Mercurial > repos > glogobyte > isoread
comparison mirbase_graphs.py @ 2:f0c4c70ceb00 draft
Uploaded
| author | glogobyte |
|---|---|
| date | Fri, 16 Oct 2020 18:53:53 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:a1ba282ae65c | 2:f0c4c70ceb00 |
|---|---|
| 1 import itertools | |
| 2 import time | |
| 3 import sys | |
| 4 import os | |
| 5 import urllib.request | |
| 6 import gzip | |
| 7 from multiprocessing import Process, Queue, Lock, Pool, Manager, Value | |
| 8 import subprocess | |
| 9 import argparse | |
| 10 from collections import OrderedDict | |
| 11 from matplotlib.backends.backend_pdf import PdfPages | |
| 12 import pandas as pd | |
| 13 from math import pi | |
| 14 import numpy as np | |
| 15 import matplotlib.pyplot as plt | |
| 16 from matplotlib.ticker import PercentFormatter | |
| 17 import seaborn as sns | |
| 18 import scipy.stats as stats | |
| 19 from plotnine import * | |
| 20 import math | |
| 21 import re | |
| 22 import matplotlib.ticker as mtick | |
| 23 import copy | |
| 24 | |
| 25 | |
| 26 ################################################################################################################################################################# | |
| 27 def pie_non_temp(merge_LH2E,merge_non_LH2E,merge_LH8E,merge_non_LH8E,c_unmap,t_unmap,c_unmap_counts,t_unmap_counts): | |
| 28 | |
| 29 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH2E] | |
| 30 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH8E] | |
| 31 c_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_LH2E] | |
| 32 t_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_LH8E] | |
| 33 | |
| 34 c_templ = 0 | |
| 35 c_tem_counts = 0 | |
| 36 c_mature = 0 | |
| 37 c_mat_counts = 0 | |
| 38 t_templ = 0 | |
| 39 t_tem_counts = 0 | |
| 40 t_mature = 0 | |
| 41 t_mat_counts = 0 | |
| 42 | |
| 43 c_non = len(c_non_samples) | |
| 44 c_non_counts = sum(x[2] for x in c_non_samples) | |
| 45 t_non = len(t_non_samples) | |
| 46 t_non_counts = sum(x[2] for x in t_non_samples) | |
| 47 | |
| 48 c_unmap = c_unmap - c_non | |
| 49 t_unmap = c_unmap - t_non | |
| 50 | |
| 51 c_unmap_counts=c_unmap_counts - c_non_counts | |
| 52 t_unmap_counts=t_unmap_counts - t_non_counts | |
| 53 | |
| 54 | |
| 55 for x in c_samples: | |
| 56 | |
| 57 if "/" not in x[0]: | |
| 58 if "chr" in x[0].split("_")[-1]: | |
| 59 c_mature+=1 | |
| 60 c_mat_counts += x[2] | |
| 61 else: | |
| 62 c_templ+=1 | |
| 63 c_tem_counts += x[2] | |
| 64 else: | |
| 65 f=0 | |
| 66 for y in x[0].split("/"): | |
| 67 if "chr" in y.split("_")[-1]: | |
| 68 c_mature+=1 | |
| 69 c_mat_counts += x[2] | |
| 70 f=1 | |
| 71 break | |
| 72 if f==0: | |
| 73 c_templ+=1 | |
| 74 c_tem_counts += x[2] | |
| 75 | |
| 76 for x in t_samples: | |
| 77 | |
| 78 if "/" not in x[0]: | |
| 79 if "chr" in x[0].split("_")[-1]: | |
| 80 t_mature+=1 | |
| 81 t_mat_counts += x[2] | |
| 82 else: | |
| 83 t_templ+=1 | |
| 84 t_tem_counts += x[2] | |
| 85 else: | |
| 86 f=0 | |
| 87 for y in x[0].split("/"): | |
| 88 if "chr" in y.split("_")[-1]: | |
| 89 t_mature+=1 | |
| 90 t_mat_counts += x[2] | |
| 91 f=1 | |
| 92 break | |
| 93 if f==0: | |
| 94 t_templ+=1 | |
| 95 t_tem_counts += x[2] | |
| 96 | |
| 97 fig = plt.figure(figsize=(7,5)) | |
| 98 labels = 'miRNA RefSeq','Template', 'Unmapped','Non-template' | |
| 99 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts,c_non_counts] | |
| 100 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] | |
| 101 ax1 = plt.subplot2grid((1,2),(0,0)) | |
| 102 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
| 103 [x.set_fontsize(8) for x in texts] | |
| 104 plt.title('Control Group (reads)',fontsize=12) | |
