Mercurial > repos > glogobyte > isoread
comparison mirbase_ultra_v2.py @ 14:3ad9701c7749 draft
Uploaded
author | glogobyte |
---|---|
date | Thu, 22 Oct 2020 07:30:47 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
13:f1b31ee97e91 | 14:3ad9701c7749 |
---|---|
1 from mirbase_functions import * | |
2 from mirbase_graphs import * | |
3 import itertools | |
4 import time | |
5 import sys | |
6 import os | |
7 import urllib.request | |
8 import gzip | |
9 from multiprocessing import Process, Queue, Lock, Pool, Manager, Value | |
10 import subprocess | |
11 import argparse | |
12 from collections import OrderedDict | |
13 from matplotlib.backends.backend_pdf import PdfPages | |
14 import pandas as pd | |
15 from math import pi | |
16 import numpy as np | |
17 import matplotlib.pyplot as plt | |
18 from matplotlib.ticker import PercentFormatter | |
19 import seaborn as sns | |
20 import scipy.stats as stats | |
21 from plotnine import * | |
22 import math | |
23 import re | |
24 import matplotlib.ticker as mtick | |
25 import copy | |
26 | |
27 subprocess.call(['mkdir','-p', 'split1','split2','split3','split4','split11','split12','Counts','Diff/temp_con','Diff/temp_tre','Diff/n_temp_con','Diff/n_temp_tre']) | |
28 | |
29 parser = argparse.ArgumentParser() | |
30 parser.add_argument("-analysis", "--anal", help="choose type of analysis", action="store") | |
31 parser.add_argument("-con", "--control", help="input fastq file", nargs='+', default=[]) | |
32 parser.add_argument("-tre", "--treated", help="input fastq file", nargs='+', default=[] ) | |
33 parser.add_argument("-tool_dir", "--tool_directory", help="tool directory path", action="store") | |
34 parser.add_argument("-gen", "--org_name", help="tool directory path", action="store") | |
35 parser.add_argument("-program", "--pro", help="choose type of analysis", action="store") | |
36 parser.add_argument("-f", "--flag", help="choose the database", action="store") | |
37 parser.add_argument("-umis", "--umi", help="choose the database", action="store") | |
38 parser.add_argument("-percentage", "--per", help="choose the database", action="store") | |
39 parser.add_argument("-counts", "--count", help="choose the database", action="store") | |
40 parser.add_argument("-name1", "--n1", help="choose the database", action="store") | |
41 parser.add_argument("-name2", "--n2", help="choose the database", action="store") | |
42 args = parser.parse_args() | |
43 | |
44 ######################################################################################################################################### | |
45 | |
46 def collapse_sam(path): | |
47 | |
48 ini_sam=read(path,0) | |
49 main_sam = [x.rstrip("\n").split("\t") for x in ini_sam if "@" not in x.split("\t")[0]] | |
50 intro_sam = [x.rstrip("\n").split("\t") for x in ini_sam if "@" in x.split("\t")[0]] | |
51 | |
52 uni_seq = [] | |
53 for x in main_sam: | |
54 | |
55 if [x[2], x[9]] not in uni_seq: | |
56 uni_seq.append([x[2], x[9]]) | |
57 | |
58 new_main_sam=[] | |
59 incr_num=0 | |
60 for i in range(len(uni_seq)): | |
61 count=0 | |
62 incr_num+=1 | |
63 for y in main_sam: | |
64 if uni_seq[i][1]==y[9] and uni_seq[i][0]==y[2]: | |
65 count+=1 | |
66 temp=y | |
67 temp[10]="~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" | |
68 temp[0]=str(incr_num)+"-"+str(count) | |
69 new_main_sam.append(temp) | |
70 | |
71 new_sam=intro_sam+new_main_sam | |
72 | |
73 return new_sam | |
74 | |
75 ################################################################################################################################################################################################################# | |
76 | |
77 def duplicate_chroms_isoforms(List): | |
78 | |
79 dupes=[] | |
80 | |
81 for num in range(len(List)): | |
82 | |
83 if [List[num][9],List[num][0],List[num][2]] not in dupes : | |
84 dupes.append([List[num][9],List[num][0],List[num][2]]) | |
85 | |
86 for x in List: | |
87 for y in dupes: | |
88 if x[9]==y[0] and x[0]==y[1] and x[2].split("_")[0]==y[2].split("_")[0] and x[2]!=y[2]: | |
89 y.append(x[2]) | |
90 | |
91 | |
92 double_List = [x[:] for x in List] | |
93 | |
94 chr_order=[] | |
95 for x in dupes: | |
96 temp = [] | |
97 for i in range(2,len(x)): | |
98 if x[i].split("chr")[1].split("(")[0].isdigit(): | |
99 temp.append(int(x[i].split("chr")[1].split("(")[1][0]+x[i].split("chr")[1].split("(")[0])) | |
100 else: | |
101 temp.append(x[i].split("chr")[1][0:4]) | |
102 | |
103 for z in temp: | |
104 if 'X(-)'==z or 'Y(-)'==z or 'X(+)'==z or 'Y(+)'==z: | |
105 temp = [str(j) for j in temp] | |
106 temp=list(set(temp)) | |
107 temp.sort() | |
108 chr_order.append(temp) | |
109 | |
110 final_dupes=[] | |
111 for i in range(len(dupes)): | |
112 final_dupes.append([dupes[i][0],dupes[i][2].split("_")[0],dupes[i][1]]) | |
113 for x in chr_order[i]: | |
114 result = re.match("[-+]?\d+$", str(x)) | |
115 if len(chr_order[i]) == len(set(chr_order[i])): | |
116 if result is not None: | |
117 | |
118 if int(x)<0: | |
119 final_dupes[i][1]=final_dupes[i][1]+"_chr"+str(abs(int(x)))+"(-)" | |
120 else: | |
121 final_dupes[i][1] = final_dupes[i][1] + "_chr" + str(abs(int(x)))+"(+)" | |
122 else: | |
123 final_dupes[i][1] = final_dupes[i][1] + "_chr" + str(x) | |
124 else: | |
125 if result is not None: | |
126 if int(x) < 0: | |
127 final_dupes[i][1] = final_dupes[i][1] +dupes[i][2].split("_")[1]+ "_chr" + str(abs(int(x))) + "(-)" | |
128 else: | |
129 final_dupes[i][1] = final_dupes[i][1] +dupes[i][2].split("_")[1]+ "_chr" + str(abs(int(x))) + "(+)" | |
130 else: | |
131 final_dupes[i][1] = final_dupes[i][1] +dupes[i][2].split("_")[1]+ "_chr" + str(x) | |
132 | |
133 final_dupes.sort() | |
