comparison viz_ultra.py @ 15:6db3bd727fde draft

Uploaded
author glogobyte
date Wed, 28 Oct 2020 07:34:56 +0000
parents
children
comparison
equal deleted inserted replaced
14:e51ebc767701 15:6db3bd727fde
1 import argparse
2 from viz_graphs import *
3 import sys
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import matplotlib.patches as mpatches
7 import matplotlib.font_manager as font_manager
8 import time
9 from multiprocessing import Process, Queue, Lock, Pool, Manager, Value
10
11
12 ##################################################################################################################################################################################################################
13
14 def top_diff(miRNA_info, number,flag,l):
15
16 Kind=[]
17
18 miRNA_info.sort(key = lambda x: abs(x[1]),reverse=True)
19 miRNA_info = miRNA_info[:number]
20 miRNA_info.sort(key = lambda x: x[0])
21
22 for x in miRNA_info:
23 if x[1] > 0:
24 Kind.append(True)
25 elif x[1] < 0:
26 Kind.append(False)
27 else:
28 Kind.append("Zero")
29
30 top_miRNA = {"Names": [x[0] for x in miRNA_info],
31 "Log2FC": [x[1] for x in miRNA_info],
32 "Kind": Kind};
33
34 df_miRNA = pd.DataFrame(data=top_miRNA)
35 df_miRNA = df_miRNA.sort_values(by=['Names'])
36 if df_miRNA.empty==False:
37 h1=df_miRNA.plot.barh(x= 'Names',y='Log2FC',color=df_miRNA.Kind.map({True: 'g', False: 'r', 'Zero':'k'}))
38 figure = plt.gcf() # get current figure
39 figure.set_size_inches(5, 12) # set figure's size manually to your full screen (32x18)
40 up_reg = mpatches.Patch(color='green', label='Upregulated')
41 down_reg = mpatches.Patch(color='red', label='Downregulated')
42 font = font_manager.FontProperties(weight='bold', style='normal')
43 l3 = plt.legend(handles=[up_reg,down_reg],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)
44 h1.set_ylabel(" ", fontsize=3, fontweight='bold')
45 h1.set_xlabel("Log2FC", fontsize=12, fontweight='bold')
46 plt.axvline(x=0, color="k")
47
48 plt.grid(axis='y', linewidth=0.2)
49 plt.grid(axis='x', linewidth=0.2)
50 if flag=='t':
51 plt.savefig('tem.png', bbox_inches='tight', dpi=300)
52 if flag=='nt':
53 plt.savefig('non.png', bbox_inches='tight', dpi=300)
54
55 ####################################################################################################################################################################################################################
56
57 def unique(sequence):
58 seen = set()
59 return [x for x in sequence if not (x in seen or seen.add(x))]
60
61 ###########################################################################################################################################################################################################################################################################
62
63 def top_scatter_non(matures,isoforms,non_temp,uni_names,number):
64
65 mat_names=[]
66 mat_log2fc=[]
67
68 iso_names=[]
69 iso_log2fc=[]
70
71 non_temp_names=[]
72 non_temp_log2fc=[]
73
74 count=0
75 for x in uni_names:
76 flag = False
77 if count<number:
78 for y in matures:
79 if x in y[0]:
80 mat_log2fc.append(y[1])
81 mat_names.append(x)
82 flag=True
83 for y in isoforms:
84 if x in y[0]:
85 iso_log2fc.append(y[1])
86 iso_names.append(x)
87 flag=True
88 for y in non_temp:
89 if x in y[0]:
90 non_temp_log2fc.append(y[1])
91 non_temp_names.append(x)
92 flag=True
93 if flag==True:
94 count+=1
95
96 mat_df = pd.DataFrame(dict(names=mat_names, log2fc=mat_log2fc))
97 iso_df = pd.DataFrame(dict(names=iso_names, log2fc=iso_log2fc))
98 non_df = pd.DataFrame(dict(names=non_temp_names, log2fc= non_temp_log2fc))
99
100 iso_df.sort_values(by=['names'])
101 mat_df.sort_values(by=['names'])
102 non_df.sort_values(by=['names'])
103
104 fig, ax = plt.subplots()
105
106 h3=ax.scatter(iso_df['log2fc'],iso_df['names'],edgecolors='k',linewidth=1, marker='o', c='red')
107 h1=ax.scatter(mat_df['log2fc'],mat_df['names'],edgecolors='k',linewidth=1, marker='o', c='green')