| 105 labels = 'miRNA RefSeq','Template', 'Unmapped','non-template' | |
| 106 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts, t_non_counts] | |
| 107 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] | |
| 108 ax2 = plt.subplot2grid((1,2),(0,1)) | |
| 109 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
| 110 [x.set_fontsize(8) for x in texts] | |
| 111 plt.title('Treated Group (reads)', fontsize=12) | |
| 112 plt.savefig('pie_non.png',dpi=300) | |
| 113 | |
| 114 ###################################################################################################################################################### | |
| 115 | |
| 116 | |
| 117 def pie_temp(merge_LH2E,c_unmap,c_unmap_counts,merge_LH8E,t_unmap,t_unmap_counts): | |
| 118 | |
| 119 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH2E] | |
| 120 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH8E] | |
| 121 | |
| 122 c_templ = 0 | |
| 123 c_tem_counts = 0 | |
| 124 c_mature = 0 | |
| 125 c_mat_counts = 0 | |
| 126 t_templ = 0 | |
| 127 t_tem_counts = 0 | |
| 128 t_mature = 0 | |
| 129 t_mat_counts = 0 | |
| 130 | |
| 131 for x in c_samples: | |
| 132 | |
| 133 if "/" not in x[0]: | |
| 134 if "chr" in x[0].split("_")[-1]: | |
| 135 c_mature+=1 | |
| 136 c_mat_counts += x[2] | |
| 137 else: | |
| 138 c_templ+=1 | |
| 139 c_tem_counts += x[2] | |
| 140 else: | |
| 141 f=0 | |
| 142 for y in x[0].split("/"): | |
| 143 if "chr" in y.split("_")[-1]: | |
| 144 c_mature+=1 | |
| 145 c_mat_counts += x[2] | |
| 146 f=1 | |
| 147 break | |
| 148 if f==0: | |
| 149 c_templ+=1 | |
| 150 c_tem_counts += x[2] | |
| 151 | |
| 152 for x in t_samples: | |
| 153 | |
| 154 if "/" not in x[0]: | |
| 155 if "chr" in x[0].split("_")[-1]: | |
| 156 t_mature+=1 | |
| 157 t_mat_counts += x[2] | |
| 158 else: | |
| 159 t_templ+=1 | |
| 160 t_tem_counts += x[2] | |
| 161 else: | |
| 162 f=0 | |
| 163 for y in x[0].split("/"): | |
| 164 if "chr" in y.split("_")[-1]: | |
| 165 t_mature+=1 | |
| 166 t_mat_counts += x[2] | |
| 167 f=1 | |
| 168 break | |
| 169 if f==0: | |
| 170 t_templ+=1 | |
| 171 t_tem_counts += x[2] | |
| 172 | |
| 173 | |
| 174 fig = plt.figure() | |
| 175 labels = 'miRNA RefSeq','Template', 'Unmapped' | |
| 176 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts] | |
| 177 colors = ['gold', 'yellowgreen', 'lightskyblue'] | |
| 178 explode = (0.2, 0.05, 0.1) | |
| 179 ax1 = plt.subplot2grid((1,2),(0,0)) | |
| 180 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
| 181 [x.set_fontsize(8) for x in texts] | |
| 182 plt.title('Control group (reads)', fontsize=12) | |
| 183 labels = 'miRNA RefSeq','Template', 'Unmapped' | |
| 184 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts] | |
| 185 colors = ['gold', 'yellowgreen', 'lightskyblue'] | |
| 186 explode = (0.2, 0.05, 0.1) | |
| 187 ax2 = plt.subplot2grid((1,2),(0,1)) | |
| 188 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
| 189 [x.set_fontsize(8) for x in texts] | |
| 190 plt.title('Treated group (reads)',fontsize = 12) | |
| 191 plt.savefig('pie_tem.png',dpi=300) | |
| 192 | |
| 193 ################################################################################################################################################################################################################### | |
| 194 | |
| 195 | |
| 196 def make_spider(merge_LH2E,merge_LH8E): | |
| 197 | |
| 198 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH2E] | |
| 199 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH8E] | |
| 200 | |
| 201 c_5 = 0 | |
| 202 c_5_counts = 0 | |
| 203 c_3 = 0 | |
| 204 c_3_counts = 0 | |
| 205 c_both =0 | |
| 206 c_both_counts=0 | |