134 final_dupes=list(final_dupes for final_dupes,_ in itertools.groupby(final_dupes)) | |
135 | |
136 for i in range(len(double_List)): | |
137 for x in final_dupes: | |
138 | |
139 if double_List[i][9] == x[0] and double_List[i][0] == x[2] and len(double_List[i][2].split("_")) >3 and double_List[i][2].split("_")[0]==x[1].split("_")[0]: | |
140 gg=str("_"+double_List[i][2].split("_")[-2]+"_"+double_List[i][2].split("_")[-1]) | |
141 double_List[i][2] = x[1]+gg | |
142 | |
143 if double_List[i][9]==x[0] and double_List[i][0]== x[2] and len(double_List[i][2].split("_"))==3 and double_List[i][2].split("_")[0]==x[1].split("_")[0]: | |
144 double_List[i][2]=x[1] | |
145 List[i][2] = x[1] | |
146 | |
147 List.sort() | |
148 new_list=list(List for List,_ in itertools.groupby(List)) | |
149 | |
150 double_List.sort() | |
151 new_double_List = list(double_List for double_List, _ in itertools.groupby(double_List)) | |
152 | |
153 return new_list, new_double_List | |
154 | |
155 | |
156 ############################################################################################################################################################################################################# | |
157 | |
158 def sam(mature_mirnas,path,name,con,l,samples,data,names,unmap_seq,samples_mirna_names,deseq,LHE_names,umi,ini_sample,unmap_counts): | |
159 | |
160 # read the sam file | |
161 ini_sam=read(path,0) | |
162 new_main_sam = [x.rstrip("\n").split("\t") for x in ini_sam if "@" not in x.split("\t")[0]] | |
163 unique_seq = [x for x in new_main_sam if x[1] == '0' and len(x[9])>=18 and len(x[9])<=26] | |
164 | |
165 sorted_uni_arms = [] | |
166 | |
167 for i in range(len(mature_mirnas)): | |
168 tmp_count_reads = 0 # calculate the total number of reads | |
169 tmp_count_seq = 0 # calculate the total number of sequences | |
170 for j in range(len(unique_seq)): | |
171 | |
172 if "{" in unique_seq[j][2].split("_")[0]: | |
173 official=unique_seq[j][2].split("_")[0][:-4] | |
174 else: | |
175 official=unique_seq[j][2].split("_")[0] | |
176 | |
177 if mature_mirnas[i].split(" ")[0][1:] == official: | |
178 | |
179 temp_mature = mature_mirnas[i+1].strip().replace("U", "T") | |
180 off_part = longestSubstring(temp_mature, unique_seq[j][9]) | |
181 | |
182 mat_diff = temp_mature.split(off_part) | |
183 mat_diff = [len(mat_diff[0]), len(mat_diff[1])] | |
184 | |
185 unique_diff = unique_seq[j][9].split(off_part) | |
186 unique_diff = [len(unique_diff[0]), len(unique_diff[1])] | |
187 | |
188 # Problem with hsa-miR-8485 | |
189 if mat_diff[1]!=0 and unique_diff[1]!=0: | |
190 unique_seq[j]=1 | |
191 pre_pos = 0 | |
192 post_pos = 0 | |
193 | |
194 elif mat_diff[0]!=0 and unique_diff[0]!=0: | |
195 unique_seq[j]=1 | |
196 pre_pos = 0 | |
197 post_pos = 0 | |
198 | |
199 else: | |
200 pre_pos = mat_diff[0]-unique_diff[0] | |
201 post_pos = unique_diff[1]-mat_diff[1] | |
202 tmp_count_reads = tmp_count_reads + int(unique_seq[j][0].split("-")[1]) | |
203 tmp_count_seq = tmp_count_seq+1 | |
204 | |
205 if pre_pos != 0 or post_pos != 0: | |
206 if pre_pos == 0: | |
207 unique_seq[j][2] = unique_seq[j][2] + "_" +str(pre_pos) + "_" + '{:+d}'.format(post_pos) | |
208 elif post_pos == 0: | |
209 unique_seq[j][2] = unique_seq[j][2] + "_" + '{:+d}'.format(pre_pos) + "_" + str(post_pos) | |
210 else: | |
211 unique_seq[j][2] = unique_seq[j][2]+"_"+'{:+d}'.format(pre_pos)+"_"+'{:+d}'.format(post_pos) | |
212 | |
213 for x in range(unique_seq.count(1)): | |
214 unique_seq.remove(1) | |
215 if tmp_count_reads != 0 and tmp_count_seq != 0: | |
216 sorted_uni_arms.append([mature_mirnas[i].split(" ")[0][1:], tmp_count_seq, tmp_count_reads]) | |
217 sorted_uni_arms = sorted(sorted_uni_arms, key=lambda x: x[1], reverse=True) | |
218 dedup_unique_seq,double_fil_uni_seq=duplicate_chroms_isoforms(unique_seq) | |
219 | |
220 for y in sorted_uni_arms: | |
221 counts=0 | |
222 seqs=0 | |
223 for x in double_fil_uni_seq: | |
224 if y[0]==x[2].split("_")[0]: | |
225 counts+=int(x[0].split("-")[1]) | |
226 seqs+=1 | |
227 | |
228 y[1]=seqs | |
229 y[2]=counts | |
230 | |
231 LHE=[] | |
232 l.acquire() | |
233 if con=="c": | |
234 LHE.extend(z[2] for z in double_fil_uni_seq) | |
235 for y in double_fil_uni_seq: | |
236 samples_mirna_names.append([y[2],y[9]]) | |
237 deseq.append([[x[2], x[0].split('-')[1], x[9]] for x in double_fil_uni_seq]) | |
238 LHE_names.extend(LHE) | |
239 unmap_seq.value += sum([1 for x in new_main_sam if x[1] == '4']) | |
240 unmap_counts.value += sum([int(x[0].split("-")[1]) for x in new_main_sam if x[1] == '4']) | |
241 names.append(name) | |
242 samples.append(dedup_unique_seq) | |
243 data.append([con,name,double_fil_uni_seq,sorted_uni_arms]) | |
244 ini_sample.append(new_main_sam) | |
245 | |
246 if con=="t": | |
247 LHE.extend(z[2] for z in double_fil_uni_seq) | |
248 for y in double_fil_uni_seq: | |
249 samples_mirna_names.append([y[2],y[9]]) | |
250 deseq.append([[x[2], x[0].split('-')[1], x[9]] for x in double_fil_uni_seq]) | |
251 LHE_names.extend(LHE) | |
252 unmap_seq.value += sum([1 for x in new_main_sam if x[1] == '4']) | |
253 unmap_counts.value += sum([int(x[0].split("-")[1]) for x in new_main_sam if x[1] == '4']) | |
254 names.append(name) | |
255 samples.append(dedup_unique_seq) | |
256 data.append([con,name,double_fil_uni_seq,sorted_uni_arms]) | |
257 ini_sample.append(new_main_sam) | |
258 l.release() | |
259 | |
260 | |
261 ###################################################################################################################################### | |
262 """ | |
263 | |
264 Read a sam file from Bowtie and do the followings: | |
265 | |
266 1) Remove reverse stranded mapped reads | |
267 2) Remove unmapped reads | |