108 h2=ax.scatter(non_df['log2fc'],non_df['names'],edgecolors='k',linewidth=1, marker='o', c='blue')
109
110 l3 = plt.legend([h1,h2,h3],["Reference miRNA","Non-template","Template isomiRs"],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)
111 plt.axvline(x=0, color="k")
112 plt.grid(axis='y', linewidth=0.2)
113 plt.grid(axis='x', linewidth=0.2)
114 plt.xlabel("Log2FC", fontsize=12, fontweight='bold')
115 plt.yticks(rotation=0,ha="right", fontsize=10)
116 plt.xticks(rotation=0,ha="right", fontsize=10)
117 plt.tight_layout()
118 figure = plt.gcf() # get current figure
119 figure.set_size_inches(16, 12) # set figure's size manually to your full screen (32x18)
120 plt.savefig('a2.png', bbox_inches='tight', dpi=300)
121
122 #########################################################################################################################################################################################################################################
123 def top_scatter_tem(matures,isoforms,uni_names,number):
124
125 mat_names=[]
126 mat_log2fc=[]
127
128 iso_names=[]
129 iso_log2fc=[]
130
131 count=0
132 for x in uni_names:
133 flag = False
134 if count<number:
135 for y in matures:
136 if x in y[0]:
137 mat_log2fc.append(y[1])
138 mat_names.append(x)
139 flag=True
140 for y in isoforms:
141 if x in y[0]:
142 iso_log2fc.append(y[1])
143 iso_names.append(x)
144 flag=True
145 if flag==True:
146 count+=1
147
148 mat_df = pd.DataFrame(dict(names=mat_names, log2fc=mat_log2fc))
149 iso_df = pd.DataFrame(dict(names=iso_names, log2fc=iso_log2fc))
150
151 iso_df.sort_values(by=['names'])
152 mat_df.sort_values(by=['names'])
153
154 fig, ax = plt.subplots()
155
156 h3=ax.scatter(iso_df['log2fc'],iso_df['names'],edgecolors='k',linewidth=1, marker='o', c='red')
157 h1=ax.scatter(mat_df['log2fc'],mat_df['names'],edgecolors='k',linewidth=1, marker='o', c='green')
158
159 l3 = plt.legend([h1,h3],["Reference miRNA","Template isomiRs"],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)
160 plt.axvline(x=0, color="k")
161 plt.grid(axis='y', linewidth=0.2)
162 plt.grid(axis='x', linewidth=0.2)
163 plt.xlabel("Log2FC", fontsize=12, fontweight='bold')
164 plt.yticks(rotation=0,ha="right", fontsize=10)
165 plt.xticks(rotation=0,ha="right", fontsize=10)
166 plt.tight_layout()
167 figure = plt.gcf() # get current figure
168 figure.set_size_inches(16, 12) # set figure's size manually to your full screen (32x18)
169 plt.savefig('a2.png', bbox_inches='tight', dpi=300)
170
171
172 ##############################################################################################################################################################################################################################################
173 def preproccess(non_templated,matures,isoforms,log2fc,pval):
174
175 non_temp = [[x[0],float(x[1]),float(x[2])] for x in non_templated if abs(float(x[1]))>log2fc and float(x[2])<pval]
176 mat = [[x[0],float(x[1]),float(x[2])] for x in matures if abs(float(x[1]))>log2fc and float(x[2])<pval]
177 iso = [[x[0],float(x[1]),float(x[2])] for x in isoforms if abs(float(x[1]))>log2fc and float(x[2])<pval]
178 mat_iso = mat+iso
179
180 if not non_temp and not mat and not iso:
181 sys.exit("There aren't entries which meet these criteria")
182
183 mat.sort(key = lambda x: abs(float(x[1])),reverse=True)
184 iso.sort(key = lambda x: abs(float(x[1])),reverse=True)
185 non_temp.sort(key = lambda x: abs(float(x[1])),reverse=True)
186
187 all=mat+iso+non_temp
188 all.sort(key = lambda x: abs(float(x[1])), reverse=True)
189 names=[x[0].split("_")[0] for x in all]
190 uni_names=unique(names)
191
192 diff_non_templated = [[x[0],float(x[1]),float(x[2])] for x in non_templated if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names]
193 diff_matures = [[x[0],float(x[1]),float(x[2])] for x in matures if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names]
