close() - return file - - if flag == 1: - with open(path) as fp: - file = fp.read().splitlines() - fp.close() - return file - - -################################################################################################# -def pdf_before_DE(analysis): - - # Import FPDF class - from fpdf import FPDF, fpdf - - # Import glob module to find all the files matching a pattern - import glob - - # Image extensions - if analysis=="2": - image_extensions = ("c_hist_red.png","t_hist_red.png","pie_non.png","spider_red.png","spider_non_red.png","c_logo.png","t_logo.png","c_bar.png","t_bar.png") - else: - image_extensions = ("c_hist_red.png","t_hist_red.png","pie_tem.png","spider_red.png","spider_non_red.png") - # This list will hold the images file names - images = [] - - # Build the image list by merging the glob results (a list of files) - # for each extension. We are taking images from current folder. - for extension in image_extensions: - images.extend(glob.glob(extension)) - #sys.exit(images) - # Create instance of FPDF class - pdf = FPDF('P', 'in', 'A4') - # Add new page. Without this you cannot create the document. - pdf.add_page() - # Set font to Arial, 'B'old, 16 pts - pdf.set_font('Arial', 'B', 20.0) - - # Page header - pdf.cell(pdf.w-0.5, 0.5, 'IsomiR Profile Report',align='C') - pdf.ln(0.7) - pdf.set_font('Arial','', 16.0) - pdf.cell(pdf.w-0.5, 0.5, 'sRNA Length Distribution',align='C') - - # Smaller font for image captions - pdf.set_font('Arial', '', 11.0) - - # Image caption - pdf.ln(0.5) - - yh=FPDF.get_y(pdf) - pdf.image(images[0],x=0.3,w=4, h=3) - pdf.image(images[1],x=4,y=yh, w=4, h=3) - pdf.ln(0.3) - - # Image caption - pdf.cell(0.2) - pdf.cell(3.0, 0.0, " Mapped and unmapped reads to custom precussor arm reference DB (5p and 3p arms) in Control (left)") - pdf.ln(0.2) - pdf.cell(0.2) - pdf.cell(3.0, 0.0, " and Treated (right) groups") - - - pdf.ln(0.5) - h1=FPDF.get_y(pdf) - pdf.image(images[2],x=1, w=6.5, h=5) - h2=FPDF.get_y(pdf) - FPDF.set_y(pdf,h1+0.2) - pdf.set_font('Arial','', 14.0) - pdf.cell(pdf.w-0.5, 0.5, 'Template and non-template IsomiRs',align='C') - pdf.set_font('Arial', '', 11.0) - FPDF.set_y(pdf,h2) - FPDF.set_y(pdf,9.5) - # Image caption - pdf.cell(0.2) - if analysis=="2": - pdf.cell(3.0, 0.0, " Template, non-template, miRNA reference and unmapped sequences as percentage of total sRNA") - else: - pdf.cell(3.0, 0.0, " Template, miRNA reference and unmapped sequences as percentage of total sRNA") - pdf.ln(0.2) - pdf.cell(0.2) - pdf.cell(3.0, 0.0, " reads in Control (left) and treated (right) groups") - - - - pdf.add_page() - pdf.set_font('Arial', 'B', 16.0) - pdf.cell(pdf.w-0.5, 0.5, "Reference form and isomiR among total miRNA reads",align='C') - pdf.ln(0.7) - pdf.set_font('Arial', 'B', 12.0) - pdf.cell(pdf.w-0.5, 0.5, "Template isomiR profile (redundant)",align='C') - pdf.ln(0.5) - pdf.image(images[3],x=1.5, w=5.5, h=4) - pdf.ln(0.6) - pdf.cell(pdf.w-0.5, 0.0, "Template isomiR profile (non-redundant)",align='C') - pdf.set_font('Arial', '', 12.0) - pdf.ln(0.2) - pdf.image(images[4],x=1.5, w=5.5, h=4) - pdf.ln(0.3) - pdf.set_font('Arial', '', 11.0) - pdf.cell(0.2) - pdf.cell(3.0, 0.0, " * IsomiRs potentialy initiated from multiple loci") - - - if analysis=="2": - pdf.add_page('L') - - pdf.set_font('Arial', 'B', 16.0) - pdf.cell(pdf.w-0.5, 0.5, "Non-template IsomiRs",align='C') - pdf.ln(0.5) - pdf.set_font('Arial', 'B', 12.0) - pdf.cell(pdf.w-0.5, 0.5, "3' Additions of reference of isomiR sequence",align='C') - pdf.ln(0.7) - - yh=FPDF.get_y(pdf) - pdf.image(images[5],x=1.5,w=3.65, h=2.65) - pdf.image(images[7],x=6.5,y=yh, w=3.65, h=2.65) - pdf.ln(0.5) - yh=FPDF.get_y(pdf) - pdf.image(images[6],x=1.5,w=3.65, h=2.65) - pdf.image(images[8],x=6.5,y=yh, w=3.65, h=2.65) - - pdf.close() - pdf.output('report1.pdf','F') - - - - -#############################################################################################################################################################3 - -def pdf_after_DE(analysis,top): - - # Import FPDF class - from fpdf import FPDF - - # Import glob module to find all the files matching a pattern - import glob - - # Image extensions - if analysis=="2": - image_extensions = ("tem.png","a2.png","non.png") - else: - image_extensions = ("tem.png","a2.png") - - # This list will hold the images file names - images = [] - - # Build the image list by merging the glob results (a list of files) - # for each extension. We are taking images from current folder. - for extension in image_extensions: - images.extend(glob.glob(extension)) - #sys.exit(images) - # Create instance of FPDF class - pdf = FPDF('P', 'in', 'letter') - # Add new page. Without this you cannot create the document. - pdf.add_page() - # Set font to Arial, 'B'old, 16 pts - pdf.set_font('Arial', 'B', 16.0) - - # Page header - pdf.cell(pdf.w-0.5, 0.5, 'Differential expression of miRNAs and Isoforms',align='C') - #pdf.ln(0.25) - - pdf.ln(0.7) - pdf.set_font('Arial','B', 12.0) - if "tem.png" in images: - pdf.cell(pdf.w-0.5, 0.5, 'Top '+top+' most differentially expressed miRNA and template isoforms',align='C') - # Smaller font for image captions - pdf.set_font('Arial', '', 10.0) - # Image caption - pdf.ln(0.4) - pdf.image(images[images.index("tem.png")],x=0.8, w=7, h=8) - pdf.ln(0.3) - pdf.set_font('Arial','B', 12.0) - else: - print("WARNING: There aren't miRNAs which fullfiled these criteria" ) - - if "non.png" in images and analysis=="2": - if "tem.png" in images: pdf.add_page() - pdf.ln(0.7) - pdf.cell(pdf.w-0.5, 0.5, 'Top '+top+' most differentially expressed non-template isomiRs',align='C') - pdf.ln(0.4) - pdf.image(images[images.index("non.png")],x=0.5, w=7.5, h=6.5) - else: - print("WARNING: There aren't non-template miRNAs which fullfiled these criteria" ) - - - if "a2.png" in images: - if len(images)>=2: pdf.add_page() - pdf.ln(0.5) - pdf.cell(pdf.w-0.5, 0.5, 'Top '+top+' most differentially expressed miRNAs and isomiRs grouped by arm',align='C') - pdf.ln(0.4) - pdf.image(images[images.index("a2.png")],x=0.8, w=7, h=8) - pdf.ln(0.3) - else: - print("WARNING: There aren't non-template miRNAs which fullfiled these criteria" ) - - - pdf.output('report2.pdf', 'F') - - - diff -r a09d238416ba -r d77dace80d5a viz_ultra.py --- a/viz_ultra.py Wed Oct 28 07:42:50 2020 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,270 +0,0 @@ -import argparse -from viz_graphs import * -import sys -import pandas as pd -import matplotlib.pyplot as plt -import matplotlib.patches as mpatches -import matplotlib.font_manager as font_manager -import time -from multiprocessing import Process, Queue, Lock, Pool, Manager, Value - - -################################################################################################################################################################################################################## - -def top_diff(miRNA_info, number,flag,l): - - Kind=[] - - miRNA_info.sort(key = lambda x: abs(x[1]),reverse=True) - miRNA_info = miRNA_info[:number] - miRNA_info.sort(key = lambda x: x[0]) - - for x in miRNA_info: - if x[1] > 0: - Kind.append(True) - elif x[1] < 0: - Kind.append(False) - else: - Kind.append("Zero") - - top_miRNA = {"Names": [x[0] for x in miRNA_info], - "Log2FC": [x[1] for x in miRNA_info], - "Kind": Kind}; - - df_miRNA = pd.DataFrame(data=top_miRNA) - df_miRNA = df_miRNA.sort_values(by=['Names']) - if df_miRNA.empty==False: - h1=df_miRNA.plot.barh(x= 'Names',y='Log2FC',color=df_miRNA.Kind.map({True: 'g', False: 'r', 'Zero':'k'})) - figure = plt.gcf() # get current figure - figure.set_size_inches(5, 12) # set figure's size manually to your full screen (32x18) - up_reg = mpatches.Patch(color='green', label='Upregulated') - down_reg = mpatches.Patch(color='red', label='Downregulated') - font = font_manager.FontProperties(weight='bold', style='normal') - l3 = plt.legend(handles=[up_reg,down_reg],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0) - h1.set_ylabel(" ", fontsize=3, fontweight='bold') - h1.set_xlabel("Log2FC", fontsize=12, fontweight='bold') - plt.axvline(x=0, color="k") - - plt.grid(axis='y', linewidth=0.2) - plt.grid(axis='x', linewidth=0.2) - if flag=='t': - plt.savefig('tem.png', bbox_inches='tight', dpi=300) - if flag=='nt': - plt.savefig('non.png', bbox_inches='tight', dpi=300) - -#################################################################################################################################################################################################################### - -def unique(sequence): - seen = set() - return [x for x in sequence if not (x in seen or seen.add(x))] - -########################################################################################################################################################################################################################################################################### - -def top_scatter_non(matures,isoforms,non_temp,uni_names,number): - - mat_names=[] - mat_log2fc=[] - - iso_names=[] - iso_log2fc=[] - - non_temp_names=[] - non_temp_log2fc=[] - - count=0 - for x in uni_names: - flag = False - if countlog2fc and float(x[2])log2fc and float(x[2])log2fc and float(x[2])1 and float(x[2])1 and float(x[2])1 and float(x[2])