268 3) Remove all sequences with reads less than 11 reads | |
269 4) Sort the arms with the most sequences in decreading rate | |
270 5) Sort the sequences of every arm with the most reads in decreasing rate | |
271 6) Calculate total number of sequences of every arm | |
272 7) Calculate total number of reads of sequences of every arm. | |
273 8) Store all the informations in a txt file | |
274 | |
275 """ | |
276 | |
277 def non_sam(mature_mirnas,path,name,con,l,data,names,n_deseq,n_samples_mirna_names,n_LHE_names): | |
278 | |
279 ini_sam=read(path,0) | |
280 new_main_sam = [x.rstrip("\n").split("\t") for x in ini_sam if "@" not in x.split("\t")[0]] | |
281 unique_seq=[] | |
282 unique_seq = [x for x in new_main_sam if x[1] == '4' and len(x[9])>=18 and len(x[9])<=26] | |
283 | |
284 uni_seq=[] | |
285 # Calculate the shifted positions for every isomir and add them to the name of it | |
286 sorted_uni_arms = [] | |
287 for i in range(1,len(mature_mirnas),2): | |
288 tmp_count_reads = 0 # calculate the total number of reads | |
289 tmp_count_seq = 0 # calculate the total number of sequences | |
290 | |
291 for j in range(len(unique_seq)): | |
292 | |
293 temp_mature = mature_mirnas[i].strip().replace("U", "T") | |
294 | |
295 if temp_mature in unique_seq[j][9]: | |
296 | |
297 off_part = longestSubstring(temp_mature, unique_seq[j][9]) | |
298 | |
299 mat_diff = temp_mature.split(off_part) | |
300 mat_diff = [len(mat_diff[0]), len(mat_diff[1])] | |
301 | |
302 unique_diff = unique_seq[j][9].split(off_part) | |
303 if len(unique_diff)<=2: | |
304 unique_diff = [len(unique_diff[0]), len(unique_diff[1])] | |
305 | |
306 pre_pos = mat_diff[0]-unique_diff[0] | |
307 post_pos = unique_diff[1]-mat_diff[1] | |
308 | |
309 lengthofmir = len(off_part) + post_pos | |
310 if pre_pos == 0: | |
311 tmp_count_reads = tmp_count_reads + int(unique_seq[j][0].split("-")[1]) | |
312 tmp_count_seq = tmp_count_seq + 1 | |
313 | |
314 if pre_pos == 0: | |
315 | |
316 t_name=unique_seq[j].copy() | |
317 t_name[2]=mature_mirnas[i - 1].split(" ")[0][1:] + "__" + str(pre_pos) + "_" + '{:+d}'.format(post_pos) + "_" + str(unique_seq[j][9][len(off_part):]) | |
318 uni_seq.append(t_name) | |
319 | |
320 | |
321 if tmp_count_reads != 0 and tmp_count_seq != 0: | |
322 sorted_uni_arms.append([mature_mirnas[i-1].split(" ")[0][1:], tmp_count_seq, tmp_count_reads]) | |
323 | |
324 | |
325 sorted_uni_arms = sorted(sorted_uni_arms, key=lambda x: x[1], reverse=True) | |
326 unique_seq = list(map(list, OrderedDict.fromkeys(map(tuple,uni_seq)))) | |
327 | |
328 LHE=[] | |
329 | |
330 l.acquire() | |
331 if con=="c": | |
332 LHE.extend(x[2] for x in unique_seq if x[2]!="*") | |
333 for x in unique_seq: | |
334 if x[2]!="*": | |
335 n_samples_mirna_names.append([x[2],x[9]]) | |
336 n_deseq.append([[x[2], x[0].split('-')[1], x[9]] for x in unique_seq if x[2]!="*"]) | |
337 n_LHE_names.extend(LHE) | |
338 names.append(name) | |
339 data.append([con,name,unique_seq,sorted_uni_arms]) | |
340 | |
341 | |
342 if con=="t": | |
343 LHE.extend(x[2] for x in unique_seq if x[2]!="*") | |
344 for x in unique_seq: | |
345 if x[2]!="*": | |
346 n_samples_mirna_names.append([x[2],x[9]]) | |
347 n_deseq.append([[x[2], x[0].split('-')[1], x[9]] for x in unique_seq if x[2]!="*"]) | |
348 n_LHE_names.extend(LHE) | |
349 names.append(name) | |
350 data.append([con,name,unique_seq,sorted_uni_arms]) | |
351 l.release() | |
352 | |
353 ##################################################################################################################################################################################################################### | |
354 def deseq2_temp(samples_mirna_names,deseq,con,l): | |
355 | |
356 samples_mirna_names.sort(key=lambda x:[0]) | |
357 for i in range(len(deseq)): | |
358 for y in samples_mirna_names: | |
359 flag = 0 | |
360 for x in deseq[i]: | |
361 if y[0] == x[0]: | |
362 flag = 1 | |
363 break | |
364 | |
365 if flag == 0: | |
366 deseq[i].append([y[0], "0", y[1]]) | |
367 | |
368 [deseq[i].sort(key=lambda x: x[0]) for i, _ in enumerate(deseq)] | |
369 deseq_final = [[x[0],x[2]] for x in deseq[0]] | |
370 [deseq_final[z].append(deseq[i][j][1]) for z,_ in enumerate(deseq_final) for i, _ in enumerate(deseq) for j,_ in enumerate(deseq[i]) if deseq_final[z][0] == deseq[i][j][0]] | |
371 | |
372 l.acquire() | |
373 if con=="c": | |
374 q1.put(deseq_final) | |
375 | |
376 if con=="t": | |
377 q2.put(deseq_final) | |
378 l.release() | |
379 | |
380 | |
381 #################################################################################################################################################################################################################### | |
382 | |
383 def main_temp(LH2E, LH2E_names, LH8E, LH8E_names,flag,names_con,names_tre,filter_LH8E,filter_LH2E,raw_LH8E,raw_LH2E): | |
384 | |
385 LH8E_add_names = [x for x in LH2E_names if x not in LH8E_names] | |
386 LH2E_add_names = [x for x in LH8E_names if x not in LH2E_names] | |
387 | |
388 LH8E_add_names.sort() | |
389 LH2E_add_names.sort() | |
390 LH8E_add_names = list(LH8E_add_names for LH8E_add_names,_ in itertools.groupby(LH8E_add_names)) | |
391 LH2E_add_names = list(LH2E_add_names for LH2E_add_names,_ in itertools.groupby(LH2E_add_names)) | |
392 | |
393 LH2E.sort() | |
394 LH8E.sort() | |
395 LH2E = list(LH2E for LH2E,_ in itertools.groupby(LH2E)) | |
396 LH8E = list(LH8E for LH8E,_ in itertools.groupby(LH8E)) | |
397 | |
398 zeros=["0"]*(len(LH8E[0])-2) | |
399 [LH8E_add_names[i].extend(zeros) for i,_ in enumerate(LH8E_add_names)] | |
400 LH8E=LH8E+LH8E_add_names | |
401 | |
402 zeros=["0"]*(len(LH2E[0])-2) | |
403 [LH2E_add_names[i].extend(zeros) for i,_ in enumerate(LH2E_add_names)] | |