| 207 c_mature = 0 | |
| 208 c_mat_counts = 0 | |
| 209 c_exception=0 | |
| 210 c_exception_counts=0 | |
| 211 | |
| 212 | |
| 213 t_5 = 0 | |
| 214 t_5_counts = 0 | |
| 215 t_3 = 0 | |
| 216 t_3_counts = 0 | |
| 217 t_both = 0 | |
| 218 t_both_counts = 0 | |
| 219 t_mature = 0 | |
| 220 t_mat_counts = 0 | |
| 221 t_exception = 0 | |
| 222 t_exception_counts=0 | |
| 223 | |
| 224 for x in c_samples: | |
| 225 | |
| 226 if "/" not in x[0]: | |
| 227 if "chr" in x[0].split("_")[-1]: | |
| 228 c_mature+=1 | |
| 229 c_mat_counts += x[2] | |
| 230 elif 0 == int(x[0].split("_")[-1]): | |
| 231 c_5+=1 | |
| 232 c_5_counts += x[2] | |
| 233 elif 0 == int(x[0].split("_")[-2]): | |
| 234 c_3+=1 | |
| 235 c_3_counts += x[2] | |
| 236 else: | |
| 237 c_both+=1 | |
| 238 c_both_counts+=x[2] | |
| 239 | |
| 240 else: | |
| 241 f=0 | |
| 242 for y in x[0].split("/"): | |
| 243 if "chr" in y.split("_")[-1]: | |
| 244 c_mature+=1 | |
| 245 c_mat_counts += x[2] | |
| 246 f=1 | |
| 247 break | |
| 248 if f==0: | |
| 249 for y in x[0].split("/"): | |
| 250 c_exception+=1 | |
| 251 c_exception_counts += x[2] | |
| 252 | |
| 253 | |
| 254 for x in t_samples: | |
| 255 | |
| 256 if "/" not in x[0]: | |
| 257 if "chr" in x[0].split("_")[-1]: | |
| 258 t_mature+=1 | |
| 259 t_mat_counts += x[2] | |
| 260 elif 0 == int(x[0].split("_")[-1]): | |
| 261 t_5+=1 | |
| 262 t_5_counts += x[2] | |
| 263 elif 0 == int(x[0].split("_")[-2]): | |
| 264 t_3+=1 | |
| 265 t_3_counts += x[2] | |
| 266 else: | |
| 267 t_both+=1 | |
| 268 t_both_counts+=x[2] | |
| 269 | |
| 270 else: | |
| 271 f=0 | |
| 272 for y in x[0].split("/"): | |
| 273 if "chr" in y.split("_")[-1]: | |
| 274 t_mature+=1 | |
| 275 t_mat_counts += x[2] | |
| 276 f=1 | |
| 277 break | |
| 278 if f==0: | |
| 279 for y in x[0].split("/"): | |
| 280 t_exception+=1 | |
| 281 t_exception_counts += x[2] | |
| 282 | |
| 283 | |
| 284 c_all = c_5+c_3+c_both+c_mature+c_exception | |
| 285 c_all_counts = c_5_counts + c_3_counts + c_both_counts + c_mat_counts + c_exception_counts | |
| 286 | |
| 287 t_all = t_5+t_3+t_both+t_mature + t_exception | |
| 288 t_all_counts = t_5_counts + t_3_counts + t_both_counts + t_mat_counts + t_exception_counts | |
| 289 | |
| 290 c_5 = round(c_5/c_all*100,2) | |
| 291 c_3 = round(c_3/c_all*100,2) | |
| 292 c_both = round(c_both/c_all*100,2) | |
| 293 c_mature = round(c_mature/c_all*100,2) | |
| 294 c_exception = round(c_exception/c_all*100,2) | |
| 295 | |
| 296 c_5_counts = round(c_5_counts/c_all_counts*100,2) | |
| 297 c_3_counts = round(c_3_counts/c_all_counts*100,2) | |
| 298 c_both_counts = round(c_both_counts/c_all_counts*100,2) | |
| 299 c_mat_counts = round(c_mat_counts/c_all_counts*100,2) | |
| 300 c_exception_counts = round(c_exception_counts/c_all_counts*100,2) | |
| 301 | |
| 302 t_5 = round(t_5/t_all*100,2) | |
| 303 t_3 = round(t_3/t_all*100,2) | |
| 304 t_both = round(t_both/t_all*100,2) | |
| 305 t_mature = round(t_mature/t_all*100,2) | |
| 306 t_exception = round(t_exception/t_all*100,2) | |
| 307 | |
| 308 t_5_counts = round(t_5_counts/t_all_counts*100,2) | |
| 309 t_3_counts = round(t_3_counts/t_all_counts*100,2) | |
| 310 t_both_counts = round(t_both_counts/t_all_counts*100,2) | |
| 311 t_mat_counts = round(t_mat_counts/t_all_counts*100,2) | |
| 312 t_exception_counts = round(t_exception_counts/t_all_counts*100,2) | |
| 313 | |
| 314 radar_max = max(c_5, c_3, c_both,c_mature,c_exception,t_5,t_3,t_both,t_mature,t_exception) | |
| 315 radar_max_counts = max(c_5_counts,c_3_counts,c_both_counts,c_mat_counts,c_exception_counts,t_5_counts,t_3_counts,t_both_counts,t_mat_counts,t_exception_counts) | |
| 316 | |
| 317 df=pd.DataFrame({ | |
