Mercurial > repos > glogobyte > viztool
comparison viz_ultra.py @ 7:2c5723e2421a draft
Uploaded
author | glogobyte |
---|---|
date | Fri, 16 Oct 2020 18:15:46 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
6:228a45b8f055 | 7:2c5723e2421a |
---|---|
1 import argparse | |
2 from functions import * | |
3 from viz_graphs import * | |
4 import sys | |
5 import pandas as pd | |
6 import matplotlib.pyplot as plt | |
7 import matplotlib.patches as mpatches | |
8 import matplotlib.font_manager as font_manager | |
9 import time | |
10 from multiprocessing import Process, Queue, Lock, Pool, Manager, Value | |
11 | |
12 | |
13 ################################################################################################################################################################################################################## | |
14 | |
15 def top_diff(miRNA_info, number,flag,l): | |
16 | |
17 Kind=[] | |
18 | |
19 miRNA_info.sort(key = lambda x: abs(x[1]),reverse=True) | |
20 miRNA_info = miRNA_info[:number] | |
21 miRNA_info.sort(key = lambda x: x[0]) | |
22 | |
23 for x in miRNA_info: | |
24 if x[1] > 0: | |
25 Kind.append(True) | |
26 elif x[1] < 0: | |
27 Kind.append(False) | |
28 else: | |
29 Kind.append("Zero") | |
30 | |
31 top_miRNA = {"Names": [x[0] for x in miRNA_info], | |
32 "Log2FC": [x[1] for x in miRNA_info], | |
33 "Kind": Kind}; | |
34 | |
35 df_miRNA = pd.DataFrame(data=top_miRNA) | |
36 df_miRNA = df_miRNA.sort_values(by=['Names']) | |
37 if df_miRNA.empty==False: | |
38 h1=df_miRNA.plot.barh(x= 'Names',y='Log2FC',color=df_miRNA.Kind.map({True: 'g', False: 'r', 'Zero':'k'})) | |
39 figure = plt.gcf() # get current figure | |
40 figure.set_size_inches(5, 12) # set figure's size manually to your full screen (32x18) | |
41 up_reg = mpatches.Patch(color='green', label='Upregulated') | |
42 down_reg = mpatches.Patch(color='red', label='Downregulated') | |
43 font = font_manager.FontProperties(weight='bold', style='normal') | |
44 l3 = plt.legend(handles=[up_reg,down_reg],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0) | |
45 h1.set_ylabel(" ", fontsize=3, fontweight='bold') | |
46 h1.set_xlabel("Log2FC", fontsize=12, fontweight='bold') | |
47 plt.axvline(x=0, color="k") | |
48 | |
49 plt.grid(axis='y', linewidth=0.2) | |
50 plt.grid(axis='x', linewidth=0.2) | |
51 if flag=='t': | |
52 plt.savefig('tem.png', bbox_inches='tight', dpi=300) | |
53 if flag=='nt': | |
54 plt.savefig('non.png', bbox_inches='tight', dpi=300) | |
55 | |
56 #################################################################################################################################################################################################################### | |
57 | |
58 def unique(sequence): | |
59 seen = set() | |
60 return [x for x in sequence if not (x in seen or seen.add(x))] | |
61 | |
62 ########################################################################################################################################################################################################################################################################### | |
63 | |
64 def top_scatter_non(matures,isoforms,non_temp,uni_names,number): | |
65 | |
66 mat_names=[] | |
67 mat_log2fc=[] | |
68 | |
69 iso_names=[] | |
70 iso_log2fc=[] | |
71 | |
72 non_temp_names=[] | |
73 non_temp_log2fc=[] | |
74 | |
75 count=0 | |
76 for x in uni_names: | |
77 flag = False | |
78 if count<number: | |
79 for y in matures: | |
80 if x in y[0]: | |
81 mat_log2fc.append(y[1]) | |
82 mat_names.append(x) | |
83 flag=True | |
84 for y in isoforms: | |
85 if x in y[0]: | |
86 iso_log2fc.append(y[1]) | |
87 iso_names.append(x) | |
88 flag=True | |
89 for y in non_temp: | |
90 if x in y[0]: | |
91 non_temp_log2fc.append(y[1]) | |
92 non_temp_names.append(x) | |
93 flag=True | |
94 if flag==True: | |
95 count+=1 | |
96 | |
97 mat_df = pd.DataFrame(dict(names=mat_names, log2fc=mat_log2fc)) | |
98 iso_df = pd.DataFrame(dict(names=iso_names, log2fc=iso_log2fc)) | |
99 non_df = pd.DataFrame(dict(names=non_temp_names, log2fc= non_temp_log2fc)) | |
100 | |
101 iso_df.sort_values(by=['names']) | |
102 mat_df.sort_values(by=['names']) | |
103 non_df.sort_values(by=['names']) | |
104 | |
105 fig, ax = plt.subplots() | |
106 | |
107 h3=ax.scatter(iso_df['log2fc'],iso_df['names'],edgecolors='k',linewidth=1, marker='o', c='red') | |