404 LH2E=LH2E+LH2E_add_names | |
405 | |
406 dupes=[] | |
407 final_LH2E =[] | |
408 | |
409 for num,_ in enumerate(LH2E): | |
410 | |
411 if LH2E[num][1] not in final_LH2E and LH2E[num][0] not in final_LH2E: | |
412 final_LH2E.append(LH2E[num][1]) | |
413 final_LH2E.append(LH2E[num][0]) | |
414 else: | |
415 dupes.append(LH2E[num][1]) | |
416 | |
417 | |
418 dupes=list(set(dupes)) | |
419 | |
420 dupes=[[x] for x in dupes] | |
421 | |
422 for x in LH2E: | |
423 for y in dupes: | |
424 if x[1]==y[0]: | |
425 fl=0 | |
426 if len(y)==1: | |
427 y.append(x[0]) | |
428 else: | |
429 for i in range(1,len(y)): | |
430 if y[i].split("_")[0]==x[0].split("_")[0]: | |
431 fl=1 | |
432 if len(x[0])<len(y[i]): | |
433 del y[i] | |
434 y.append(x[0]) | |
435 break | |
436 | |
437 if fl==0: | |
438 y.append((x[0])) | |
439 | |
440 for y in dupes: | |
441 if len(y)>2: | |
442 for i in range(len(y)-1,1,-1): | |
443 y[1]=y[1]+"/"+y[i] | |
444 del y[i] | |
445 | |
446 for x in LH2E: | |
447 for y in dupes: | |
448 if x[1]==y[0]: | |
449 x[0]=y[1] | |
450 | |
451 for x in LH8E: | |
452 for y in dupes: | |
453 if x[1]==y[0]: | |
454 x[0]=y[1] | |
455 | |
456 | |
457 LH2E.sort() | |
458 LH2E=list(LH2E for LH2E,_ in itertools.groupby(LH2E)) | |
459 | |
460 LH8E.sort() | |
461 LH8E=list(LH8E for LH8E,_ in itertools.groupby(LH8E)) | |
462 | |
463 LH8E_new=[] | |
464 LH2E_new=[] | |
465 | |
466 if int(args.per)!=-1: | |
467 percent=int(args.per)/100 | |
468 | |
469 c_col_filter=round(percent*(len(LH2E[1])-2)) | |
470 t_col_filter=round(percent*(len(LH8E[1])-2)) | |
471 | |
472 for i, _ in enumerate(LH2E): | |
473 c_cols=0 | |
474 t_cols=0 | |
475 | |
476 c_cols=sum([1 for j in range(len(LH2E[i])-2) if int(LH2E[i][j+2])>=int(args.count)]) | |
477 t_cols=sum([1 for j in range(len(LH8E[i])-2) if int(LH8E[i][j+2])>=int(args.count)]) | |
478 | |
479 if c_cols>=c_col_filter or t_cols>=t_col_filter: | |
480 LH8E_new.append(LH8E[i]) | |
481 LH2E_new.append(LH2E[i]) | |
482 | |
483 filter_LH2E.extend(LH2E_new) | |
484 filter_LH8E.extend(LH8E_new) | |
485 raw_LH2E.extend(LH2E) | |
486 raw_LH8E.extend(LH8E) | |
487 | |
488 ################################################################################################################################################################################################################## | |
489 | |
490 def write_main(raw_LH2E, raw_LH8E, fil_LH2E, fil_LH8E, names_con, names_tre, flag): | |
491 | |
492 if flag == 1 and int(args.per)!=-1: | |
493 fp = open('Counts/Filtered '+args.n2 +' Templated Counts', 'w') | |
494 fp.write("Name\t") | |
495 fp.write("Sequence") | |
496 for y in names_tre: | |
497 fp.write("\t"+y) | |
498 | |
499 for x in fil_LH8E: | |
500 fp.write("\n%s" % "\t".join(x)) | |
501 fp.close() | |
502 | |
503 fp = open('Counts/Filtered '+args.n1+' Templated Counts', 'w') | |
504 fp.write("Name\t") | |
505 fp.write("Sequence") | |
506 for y in names_con: | |
507 fp.write("\t"+y) | |
508 | |
509 for x in fil_LH2E: | |
510 fp.write("\n%s" % "\t".join(x)) | |
511 fp.close() | |
512 | |
513 | |
514 if flag == 2 and int(args.per)!=-1: | |
515 fp = open('Counts/Filtered '+args.n2+' Non-Templated Counts', 'w') | |
516 fp.write("Name\t") | |
517 fp.write("Sequence") | |
518 for y in names_tre: | |
519 fp.write("\t"+y) | |
520 | |
521 | |
522 for x in fil_LH8E: | |
523 fp.write("\n%s" % "\t".join(x)) | |
524 fp.close() | |
525 | |
526 fp = open('Counts/Filtered '+args.n1+' Non-Templated Counts', 'w') | |
527 fp.write("Name\t") | |
528 fp.write("Sequence") | |
529 for y in names_con: | |
530 fp.write("\t"+y) | |
531 | |
532 for x in fil_LH2E: | |
533 fp.write("\n%s" % "\t".join(x)) | |
534 fp.close() | |
535 | |
536 | |
537 if flag == 1: | |
538 fp = open('Counts/Raw '+args.n2+' Templated Counts', 'w') | |
539 fp.write("Name\t") | |
540 fp.write("Sequence") | |
541 for y in names_tre: | |
542 fp.write("\t"+y) | |
543 | |
544 for x in raw_LH8E: | |
545 fp.write("\n%s" % "\t".join(x)) | |
546 fp.close() | |
547 | |
548 fp = open('Counts/Raw '+args.n1+' Templated Counts', 'w') | |
549 fp.write("Name\t") | |
550 fp.write("Sequence") | |
551 for y in names_con: | |
552 fp.write("\t"+y) | |
553 | |
554 for x in raw_LH2E: | |
555 fp.write("\n%s" % "\t".join(x)) | |
556 fp.close() | |
557 | |
558 | |
559 if flag == 2: | |
560 fp = open('Counts/Raw '+args.n2+' Non-Templated Counts', 'w') | |
561 fp.write("Name\t") | |
562 fp.write("Sequence") | |
563 for y in names_tre: | |
564 fp.write("\t"+y) | |
565 | |
566 | |
567 for x in raw_LH8E: | |
568 fp.write("\n%s" % "\t".join(x)) | |
569 fp.close() | |
570 | |
571 fp = open('Counts/Raw '+args.n1+' Non-Templated Counts', 'w') | |
572 fp.write("Name\t") | |
573 fp.write("Sequence") | |
574 for y in names_con: | |
575 fp.write("\t"+y) | |
576 | |
577 for x in raw_LH2E: | |
578 fp.write("\n%s" % "\t".join(x)) | |
579 fp.close() | |
580 | |
581 | |
582 ######################################################################################################################################### | |
583 | |
584 def ssamples(names,samp,folder,pro): | |
585 | |
586 for i in range(2,len(samp[0])): | |
587 | |
588 fp = open(folder+names[i-2]+'.txt','w') | |
589 fp.write("miRNA id"+"\t"+names[i-2]+"\n") | |
590 | |
591 for x in samp: | |
592 fp.write("%s" % "\t".join([x[0],x[i]])+"\n") | |
593 fp.close() | |
594 | |
595 ################################################################################################################## | |
596 | |
597 def DB_write(con,name,unique_seq,sorted_uni_arms,f): | |
598 | |
599 if f==1: | |
600 # Write a txt file with all the information | |
601 if con=="c": | |
602 fp = open('split1/'+name, 'w') | |