| 318 'group':['Controls','Treated'], | |
| 319 """5' and 3' isomiRs""":[c_both,t_both], | |
| 320 """3' isomiRs""":[c_3,t_3], | |
| 321 'miRNA RefSeq':[c_mature,t_mature], | |
| 322 """5' isomiRs""":[c_5,t_5], | |
| 323 'Others*':[c_exception,t_exception]}) | |
| 324 | |
| 325 df1=pd.DataFrame({ | |
| 326 'group':['Controls','Treated'], | |
| 327 """5' and 3' isomiRs""":[c_both_counts,t_both_counts], | |
| 328 """3' isomiRs""":[c_3_counts,t_3_counts], | |
| 329 'miRNA RefSeq':[c_mat_counts,t_mat_counts], | |
| 330 """5' isomiRs""":[c_5_counts,t_5_counts], | |
| 331 'Others*':[c_exception_counts,t_exception_counts]}) | |
| 332 | |
| 333 spider_last(df,radar_max,1) | |
| 334 spider_last(df1,radar_max_counts,2) | |
| 335 | |
| 336 ##################################################################################################################################################### | |
| 337 | |
| 338 def spider_last(df,radar_max,flag): | |
| 339 # ------- PART 1: Create background | |
| 340 fig = plt.figure() | |
| 341 # number of variable | |
| 342 categories=list(df)[1:] | |
| 343 N = len(categories) | |
| 344 | |
| 345 # What will be the angle of each axis in the plot? (we divide the plot / number of variable) | |
| 346 angles = [n / float(N) * 2 * pi for n in range(N)] | |
| 347 angles += angles[:1] | |
| 348 | |
| 349 # Initialise the spider plot | |
| 350 ax = plt.subplot(111, polar=True) | |
| 351 | |
| 352 # If you want the first axis to be on top: | |
| 353 ax.set_theta_offset(pi/2) | |
| 354 ax.set_theta_direction(-1) | |
| 355 | |
| 356 # Draw one axe per variable + add labels labels yet | |
| 357 plt.xticks(angles[:-1], categories, fontsize=11) | |
| 358 | |
| 359 # Draw ylabels | |
| 360 radar_max=round(radar_max+radar_max*0.1) | |
| 361 mul=len(str(radar_max))-1 | |
| 362 maxi=int(math.ceil(radar_max / pow(10,mul))) * pow(10,mul) | |
| 363 sep = round(maxi/4) | |
| 364 plt.yticks([sep, 2*sep, 3*sep, 4*sep, 5*sep], [str(sep)+'%', str(2*sep)+'%', str(3*sep)+'%', str(4*sep)+'%', str(5*sep)+'%'], color="grey", size=10) | |
| 365 plt.ylim(0, maxi) | |
| 366 | |
| 367 # ------- PART 2: Add plots | |
| 368 | |
| 369 # Plot each individual = each line of the data | |
| 370 # I don't do a loop, because plotting more than 3 groups makes the chart unreadable | |
| 371 | |
| 372 # Ind1 | |
| 373 values=df.loc[0].drop('group').values.flatten().tolist() | |
| 374 values += values[:1] | |
| 375 ax.plot(angles, values,'-o', linewidth=1, linestyle='solid', label="Controls") | |
| 376 ax.fill(angles, values, 'b', alpha=0.1) | |
| 377 | |
| 378 # Ind2 | |
| 379 values=df.loc[1].drop('group').values.flatten().tolist() | |
| 380 values += values[:1] | |
| 381 ax.plot(angles, values, '-o' ,linewidth=1, linestyle='solid', label="Treated") | |
| 382 ax.fill(angles, values, 'r', alpha=0.1) | |
| 383 | |
| 384 # Add legend | |
| 385 if flag==1: | |
| 386 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1)) | |
| 387 plt.savefig('spider_non_red.png',dpi=300) | |
| 388 else: | |
| 389 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1)) | |
| 390 plt.savefig('spider_red.png',dpi=300) | |
| 391 | |
| 392 | |
| 393 ############################################################################################################################################################################################################# | |
| 394 | |
| 395 def hist_red(samples,flag): | |
| 396 lengths=[] | |
| 397 cat=[] | |
| 398 total_reads=0 | |
| 399 seq=[] | |
| 400 | |
| 401 if flag == "c": | |
| 402 title = "Length Distribution of Control group (Redudant reads)" | |
| 403 if flag == "t": | |
| 404 title = "Length Distribution of Treated group (Redudant reads)" | |