108 h1=ax.scatter(mat_df['log2fc'],mat_df['names'],edgecolors='k',linewidth=1, marker='o', c='green') | |
109 h2=ax.scatter(non_df['log2fc'],non_df['names'],edgecolors='k',linewidth=1, marker='o', c='blue') | |
110 | |
111 l3 = plt.legend([h1,h2,h3],["Reference miRNA","Non-template","Template isomiRs"],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0) | |
112 plt.axvline(x=0, color="k") | |
113 plt.grid(axis='y', linewidth=0.2) | |
114 plt.grid(axis='x', linewidth=0.2) | |
115 plt.xlabel("Log2FC", fontsize=12, fontweight='bold') | |
116 plt.yticks(rotation=0,ha="right", fontsize=10) | |
117 plt.xticks(rotation=0,ha="right", fontsize=10) | |
118 plt.tight_layout() | |
119 figure = plt.gcf() # get current figure | |
120 figure.set_size_inches(16, 12) # set figure's size manually to your full screen (32x18) | |
121 plt.savefig('a2.png', bbox_inches='tight', dpi=300) | |
122 | |
123 ######################################################################################################################################################################################################################################### | |
124 def top_scatter_tem(matures,isoforms,uni_names,number): | |
125 | |
126 mat_names=[] | |
127 mat_log2fc=[] | |
128 | |
129 iso_names=[] | |
130 iso_log2fc=[] | |
131 | |
132 count=0 | |
133 for x in uni_names: | |
134 flag = False | |
135 if count<number: | |
136 for y in matures: | |
137 if x in y[0]: | |
138 mat_log2fc.append(y[1]) | |
139 mat_names.append(x) | |
140 flag=True | |
141 for y in isoforms: | |
142 if x in y[0]: | |
143 iso_log2fc.append(y[1]) | |
144 iso_names.append(x) | |
145 flag=True | |
146 if flag==True: | |
147 count+=1 | |
148 | |
149 mat_df = pd.DataFrame(dict(names=mat_names, log2fc=mat_log2fc)) | |
150 iso_df = pd.DataFrame(dict(names=iso_names, log2fc=iso_log2fc)) | |
151 | |
152 iso_df.sort_values(by=['names']) | |
153 mat_df.sort_values(by=['names']) | |
154 | |
155 fig, ax = plt.subplots() | |
156 | |
157 h3=ax.scatter(iso_df['log2fc'],iso_df['names'],edgecolors='k',linewidth=1, marker='o', c='red') | |
158 h1=ax.scatter(mat_df['log2fc'],mat_df['names'],edgecolors='k',linewidth=1, marker='o', c='green') | |
159 | |
160 l3 = plt.legend([h1,h3],["Reference miRNA","Template isomiRs"],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0) | |
161 plt.axvline(x=0, color="k") | |
162 plt.grid(axis='y', linewidth=0.2) | |
163 plt.grid(axis='x', linewidth=0.2) | |
164 plt.xlabel("Log2FC", fontsize=12, fontweight='bold') | |
165 plt.yticks(rotation=0,ha="right", fontsize=10) | |
166 plt.xticks(rotation=0,ha="right", fontsize=10) | |
167 plt.tight_layout() | |
168 figure = plt.gcf() # get current figure | |
169 figure.set_size_inches(16, 12) # set figure's size manually to your full screen (32x18) | |
170 plt.savefig('a2.png', bbox_inches='tight', dpi=300) | |
171 | |
172 | |
173 ############################################################################################################################################################################################################################################## | |
174 def preproccess(non_templated,matures,isoforms,log2fc,pval): | |
175 | |
176 non_temp = [[x[0],float(x[1]),float(x[2])] for x in non_templated if abs(float(x[1]))>log2fc and float(x[2])<pval] | |
177 mat = [[x[0],float(x[1]),float(x[2])] for x in matures if abs(float(x[1]))>log2fc and float(x[2])<pval] | |
178 iso = [[x[0],float(x[1]),float(x[2])] for x in isoforms if abs(float(x[1]))>log2fc and float(x[2])<pval] | |
179 mat_iso = mat+iso | |
180 | |
181 if not non_temp and not mat and not iso: | |
182 sys.exit("There aren't entries which meet these criteria") | |
183 | |
184 mat.sort(key = lambda x: abs(float(x[1])),reverse=True) | |
185 iso.sort(key = lambda x: abs(float(x[1])),reverse=True) | |
186 non_temp.sort(key = lambda x: abs(float(x[1])),reverse=True) | |
187 | |
188 all=mat+iso+non_temp | |
189 all.sort(key = lambda x: abs(float(x[1])), reverse=True) | |
190 names=[x[0].split("_")[0] for x in all] | |
191 uni_names=unique(names) | |
192 | |
193 diff_non_templated = [[x[0],float(x[1]),float(x[2])] for x in non_templated if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names] | |
194 diff_matures = [[x[0],float(x[1]),float(x[2])] for x in matures if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names] | |