603 | |
604 fp.write("%s\t%-42s\t%s\n\n" % ("Number of Reads","Name of isomir","Sequence")) | |
605 if con=="t": | |
606 fp = open('split2/'+name, 'w') | |
607 fp.write("%s\t%-42s\t%s\n\n" % ("Number of Reads","Name of isomir","Sequence")) | |
608 | |
609 | |
610 for i in range(len(sorted_uni_arms)): | |
611 temp = [] | |
612 for j in range(len(unique_seq)): | |
613 | |
614 if sorted_uni_arms[i][0] in unique_seq[j][2].split("_")[0]: | |
615 | |
616 temp.append(unique_seq[j]) | |
617 | |
618 temp = sorted(temp, key=lambda x: int(x[0].split('-')[1]), reverse=True) | |
619 fp.write("*********************************************************************************************************\n") | |
620 fp.write("%-8s\t%-22s\t%-25s\t%-30s\t%s\n" % ("|",str(sorted_uni_arms[i][0]),"Sequence count = "+str(sorted_uni_arms[i][1]),"Total reads = "+str(sorted_uni_arms[i][2]),"|")) | |
621 fp.write("*********************************************************************************************************\n\n") | |
622 [fp.write("%-8s\t%-40s\t%s\n" % (x[0].split("-")[1], x[2],x[9])) for x in temp] | |
623 fp.write("\n" + "\n") | |
624 fp.close() | |
625 | |
626 if f==2: | |
627 | |
628 if con=="c": | |
629 fp = open('split3/'+name, 'w') | |
630 fp.write("%s\t%-42s\t%s\n\n" % ("Number of Reads","Name of isomir","Sequence")) | |
631 if con=="t": | |
632 fp = open('split4/'+name, 'w') | |
633 fp.write("%s\t%-42s\t%s\n\n" % ("Number of Reads","Name of isomir","Sequence")) | |
634 | |
635 | |
636 for i in range(len(sorted_uni_arms)): | |
637 temp = [] | |
638 for j in range(len(unique_seq)): | |
639 if sorted_uni_arms[i][0]==unique_seq[j][2].split("__")[0]: | |
640 temp.append(unique_seq[j]) | |
641 if temp!=[]: | |
642 temp = sorted(temp, key=lambda x: int(x[0].split('-')[1]), reverse=True) | |
643 fp.write("*********************************************************************************************************\n") | |
644 fp.write("%-8s\t%-22s\t%-25s\t%-30s\t%s\n" % ("|",str(sorted_uni_arms[i][0]),"Sequence count = "+str(sorted_uni_arms[i][1]),"Total reads = "+str(sorted_uni_arms[i][2]),"|")) | |
645 fp.write("*********************************************************************************************************\n\n") | |
646 [fp.write("%-8s\t%-40s\t%s\n" % (x[0].split("-")[1], x[2],x[9])) for x in temp] | |
647 fp.write("\n" + "\n") | |
648 fp.close() | |
649 | |
650 | |
651 ########################################################################################################################## | |
652 | |
653 def new_mat_seq(pre_unique_seq,mat_mirnas,l): | |
654 | |
655 unique_iso = [] | |
656 for x in pre_unique_seq: | |
657 if len(x[2].split("_"))==3: | |
658 for y in pre_unique_seq: | |
659 if x[2] in y[2] and int(x[0].split("-")[1])<int(y[0].split("-")[1]): | |
660 if any(y[2] in lst2 for lst2 in unique_iso)==False: | |
661 y[2]=">"+y[2] | |
662 unique_iso.append(y) | |
663 l.acquire() | |
664 for x in unique_iso: | |
665 mat_mirnas.append(x[2]) | |
666 mat_mirnas.append(x[9]) | |
667 l.release() | |
668 | |
669 ######################################################################################################################### | |
670 def pie_non_temp(merge_LH2E,merge_non_LH2E,merge_LH8E,merge_non_LH8E,c_unmap,t_unmap,c_unmap_counts,t_unmap_counts): | |
671 | |
672 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH2E] | |
673 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH8E] | |
674 c_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_LH2E] | |
675 t_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_LH8E] | |
676 | |
677 c_templ = 0 | |
678 c_tem_counts = 0 | |
679 c_mature = 0 | |
680 c_mat_counts = 0 | |
681 t_templ = 0 | |
682 t_tem_counts = 0 | |
683 t_mature = 0 | |
684 t_mat_counts = 0 | |
685 | |
686 c_non = len(c_non_samples) | |
687 c_non_counts = sum(x[2] for x in c_non_samples) | |
688 t_non = len(t_non_samples) | |
689 t_non_counts = sum(x[2] for x in t_non_samples) | |
690 | |
691 c_unmap = c_unmap - c_non | |
692 t_unmap = c_unmap - t_non | |
693 | |
694 c_unmap_counts=c_unmap_counts - c_non_counts | |
695 t_unmap_counts=t_unmap_counts - t_non_counts | |
696 | |
697 | |
698 for x in c_samples: | |
699 | |
700 if "/" not in x[0]: | |
701 if "chr" in x[0].split("_")[-1]: | |
702 c_mature+=1 | |
703 c_mat_counts += x[2] | |
704 else: | |
705 c_templ+=1 | |
706 c_tem_counts += x[2] | |
707 else: | |
708 f=0 | |
709 for y in x[0].split("/"): | |
710 if "chr" in y.split("_")[-1]: | |
711 c_mature+=1 | |
712 c_mat_counts += x[2] | |
713 f=1 | |
714 break | |
715 if f==0: | |
716 c_templ+=1 | |
717 c_tem_counts += x[2] | |
718 | |
719 for x in t_samples: | |
720 | |
721 if "/" not in x[0]: | |
722 if "chr" in x[0].split("_")[-1]: | |
723 t_mature+=1 | |
724 t_mat_counts += x[2] | |
725 else: | |
726 t_templ+=1 | |
727 t_tem_counts += x[2] | |
728 else: | |
729 f=0 | |
730 for y in x[0].split("/"): | |
731 if "chr" in y.split("_")[-1]: | |
732 t_mature+=1 | |
733 t_mat_counts += x[2] | |
734 f=1 | |
735 break | |
736 if f==0: | |
737 t_templ+=1 | |
738 t_tem_counts += x[2] | |
739 | |
740 fig = plt.figure(figsize=(7,5)) | |
741 labels = 'miRNA RefSeq','Template', 'Unmapped','Non-template' | |
742 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts,c_non_counts] | |
743 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] | |
744 ax1 = plt.subplot2grid((1,2),(0,0)) | |
745 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
746 [x.set_fontsize(8) for x in texts] | |
747 plt.title('Control Group (reads)',fontsize=12) | |
748 labels = 'miRNA RefSeq','Template', 'Unmapped','non-template' | |
749 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts, t_non_counts] | |