| 405 | |
| 406 for i in samples: | |
| 407 for x in i: | |
| 408 lengths.append(len(x[9])) | |
| 409 if x[1]=="0": | |
| 410 seq.append([x[9],x[0].split("-")[1],"Mapped"]) | |
| 411 cat.append("Mapped") | |
| 412 if x[1] == "4": | |
| 413 seq.append([x[9],x[0].split("-")[1],"Unmapped"]) | |
| 414 cat.append("Unmapped") | |
| 415 | |
| 416 uni_len=list(set(lengths)) | |
| 417 uni_len=[x for x in uni_len if x<=35] | |
| 418 low=min(lengths) | |
| 419 up=max(lengths) | |
| 420 seq.sort() | |
| 421 uni_seq=list(seq for seq,_ in itertools.groupby(seq)) | |
| 422 dim=up-low | |
| 423 | |
| 424 if dim>20: | |
| 425 s=5 | |
| 426 else: | |
| 427 s=8 | |
| 428 | |
| 429 total_reads+=sum([int(x[1]) for x in uni_seq]) | |
| 430 | |
| 431 map_reads=[] | |
| 432 unmap_reads=[] | |
| 433 length=[] | |
| 434 for y in uni_len: | |
| 435 map_temp=0 | |
| 436 unmap_temp=0 | |
| 437 for x in uni_seq: | |
| 438 if len(x[0])==y and x[2]=="Mapped": | |
| 439 map_temp+=int(x[1]) | |
| 440 if len(x[0])==y and x[2]=="Unmapped": | |
| 441 unmap_temp+=int(x[1]) | |
| 442 if y<=35: | |
| 443 length.append(y) | |
| 444 map_reads.append(round(map_temp/total_reads*100,2)) | |
| 445 unmap_reads.append(round(unmap_temp/total_reads*100,2)) | |
| 446 | |
| 447 ylim=max([sum(x) for x in zip(unmap_reads, map_reads)]) | |
| 448 ylim=ylim+ylim*20/100 | |
| 449 fig, ax = plt.subplots() | |
| 450 width=0.8 | |
| 451 ax.bar(length, unmap_reads, width, label='Unmapped') | |
| 452 h=ax.bar(length, map_reads, width, bottom=unmap_reads, label='Mapped') | |
| 453 plt.xticks(np.arange(length[0], length[-1]+1, 1)) | |
| 454 plt.xlabel('Length (nt)',fontsize=14) | |
| 455 plt.ylabel('Percentage',fontsize=14) | |
| 456 plt.title(title,fontsize=14) | |
| 457 ax.legend() | |
| 458 plt.ylim([0, ylim]) | |
| 459 ax.grid(axis='y',linewidth=0.2) | |
| 460 | |
| 461 if flag=='c': | |
| 462 plt.savefig('c_hist_red.png',dpi=300) | |
| 463 | |
| 464 if flag=='t': | |
| 465 plt.savefig('t_hist_red.png',dpi=300) | |
| 466 | |
| 467 ################################################################################################################# | |
| 468 | |
| 469 def logo_seq_red(merge, flag): | |
| 470 | |
| 471 if flag=="c": | |
| 472 titlos="Control group (Redundant)" | |
| 473 file_logo="c_logo.png" | |
| 474 file_bar="c_bar.png" | |
| 475 if flag=="t": | |
| 476 titlos="Treated group (Redundant)" | |
| 477 file_logo="t_logo.png" | |
| 478 file_bar="t_bar.png" | |
| 479 | |
| 480 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge] | |
| 481 | |
| 482 A=[0]*5 | |
| 483 C=[0]*5 | |
| 484 G=[0]*5 | |
| 485 T=[0]*5 | |
| 486 total_reads=0 | |
| 487 | |
| 488 for y in c_samples: | |
| 489 if "/" in y[0]: | |
| 490 length=[] | |
| 491 for x in y[0].split("/"): | |
| 492 length.append([len(x.split("_")[-1]),x.split("_")[-1],y[2]]) | |
| 493 | |
| 494 best=min(length) | |
| 495 total_reads+=best[2] | |
| 496 for i in range(5): | |
| 497 if i<len(best[1]): | |
| 498 if best[1][i] == "A": | |
| 499 A[i]+=best[2] | |
| 500 elif best[1][i] == "C": | |
| 501 C[i]+=best[2] | |
| 502 elif best[1][i] == "G": | |
| 503 G[i]+=best[2] | |
| 504 else: | |
| 505 T[i]+=best[2] | |
| 506 else: | |
| 507 total_reads+=y[2] | |
| 508 for i in range(5): | |
| 509 if i<len(y[0].split("_")[-1]): | |
| 510 if y[0].split("_")[-1][i] == "A": | |
| 511 A[i]+=(y[2]) | |
| 512 elif y[0].split("_")[-1][i] == "C": | |
| 513 C[i]+=(y[2]) | |
| 514 elif y[0].split("_")[-1][i] == "G": | |
| 515 G[i]+=(y[2]) | |
| 516 else: | |
| 517 T[i]+=y[2] | |
| 518 | |
| 519 A[:] = [round(x*100,1) / total_reads for x in A] | |
| 520 C[:] = [round(x*100,1) / total_reads for x in C] | |