194 diff_isoforms = [[x[0],float(x[1]),float(x[2])] for x in isoforms if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names]
195
196 diff_matures.sort(key = lambda x: abs(float(x[1])),reverse=True)
197 diff_isoforms.sort(key = lambda x: abs(float(x[1])),reverse=True)
198 diff_non_templated.sort(key = lambda x: abs(float(x[1])),reverse=True)
199
200 return diff_matures,diff_isoforms,diff_non_templated,uni_names,non_temp,mat_iso
201
202 ##################################################################################################################################################################################################################################################################
203 starttime = time.time()
204
205 parser = argparse.ArgumentParser()
206 parser.add_argument("-in", "--input", help="choose type of analysis", action="store")
207 parser.add_argument("-p_value", "--pval", help="choose type of analysis", action="store")
208 parser.add_argument("-fc", "--log2fc", help="choose type of analysis", action="store")
209 parser.add_argument("-top", "--top_mirnas", help="choose type of analysis", action="store")
210 parser.add_argument("-tool_dir", "--tool_directory", help="tool directory path", action="store")
211 parser.add_argument("-statistic", "--stat", help="tool directory path", action="store")
212 parser.add_argument("-diff_tool", "--tool", help="tool directory path", action="store")
213
214 args = parser.parse_args()
215
216 l=Lock()
217 number = int(args.top_mirnas)
218 log2fc = float(args.log2fc)
219 pval = float(args.pval)
220
221 if args.tool=="2":
222
223 raw_EdgeR = read(args.input,0)
224 EdgeR = [x.rstrip("\n").split("\t") for x in raw_EdgeR]
225 del EdgeR[0]
226
227 if args.stat=="1":
228 non_templated = [[x[0],x[1],x[4]] for x in EdgeR if "__" in x[0] and x[1]!="NA" and x[4]!="NA"]
229 matures = [[x[0],x[1],x[4]] for x in EdgeR if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[4]!="NA"]
230 isoforms = [[x[0],x[1],x[4]] for x in EdgeR if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[4]!="NA"]
231 else:
232 non_templated = [[x[0],x[1],x[5]] for x in EdgeR if "__" in x[0] and x[1]!="NA" and x[5]!="NA"]
233 matures = [[x[0],x[1],x[5]] for x in EdgeR if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[5]!="NA"]
234 isoforms = [[x[0],x[1],x[5]] for x in EdgeR if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[5]!="NA"]
235
236 if args.tool=="1":
237
238 raw_Deseq = read(args.input,0)
239 Deseq = [x.rstrip("\n").split("\t") for x in raw_Deseq]
240
241 if args.stat=="1":
242 non_templated = [[x[0],x[2],x[5]] for x in Deseq if "__" in x[0] and x[2]!="NA" and x[5]!="NA"]
243 matures = [[x[0],x[2],x[5]] for x in Deseq if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[5]!="NA"]
244 isoforms = [[x[0],x[2],x[5]] for x in Deseq if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[5]!="NA"]
245 else:
246 non_templated = [[x[0],x[2],x[6]] for x in Deseq if "__" in x[0] and x[2]!="NA" and x[6]!="NA"]
247 matures = [[x[0],x[2],x[6]] for x in Deseq if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[6]!="NA"]
248 isoforms = [[x[0],x[2],x[6]] for x in Deseq if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[6]!="NA"]
249
250
251 diff_matures,diff_isoforms,diff_non_templated,names,non_temp,mat_iso = preproccess(non_templated,matures,isoforms,log2fc,pval)
252
253 if non_templated!=[]:
254 analysis="2"
255 p=[Process(target=top_diff,args=(non_temp,number,"nt",l))]
256 p.extend([Process(target=top_diff,args=(mat_iso,number,"t",l))])
257 p.extend([Process(target=top_scatter_non,args=(diff_matures,diff_isoforms,diff_non_templated,names,number))])
258
259 else:
260 analysis="1"
261 p=[Process(target=top_diff,args=(mat_iso,number,"t"))]
262 p.extend([Process(target=top_scatter_tem,args=(diff_matures,diff_isoforms,names,number))])
263
264 [x.start() for x in p]
265 [x.join() for x in p]
266
267 pdf_after_DE(analysis,args.top_mirnas)
268
269 print('That took {} seconds'.format(time.time() - starttime))
270