750 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] | |
751 ax2 = plt.subplot2grid((1,2),(0,1)) | |
752 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
753 [x.set_fontsize(8) for x in texts] | |
754 plt.title('Treated Group (reads)', fontsize=12) | |
755 plt.savefig('pie_non.png',dpi=300) | |
756 | |
757 ###################################################################################################################################################### | |
758 | |
759 def merging_names(LH2E_copy,new): | |
760 | |
761 dupes=[] | |
762 final_LH2E =[] | |
763 | |
764 for num in range(len(LH2E_copy)): | |
765 | |
766 if LH2E_copy[num][1] not in final_LH2E and LH2E_copy[num][0] not in final_LH2E: | |
767 final_LH2E.append(LH2E_copy[num][1]) | |
768 final_LH2E.append(LH2E_copy[num][0]) | |
769 else: | |
770 dupes.append(LH2E_copy[num][1]) | |
771 | |
772 dupes=list(set(dupes)) | |
773 | |
774 for i in range(len(dupes)): | |
775 dupes[i]=[dupes[i]] | |
776 | |
777 for x in LH2E_copy: | |
778 for y in dupes: | |
779 if x[1]==y[0]: | |
780 fl=0 | |
781 if len(y)==1: | |
782 y.append(x[0]) | |
783 else: | |
784 for i in range(1,len(y)): | |
785 if y[i].split("_")[0]==x[0].split("_")[0]: | |
786 fl=1 | |
787 if len(x[0])<len(y[i]): | |
788 del y[i] | |
789 y.append(x[0]) | |
790 break | |
791 | |
792 if fl==0: | |
793 y.append((x[0])) | |
794 | |
795 for y in dupes: | |
796 if len(y)>2: | |
797 for i in range(len(y)-1,1,-1): | |
798 y[1]=y[1]+"/"+y[i] | |
799 del y[i] | |
800 | |
801 | |
802 for x in LH2E_copy: | |
803 for y in dupes: | |
804 if x[1]==y[0]: | |
805 x[0]=y[1] | |
806 | |
807 LH2E_copy.sort() | |
808 LH2E_copy=list(LH2E_copy for LH2E_copy,_ in itertools.groupby(LH2E_copy)) | |
809 | |
810 new.extend(LH2E_copy) | |
811 | |
812 | |
813 ###################################################################################################################################################### | |
814 def pie_temp(merge_LH2E,c_unmap,c_unmap_counts,merge_LH8E,t_unmap,t_unmap_counts): | |
815 | |
816 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH2E] | |
817 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH8E] | |
818 | |
819 c_templ = 0 | |
820 c_tem_counts = 0 | |
821 c_mature = 0 | |
822 c_mat_counts = 0 | |
823 t_templ = 0 | |
824 t_tem_counts = 0 | |
825 t_mature = 0 | |
826 t_mat_counts = 0 | |
827 | |
828 for x in c_samples: | |
829 | |
830 if "/" not in x[0]: | |
831 if "chr" in x[0].split("_")[-1]: | |
832 c_mature+=1 | |
833 c_mat_counts += x[2] | |
834 else: | |
835 c_templ+=1 | |
836 c_tem_counts += x[2] | |
837 else: | |
838 f=0 | |
839 for y in x[0].split("/"): | |
840 if "chr" in y.split("_")[-1]: | |
841 c_mature+=1 | |
842 c_mat_counts += x[2] | |
843 f=1 | |
844 break | |
845 if f==0: | |
846 c_templ+=1 | |
847 c_tem_counts += x[2] | |
848 | |
849 for x in t_samples: | |
850 | |
851 if "/" not in x[0]: | |
852 if "chr" in x[0].split("_")[-1]: | |
853 t_mature+=1 | |
854 t_mat_counts += x[2] | |
855 else: | |
856 t_templ+=1 | |
857 t_tem_counts += x[2] | |
858 else: | |
859 f=0 | |
860 for y in x[0].split("/"): | |
861 if "chr" in y.split("_")[-1]: | |
862 t_mature+=1 | |
863 t_mat_counts += x[2] | |
864 f=1 | |
865 break | |
866 if f==0: | |
867 t_templ+=1 | |
868 t_tem_counts += x[2] | |
869 | |
870 | |
871 fig = plt.figure() | |
872 labels = 'miRNA RefSeq','Template', 'Unmapped' | |
873 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts] | |
874 colors = ['gold', 'yellowgreen', 'lightskyblue'] | |
875 explode = (0.2, 0.05, 0.1) | |
876 ax1 = plt.subplot2grid((1,2),(0,0)) | |
877 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
878 [x.set_fontsize(8) for x in texts] | |
879 plt.title('Control group (reads)', fontsize=12) | |
880 labels = 'miRNA RefSeq','Template', 'Unmapped' | |
881 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts] | |
882 colors = ['gold', 'yellowgreen', 'lightskyblue'] | |
883 explode = (0.2, 0.05, 0.1) | |
884 ax2 = plt.subplot2grid((1,2),(0,1)) | |
885 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
886 [x.set_fontsize(8) for x in texts] | |
887 plt.title('Treated group (reads)',fontsize = 12) | |
888 plt.savefig('pie_tem.png',dpi=300) | |
889 | |
890 ################################################################################################################################################################################################################### | |
891 | |
892 def make_spider(merge_LH2E,merge_LH8E): | |
893 | |
894 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH2E] | |
895 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH8E] | |
896 | |
897 c_5 = 0 | |
898 c_5_counts = 0 | |
899 c_3 = 0 | |
900 c_3_counts = 0 | |
901 c_both =0 | |
902 c_both_counts=0 | |
903 c_mature = 0 | |
904 c_mat_counts = 0 | |
905 c_exception=0 | |
906 c_exception_counts=0 | |
907 | |
908 | |
909 t_5 = 0 | |
910 t_5_counts = 0 | |
911 t_3 = 0 | |
912 t_3_counts = 0 | |
913 t_both = 0 | |
914 t_both_counts = 0 | |
915 t_mature = 0 | |
916 t_mat_counts = 0 | |
917 t_exception = 0 | |
918 t_exception_counts=0 | |
919 | |
920 for x in c_samples: | |
921 | |
922 if "/" not in x[0]: | |
923 if "chr" in x[0].split("_")[-1]: | |
924 c_mature+=1 | |
925 c_mat_counts += x[2] | |
926 elif 0 == int(x[0].split("_")[-1]): | |
927 c_5+=1 | |
928 c_5_counts += x[2] | |
929 elif 0 == int(x[0].split("_")[-2]): | |
930 c_3+=1 | |
931 c_3_counts += x[2] | |
932 else: | |
933 c_both+=1 | |
934 c_both_counts+=x[2] | |
935 | |
936 else: | |
937 f=0 | |
938 for y in x[0].split("/"): | |
939 if "chr" in y.split("_")[-1]: | |
940 c_mature+=1 | |
941 c_mat_counts += x[2] | |
942 f=1 | |
943 break | |
944 if f==0: | |
945 for y in x[0].split("/"): | |