| 521 G[:] = [round(x*100,1) / total_reads for x in G] | |
| 522 T[:] = [round(x*100,1) / total_reads for x in T] | |
| 523 | |
| 524 | |
| 525 | |
| 526 data = {'A':A,'C':C,'G':G,'T':T} | |
| 527 df = pd.DataFrame(data, index=[1,2,3,4,5]) | |
| 528 h=df.plot.bar(color=tuple(["g", "b","gold","r"]) ) | |
| 529 h.grid(axis='y',linewidth=0.2) | |
| 530 plt.xticks(rotation=0, ha="right") | |
| 531 plt.ylabel("Counts (%)",fontsize=18) | |
| 532 plt.xlabel("Positions (nt)",fontsize=18) | |
| 533 plt.title(titlos,fontsize=20) | |
| 534 plt.tight_layout() | |
| 535 plt.savefig(file_bar, dpi=300) | |
| 536 | |
| 537 import logomaker as lm | |
| 538 crp_logo = lm.Logo(df, font_name = 'DejaVu Sans') | |
| 539 crp_logo.style_spines(visible=False) | |
| 540 crp_logo.style_spines(spines=['left', 'bottom'], visible=True) | |
| 541 crp_logo.style_xticks(rotation=0, fmt='%d', anchor=0) | |
| 542 | |
| 543 # style using Axes methods | |
| 544 crp_logo.ax.set_title(titlos,fontsize=18) | |
| 545 crp_logo.ax.set_ylabel("Counts (%)", fontsize=16,labelpad=5) | |
| 546 crp_logo.ax.set_xlabel("Positions (nt)",fontsize=16, labelpad=5) | |
| 547 crp_logo.ax.xaxis.set_ticks_position('none') | |
| 548 crp_logo.ax.xaxis.set_tick_params(pad=-1) | |
| 549 figure = plt.gcf() | |
| 550 figure.set_size_inches(6, 4) | |
| 551 crp_logo.fig.savefig(file_logo,dpi=300) | |
| 552 | |
| 553 ########################################################################################################################################################################################################## | |
| 554 | |
| 555 def logo_seq_non_red(merge_LH2E): | |
| 556 | |
| 557 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH2E] | |
| 558 | |
| 559 A=[0]*5 | |
| 560 C=[0]*5 | |
| 561 G=[0]*5 | |
| 562 T=[0]*5 | |
| 563 | |
| 564 for y in c_samples: | |
| 565 if "/" in y[0]: | |
| 566 length=[] | |
| 567 for x in y[0].split("/"): | |
| 568 length.append([len(x.split("_")[-1]),x.split("_")[-1],y[2]]) | |
| 569 | |
| 570 best=min(length) | |
| 571 for i in range(5): | |
| 572 if i<len(best[1]): | |
| 573 if best[1][i] == "A": | |
| 574 A[i]+=1 | |
| 575 elif best[1][i] == "C": | |
| 576 C[i]+=1 | |
| 577 elif best[1][i] == "G": | |
| 578 G[i]+=1 | |
| 579 else: | |
| 580 T[i]+=1 | |
| 581 else: | |
| 582 for i in range(5): | |
| 583 if i<len(y[0].split("_")[-1]): | |
| 584 if y[0].split("_")[-1][i] == "A": | |
| 585 A[i]+=1 | |
| 586 elif y[0].split("_")[-1][i] == "C": | |
| 587 C[i]+=1 | |
| 588 elif y[0].split("_")[-1][i] == "G": | |
| 589 G[i]+=1 | |
| 590 else: | |
| 591 T[i]+=1 | |
| 592 | |
| 593 data = {'A':A,'C':C,'G':G,'T':T} | |
| 594 df = pd.DataFrame(data, index=[1,2,3,4,5]) | |
| 595 h=df.plot.bar(title="Non-templated nucleotides after templated sequence",color=tuple(["g", "b","gold","r"])) | |
| 596 h.set_xlabel("Positions (nt)") | |
| 597 h.set_ylabel("Unique sequences") | |
| 598 plt.xticks(rotation=0, ha="right") | |
| 599 plt.tight_layout() | |
| 600 plt.savefig("bar2.png", dpi=300) | |
| 601 | |
| 602 | |
| 603 import logomaker as lm | |
| 604 crp_logo = lm.Logo(df, font_name = 'DejaVu Sans') | |
| 605 | |
| 606 # style using Logo methods | |
| 607 crp_logo.style_spines(visible=False) | |
| 608 crp_logo.style_spines(spines=['left', 'bottom'], visible=True) | |
| 609 crp_logo.style_xticks(rotation=0, fmt='%d', anchor=0) | |
| 610 | |
| 611 # style using Axes methods | |
| 612 crp_logo.ax.set_ylabel("Unique sequences", labelpad=5) | |
| 613 crp_logo.ax.set_xlabel("Positions (nt)", labelpad=5) | |
| 614 crp_logo.ax.xaxis.set_ticks_position('none') | |
| 615 crp_logo.ax.xaxis.set_tick_params(pad=-1) | |