195 diff_isoforms = [[x[0],float(x[1]),float(x[2])] for x in isoforms if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names] | |
196 | |
197 diff_matures.sort(key = lambda x: abs(float(x[1])),reverse=True) | |
198 diff_isoforms.sort(key = lambda x: abs(float(x[1])),reverse=True) | |
199 diff_non_templated.sort(key = lambda x: abs(float(x[1])),reverse=True) | |
200 | |
201 return diff_matures,diff_isoforms,diff_non_templated,uni_names,non_temp,mat_iso | |
202 | |
203 ################################################################################################################################################################################################################################################################## | |
204 starttime = time.time() | |
205 | |
206 parser = argparse.ArgumentParser() | |
207 parser.add_argument("-in", "--input", help="choose type of analysis", action="store") | |
208 parser.add_argument("-p_value", "--pval", help="choose type of analysis", action="store") | |
209 parser.add_argument("-fc", "--log2fc", help="choose type of analysis", action="store") | |
210 parser.add_argument("-top", "--top_mirnas", help="choose type of analysis", action="store") | |
211 parser.add_argument("-tool_dir", "--tool_directory", help="tool directory path", action="store") | |
212 parser.add_argument("-statistic", "--stat", help="tool directory path", action="store") | |
213 parser.add_argument("-diff_tool", "--tool", help="tool directory path", action="store") | |
214 | |
215 args = parser.parse_args() | |
216 | |
217 l=Lock() | |
218 number = int(args.top_mirnas) | |
219 log2fc = float(args.log2fc) | |
220 pval = float(args.pval) | |
221 | |
222 if args.tool=="2": | |
223 | |
224 raw_EdgeR = read(args.input,0) | |
225 EdgeR = [x.rstrip("\n").split("\t") for x in raw_EdgeR] | |
226 del EdgeR[0] | |
227 | |
228 if args.stat=="1": | |
229 non_templated = [[x[0],x[1],x[4]] for x in EdgeR if "__" in x[0] and x[1]!="NA" and x[4]!="NA"] | |
230 matures = [[x[0],x[1],x[4]] for x in EdgeR if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[4]!="NA"] | |
231 isoforms = [[x[0],x[1],x[4]] for x in EdgeR if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[4]!="NA"] | |
232 else: | |
233 non_templated = [[x[0],x[1],x[5]] for x in EdgeR if "__" in x[0] and x[1]!="NA" and x[5]!="NA"] | |
234 matures = [[x[0],x[1],x[5]] for x in EdgeR if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[5]!="NA"] | |
235 isoforms = [[x[0],x[1],x[5]] for x in EdgeR if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[5]!="NA"] | |
236 | |
237 if args.tool=="1": | |
238 | |
239 raw_Deseq = read(args.input,0) | |
240 Deseq = [x.rstrip("\n").split("\t") for x in raw_Deseq] | |
241 | |
242 if args.stat=="1": | |
243 non_templated = [[x[0],x[2],x[5]] for x in Deseq if "__" in x[0] and x[2]!="NA" and x[5]!="NA"] | |
244 matures = [[x[0],x[2],x[5]] for x in Deseq if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[5]!="NA"] | |
245 isoforms = [[x[0],x[2],x[5]] for x in Deseq if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[5]!="NA"] | |
246 else: | |
247 non_templated = [[x[0],x[2],x[6]] for x in Deseq if "__" in x[0] and x[2]!="NA" and x[6]!="NA"] | |
248 matures = [[x[0],x[2],x[6]] for x in Deseq if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[6]!="NA"] | |
249 isoforms = [[x[0],x[2],x[6]] for x in Deseq if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[6]!="NA"] | |
250 | |
251 | |
252 diff_matures,diff_isoforms,diff_non_templated,names,non_temp,mat_iso = preproccess(non_templated,matures,isoforms,log2fc,pval) | |
253 | |
254 if non_templated!=[]: | |
255 analysis="2" | |
256 p=[Process(target=top_diff,args=(non_temp,number,"nt",l))] | |
257 p.extend([Process(target=top_diff,args=(mat_iso,number,"t",l))]) | |
258 p.extend([Process(target=top_scatter_non,args=(diff_matures,diff_isoforms,diff_non_templated,names,number))]) | |
259 | |
260 else: | |
261 analysis="1" | |
262 p=[Process(target=top_diff,args=(mat_iso,number,"t"))] | |
263 p.extend([Process(target=top_scatter_tem,args=(diff_matures,diff_isoforms,names,number))]) | |
264 | |
265 [x.start() for x in p] | |
266 [x.join() for x in p] | |
267 | |
268 pdf_after_DE(analysis,args.top_mirnas) | |
269 | |
270 print('That took {} seconds'.format(time.time() - starttime)) | |
271 |