946 c_exception+=1 | |
947 c_exception_counts += x[2] | |
948 | |
949 | |
950 for x in t_samples: | |
951 | |
952 if "/" not in x[0]: | |
953 if "chr" in x[0].split("_")[-1]: | |
954 t_mature+=1 | |
955 t_mat_counts += x[2] | |
956 elif 0 == int(x[0].split("_")[-1]): | |
957 t_5+=1 | |
958 t_5_counts += x[2] | |
959 elif 0 == int(x[0].split("_")[-2]): | |
960 t_3+=1 | |
961 t_3_counts += x[2] | |
962 else: | |
963 t_both+=1 | |
964 t_both_counts+=x[2] | |
965 | |
966 else: | |
967 f=0 | |
968 for y in x[0].split("/"): | |
969 if "chr" in y.split("_")[-1]: | |
970 t_mature+=1 | |
971 t_mat_counts += x[2] | |
972 f=1 | |
973 break | |
974 if f==0: | |
975 for y in x[0].split("/"): | |
976 t_exception+=1 | |
977 t_exception_counts += x[2] | |
978 | |
979 | |
980 c_all = c_5+c_3+c_both+c_mature+c_exception | |
981 c_all_counts = c_5_counts + c_3_counts + c_both_counts + c_mat_counts + c_exception_counts | |
982 | |
983 t_all = t_5+t_3+t_both+t_mature + t_exception | |
984 t_all_counts = t_5_counts + t_3_counts + t_both_counts + t_mat_counts + t_exception_counts | |
985 | |
986 c_5 = round(c_5/c_all*100,2) | |
987 c_3 = round(c_3/c_all*100,2) | |
988 c_both = round(c_both/c_all*100,2) | |
989 c_mature = round(c_mature/c_all*100,2) | |
990 c_exception = round(c_exception/c_all*100,2) | |
991 | |
992 c_5_counts = round(c_5_counts/c_all_counts*100,2) | |
993 c_3_counts = round(c_3_counts/c_all_counts*100,2) | |
994 c_both_counts = round(c_both_counts/c_all_counts*100,2) | |
995 c_mat_counts = round(c_mat_counts/c_all_counts*100,2) | |
996 c_exception_counts = round(c_exception_counts/c_all_counts*100,2) | |
997 | |
998 t_5 = round(t_5/t_all*100,2) | |
999 t_3 = round(t_3/t_all*100,2) | |
1000 t_both = round(t_both/t_all*100,2) | |
1001 t_mature = round(t_mature/t_all*100,2) | |
1002 t_exception = round(t_exception/t_all*100,2) | |
1003 | |
1004 t_5_counts = round(t_5_counts/t_all_counts*100,2) | |
1005 t_3_counts = round(t_3_counts/t_all_counts*100,2) | |
1006 t_both_counts = round(t_both_counts/t_all_counts*100,2) | |
1007 t_mat_counts = round(t_mat_counts/t_all_counts*100,2) | |
1008 t_exception_counts = round(t_exception_counts/t_all_counts*100,2) | |
1009 | |
1010 radar_max = max(c_5, c_3, c_both,c_mature,c_exception,t_5,t_3,t_both,t_mature,t_exception) | |
1011 radar_max_counts = max(c_5_counts,c_3_counts,c_both_counts,c_mat_counts,c_exception_counts,t_5_counts,t_3_counts,t_both_counts,t_mat_counts,t_exception_counts) | |
1012 | |
1013 df=pd.DataFrame({ | |
1014 'group':['Controls','Treated'], | |
1015 """5' and 3' isomiRs""":[c_both,t_both], | |
1016 """3' isomiRs""":[c_3,t_3], | |
1017 'miRNA RefSeq':[c_mature,t_mature], | |
1018 """5' isomiRs""":[c_5,t_5], | |
1019 'Others*':[c_exception,t_exception]}) | |
1020 | |
1021 df1=pd.DataFrame({ | |
1022 'group':['Controls','Treated'], | |
1023 """5' and 3' isomiRs""":[c_both_counts,t_both_counts], | |
1024 """3' isomiRs""":[c_3_counts,t_3_counts], | |
1025 'miRNA RefSeq':[c_mat_counts,t_mat_counts], | |
1026 """5' isomiRs""":[c_5_counts,t_5_counts], | |
1027 'Others*':[c_exception_counts,t_exception_counts]}) | |
1028 | |
1029 spider_last(df,radar_max,1) | |
1030 spider_last(df1,radar_max_counts,2) | |
1031 | |
1032 | |
1033 def spider_last(df,radar_max,flag): | |
1034 # ------- PART 1: Create background | |
1035 fig = plt.figure() | |
1036 # number of variable | |
1037 categories=list(df)[1:] | |
1038 N = len(categories) | |
1039 | |
1040 # What will be the angle of each axis in the plot? (we divide the plot / number of variable) | |
1041 angles = [n / float(N) * 2 * pi for n in range(N)] | |
1042 angles += angles[:1] | |
1043 | |
1044 # Initialise the spider plot | |
1045 ax = plt.subplot(111, polar=True) | |
1046 | |
1047 # If you want the first axis to be on top: | |
1048 ax.set_theta_offset(pi/2) | |
1049 ax.set_theta_direction(-1) | |
1050 | |
1051 # Draw one axe per variable + add labels labels yet | |
1052 plt.xticks(angles[:-1], categories, fontsize=11) | |
1053 | |
1054 # Draw ylabels | |
1055 radar_max=round(radar_max+radar_max*0.1) | |
1056 mul=len(str(radar_max))-1 | |
1057 maxi=int(math.ceil(radar_max / pow(10,mul))) * pow(10,mul) | |
1058 sep = round(maxi/4) | |
1059 plt.yticks([sep, 2*sep, 3*sep, 4*sep, 5*sep], [str(sep)+'%', str(2*sep)+'%', str(3*sep)+'%', str(4*sep)+'%', str(5*sep)+'%'], color="grey", size=10) | |
1060 plt.ylim(0, maxi) | |
1061 | |
1062 # ------- PART 2: Add plots | |
1063 | |
1064 # Plot each individual = each line of the data | |
1065 # I don't do a loop, because plotting more than 3 groups makes the chart unreadable | |
1066 | |
1067 # Ind1 | |
1068 values=df.loc[0].drop('group').values.flatten().tolist() | |
1069 values += values[:1] | |
1070 ax.plot(angles, values,'-o', linewidth=1, linestyle='solid', label="Controls") | |
1071 ax.fill(angles, values, 'b', alpha=0.1) | |
1072 | |
1073 # Ind2 | |
1074 values=df.loc[1].drop('group').values.flatten().tolist() | |
1075 values += values[:1] | |
1076 ax.plot(angles, values, '-o' ,linewidth=1, linestyle='solid', label="Treated") | |
1077 ax.fill(angles, values, 'r', alpha=0.1) | |
1078 | |
1079 # Add legend | |
1080 if flag==1: | |
1081 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1)) | |
1082 plt.savefig('spider_non_red.png',dpi=300) | |
1083 else: | |
1084 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1)) | |
1085 plt.savefig('spider_red.png',dpi=300) | |
1086 | |
1087 | |
1088 ############################################################################################################################################################################################################# | |
1089 def hist_red(samples,flag): | |
1090 lengths=[] | |
1091 cat=[] | |