| 616 crp_logo.ax.set_title("Non-redundant") | |
| 617 figure = plt.gcf() | |
| 618 crp_logo.fig.savefig('logo2.png', dpi=300) | |
| 619 | |
| 620 | |
| 621 ################################################################################################################################################################ | |
| 622 | |
| 623 def pdf_before_DE(analysis): | |
| 624 | |
| 625 # Import FPDF class | |
| 626 from fpdf import FPDF, fpdf | |
| 627 | |
| 628 # Import glob module to find all the files matching a pattern | |
| 629 import glob | |
| 630 | |
| 631 # Image extensions | |
| 632 if analysis=="2": | |
| 633 image_extensions = ("c_hist_red.png","t_hist_red.png","pie_non.png","spider_red.png","spider_non_red.png","c_logo.png","t_logo.png","c_bar.png","t_bar.png") | |
| 634 else: | |
| 635 image_extensions = ("c_hist_red.png","t_hist_red.png","pie_tem.png","spider_red.png","spider_non_red.png") | |
| 636 # This list will hold the images file names | |
| 637 images = [] | |
| 638 | |
| 639 # Build the image list by merging the glob results (a list of files) | |
| 640 # for each extension. We are taking images from current folder. | |
| 641 for extension in image_extensions: | |
| 642 images.extend(glob.glob(extension)) | |
| 643 #sys.exit(images) | |
| 644 # Create instance of FPDF class | |
| 645 pdf = FPDF('P', 'in', 'A4') | |
| 646 # Add new page. Without this you cannot create the document. | |
| 647 pdf.add_page() | |
| 648 # Set font to Arial, 'B'old, 16 pts | |
| 649 pdf.set_font('Arial', 'B', 20.0) | |
| 650 | |
| 651 # Page header | |
| 652 pdf.cell(pdf.w-0.5, 0.5, 'IsomiR Profile Report',align='C') | |
| 653 pdf.ln(0.7) | |
| 654 pdf.set_font('Arial','', 16.0) | |
| 655 pdf.cell(pdf.w-0.5, 0.5, 'sRNA Length Distribution',align='C') | |
| 656 | |
| 657 # Smaller font for image captions | |
| 658 pdf.set_font('Arial', '', 11.0) | |
| 659 | |
| 660 # Image caption | |
| 661 pdf.ln(0.5) | |
| 662 | |
| 663 yh=FPDF.get_y(pdf) | |
| 664 pdf.image(images[0],x=0.3,w=4, h=3) | |
| 665 pdf.image(images[1],x=4,y=yh, w=4, h=3) | |
| 666 pdf.ln(0.3) | |
| 667 | |
| 668 # Image caption | |
| 669 pdf.cell(0.2) | |
| 670 pdf.cell(3.0, 0.0, " Mapped and unmapped reads to custom precussor arm reference DB (5p and 3p arms) in Control (left)") | |
| 671 pdf.ln(0.2) | |
| 672 pdf.cell(0.2) | |
| 673 pdf.cell(3.0, 0.0, " and Treated (right) groups") | |
| 674 | |
| 675 | |
| 676 pdf.ln(0.5) | |
| 677 h1=FPDF.get_y(pdf) | |
| 678 pdf.image(images[2],x=1, w=6.5, h=5) | |
| 679 h2=FPDF.get_y(pdf) | |
| 680 FPDF.set_y(pdf,h1+0.2) | |
| 681 pdf.set_font('Arial','', 14.0) | |
| 682 pdf.cell(pdf.w-0.5, 0.5, 'Template and non-template IsomiRs',align='C') | |
| 683 pdf.set_font('Arial', '', 11.0) | |
| 684 FPDF.set_y(pdf,h2) | |
| 685 FPDF.set_y(pdf,9.5) | |
| 686 # Image caption | |
| 687 pdf.cell(0.2) | |
| 688 if analysis=="2": | |
| 689 pdf.cell(3.0, 0.0, " Template, non-template, miRNA RefSeq and unmapped sequences as percentage of total sRNA reads") | |
| 690 pdf.ln(0.2) | |
| 691 pdf.cell(0.2) | |
| 692 pdf.cell(3.0, 0.0, " in Control (left) and treated (right) groups") | |
| 693 else: | |
| 694 pdf.cell(3.0, 0.0, " Template, miRNA RefSeq and unmapped sequences as percentage of total sRNA reads in") | |
| 695 pdf.ln(0.2) | |
| 696 pdf.cell(0.2) | |
| 697 pdf.cell(3.0, 0.0, " Control (left) and treated (right) groups") | |
| 698 | |
| 699 | |
| 700 | |
| 701 pdf.add_page() | |
| 702 pdf.set_font('Arial', 'B', 16.0) | |
| 703 pdf.cell(pdf.w-0.5, 0.5, "Reference form and isomiR among total miRNA reads",align='C') | |
| 704 pdf.ln(0.7) | |
| 705 pdf.set_font('Arial', 'B', 12.0) | |
| 706 pdf.cell(pdf.w-0.5, 0.5, "Template isomiR profile (redundant)",align='C') | |
| 707 pdf.ln(0.5) | |
| 708 pdf.image(images[3],x=1.5, w=5.5, h=4) | |
| 709 pdf.ln(0.6) | |
| 710 pdf.cell(pdf.w-0.5, 0.0, "Template isomiR profile (non-redundant)",align='C') | |
| 711 pdf.set_font('Arial', '', 12.0) | |
| 712 pdf.ln(0.2) | |
| 713 pdf.image(images[4],x=1.5, w=5.5, h=4) | |
| 714 pdf.ln(0.3) | |
| 715 pdf.set_font('Arial', '', 11.0) | |
| 716 pdf.cell(0.2) | |
| 717 pdf.cell(3.0, 0.0, " * IsomiRs potentialy initiated from multiple loci") | |
| 718 | |
| 719 | |
| 720 if analysis=="2": | |
| 721 pdf.add_page('L') | |
| 722 | |
| 723 pdf.set_font('Arial', 'B', 16.0) | |
| 724 pdf.cell(pdf.w-0.5, 0.5, "Non-template IsomiRs",align='C') | |
| 725 pdf.ln(0.5) | |
| 726 pdf.set_font('Arial', 'B', 12.0) | |
| 727 pdf.cell(pdf.w-0.5, 0.5, "3' Additions of reference of isomiR sequence",align='C') | |
| 728 pdf.ln(0.7) | |
| 729 | |
| 730 yh=FPDF.get_y(pdf) | |
| 731 pdf.image(images[5],x=1.5,w=3.65, h=2.65) | |
| 732 pdf.image(images[7],x=6.5,y=yh, w=3.65, h=2.65) | |
| 733 pdf.ln(0.5) | |
| 734 yh=FPDF.get_y(pdf) | |
| 735 pdf.image(images[6],x=1.5,w=3.65, h=2.65) | |
| 736 pdf.image(images[8],x=6.5,y=yh, w=3.65, h=2.65) | |
| 737 | |
| 738 pdf.close() | |
| 739 pdf.output('report1.pdf','F') | |
| 740 | |
| 741 | |
| 742 | |
| 743 | |
| 744 #############################################################################################################################################################3 | |
| 745 | |
| 746 def pdf_after_DE(analysis): | |
| 747 | |
| 748 # Import FPDF class | |
| 749 from fpdf import FPDF | |
| 750 | |
| 751 # Import glob module to find all the files matching a pattern | |
| 752 import glob | |
| 753 | |
| 754 # Image extensions | |
| 755 image_extensions = ("tem.png","non.png","a2.png") | |
| 756 | |
| 757 # This list will hold the images file names | |
| 758 images = [] | |
| 759 | |
| 760 # Build the image list by merging the glob results (a list of files) | |
| 761 # for each extension. We are taking images from current folder. | |
| 762 for extension in image_extensions: | |
| 763 images.extend(glob.glob(extension)) | |
| 764 | |
| 765 # Create instance of FPDF class | |
| 766 pdf = FPDF('P', 'in', 'letter') | |
| 767 # Add new page. Without this you cannot create the document. | |
| 768 pdf.add_page() | |
| 769 # Set font to Arial, 'B'old, 16 pts | |
| 770 pdf.set_font('Arial', 'B', 16.0) | |
| 771 | |
| 772 # Page header | |
| 773 pdf.cell(pdf.w-0.5, 0.5, 'Differential expression of miRNAs and Isoforms',align='C') | |
| 774 #pdf.ln(0.25) | |
| 775 | |
| 776 pdf.ln(0.7) | |
| 777 pdf.set_font('Arial','B', 12.0) | |
| 778 pdf.cell(pdf.w-0.5, 0.5, 'Top 50 most differentially expressed miRNA and template isoforms',align='C') | |
| 779 | |
| 780 | |
| 781 # Smaller font for image captions | |
| 782 pdf.set_font('Arial', '', 10.0) | |
| 783 | |
| 784 # Image caption | |
| 785 pdf.ln(0.4) | |
| 786 pdf.image(images[0],x=0.8, w=7, h=8) | |
| 787 pdf.ln(0.3) | |
| 788 | |
| 789 if analysis=="2": | |
| 790 | |
| 791 pdf.add_page() | |
| 792 pdf.ln(0.7) | |
| 793 pdf.set_font('Arial','B', 12.0) | |
| 794 pdf.cell(pdf.w-0.5, 0.5, 'Top 50 most differentially expressed non-template isomiRs',align='C') | |
| 795 pdf.ln(0.4) | |
| 796 pdf.image(images[1],x=0.5, w=7.5, h=6.5) | |
| 797 | |
| 798 pdf.add_page() | |
| 799 pdf.ln(0.5) | |
| 800 pdf.cell(pdf.w-0.5, 0.5, 'Top 50 most differentially expressed miRNAs and isomiRs grouped by arm',align='C') | |
| 801 pdf.ln(0.4) | |
| 802 pdf.image(images[2],x=0.8, w=7, h=8) | |
| 803 pdf.ln(0.3) | |
| 804 | |
| 805 | |
| 806 pdf.output('report2.pdf', 'F') | |
| 807 | |
| 808 | |
| 809 |