1092 total_reads=0 | |
1093 seq=[] | |
1094 | |
1095 if flag == "c": | |
1096 title = "Length Distribution of Control group (Redudant reads)" | |
1097 if flag == "t": | |
1098 title = "Length Distribution of Treated group (Redudant reads)" | |
1099 | |
1100 for i in samples: | |
1101 for x in i: | |
1102 lengths.append(len(x[9])) | |
1103 if x[1]=="0": | |
1104 seq.append([x[9],x[0].split("-")[1],"Mapped"]) | |
1105 cat.append("Mapped") | |
1106 if x[1] == "4": | |
1107 seq.append([x[9],x[0].split("-")[1],"Unmapped"]) | |
1108 cat.append("Unmapped") | |
1109 | |
1110 uni_len=list(set(lengths)) | |
1111 uni_len=[x for x in uni_len if x<=35] | |
1112 low=min(lengths) | |
1113 up=max(lengths) | |
1114 seq.sort() | |
1115 uni_seq=list(seq for seq,_ in itertools.groupby(seq)) | |
1116 dim=up-low | |
1117 | |
1118 if dim>20: | |
1119 s=5 | |
1120 else: | |
1121 s=8 | |
1122 | |
1123 total_reads+=sum([int(x[1]) for x in uni_seq]) | |
1124 | |
1125 map_reads=[] | |
1126 unmap_reads=[] | |
1127 length=[] | |
1128 for y in uni_len: | |
1129 map_temp=0 | |
1130 unmap_temp=0 | |
1131 for x in uni_seq: | |
1132 if len(x[0])==y and x[2]=="Mapped": | |
1133 map_temp+=int(x[1]) | |
1134 if len(x[0])==y and x[2]=="Unmapped": | |
1135 unmap_temp+=int(x[1]) | |
1136 if y<=35: | |
1137 length.append(y) | |
1138 map_reads.append(round(map_temp/total_reads*100,2)) | |
1139 unmap_reads.append(round(unmap_temp/total_reads*100,2)) | |
1140 | |
1141 ylim=max([sum(x) for x in zip(unmap_reads, map_reads)]) | |
1142 ylim=ylim+ylim*20/100 | |
1143 fig, ax = plt.subplots() | |
1144 width=0.8 | |
1145 ax.bar(length, unmap_reads, width, label='Unmapped') | |
1146 h=ax.bar(length, map_reads, width, bottom=unmap_reads, label='Mapped') | |
1147 plt.xticks(np.arange(length[0], length[-1]+1, 1)) | |
1148 plt.xlabel('Length (nt)',fontsize=14) | |
1149 plt.ylabel('Percentage',fontsize=14) | |
1150 plt.title(title,fontsize=14) | |
1151 ax.legend() | |
1152 plt.ylim([0, ylim]) | |
1153 ax.grid(axis='y',linewidth=0.2) | |
1154 | |
1155 if flag=='c': | |
1156 plt.savefig('c_hist_red.png',dpi=300) | |
1157 | |
1158 if flag=='t': | |
1159 plt.savefig('t_hist_red.png',dpi=300) | |
1160 | |
1161 ################################################################################################################# | |
1162 | |
1163 | |
1164 def logo_seq_red(merge, flag): | |
1165 | |
1166 if flag=="c": | |
1167 titlos="Control group (Redundant)" | |
1168 file_logo="c_logo.png" | |
1169 file_bar="c_bar.png" | |
1170 if flag=="t": | |
1171 titlos="Treated group (Redundant)" | |
1172 file_logo="t_logo.png" | |
1173 file_bar="t_bar.png" | |
1174 | |
1175 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge] | |
1176 | |
1177 A=[0]*5 | |
1178 C=[0]*5 | |
1179 G=[0]*5 | |
1180 T=[0]*5 | |
1181 total_reads=0 | |
1182 | |
1183 for y in c_samples: | |
1184 if "/" in y[0]: | |
1185 length=[] | |
1186 for x in y[0].split("/"): | |
1187 length.append([len(x.split("_")[-1]),x.split("_")[-1],y[2]]) | |
1188 | |
1189 best=min(length) | |
1190 total_reads+=best[2] | |
1191 for i in range(5): | |
1192 if i<len(best[1]): | |
1193 if best[1][i] == "A": | |
1194 A[i]+=best[2] | |
1195 elif best[1][i] == "C": | |
1196 C[i]+=best[2] | |
1197 elif best[1][i] == "G": | |
1198 G[i]+=best[2] | |
1199 else: | |
1200 T[i]+=best[2] | |
1201 else: | |
1202 total_reads+=y[2] | |
1203 for i in range(5): | |
1204 if i<len(y[0].split("_")[-1]): | |
1205 if y[0].split("_")[-1][i] == "A": | |
1206 A[i]+=(y[2]) | |
1207 elif y[0].split("_")[-1][i] == "C": | |
1208 C[i]+=(y[2]) | |
1209 elif y[0].split("_")[-1][i] == "G": | |
1210 G[i]+=(y[2]) | |
1211 else: | |
1212 T[i]+=y[2] | |
1213 | |
1214 A[:] = [round(x*100,1) / total_reads for x in A] | |
1215 C[:] = [round(x*100,1) / total_reads for x in C] | |
1216 G[:] = [round(x*100,1) / total_reads for x in G] | |
1217 T[:] = [round(x*100,1) / total_reads for x in T] | |
1218 | |
1219 | |
1220 | |
1221 data = {'A':A,'C':C,'G':G,'T':T} | |
1222 df = pd.DataFrame(data, index=[1,2,3,4,5]) | |
1223 h=df.plot.bar(color=tuple(["g", "b","gold","r"]) ) | |
1224 h.grid(axis='y',linewidth=0.2) | |
1225 plt.xticks(rotation=0, ha="right") | |
1226 plt.ylabel("Counts (%)",fontsize=18) | |
1227 plt.xlabel("Positions (nt)",fontsize=18) | |
1228 plt.title(titlos,fontsize=20) | |
1229 plt.tight_layout() | |
1230 plt.savefig(file_bar, dpi=300) | |
1231 | |
1232 import logomaker as lm | |
1233 crp_logo = lm.Logo(df, font_name = 'DejaVu Sans') | |
1234 crp_logo.style_spines(visible=False) | |
1235 crp_logo.style_spines(spines=['left', 'bottom'], visible=True) | |
1236 crp_logo.style_xticks(rotation=0, fmt='%d', anchor=0) | |
1237 | |
1238 # style using Axes methods | |
1239 crp_logo.ax.set_title(titlos,fontsize=18) | |
1240 crp_logo.ax.set_ylabel("Counts (%)", fontsize=16,labelpad=5) | |
1241 crp_logo.ax.set_xlabel("Positions (nt)",fontsize=16, labelpad=5) | |
1242 crp_logo.ax.xaxis.set_ticks_position('none') | |
1243 crp_logo.ax.xaxis.set_tick_params(pad=-1) | |
1244 figure = plt.gcf() | |
1245 figure.set_size_inches(6, 4) | |
1246 crp_logo.fig.savefig(file_logo,dpi=300) | |
1247 | |
1248 ########################################################################################################################################################################################################## | |
1249 | |
1250 | |
1251 | |
1252 def logo_seq_non_red(merge_LH2E): | |
1253 | |
1254 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_LH2E] | |
1255 | |
1256 A=[0]*5 | |
1257 C=[0]*5 | |
1258 G=[0]*5 | |
1259 T=[0]*5 | |
1260 | |
1261 for y in c_samples: | |
1262 if "/" in y[0]: | |
1263 length=[] | |
1264 for x in y[0].split("/"): | |
1265 length.append([len(x.split("_")[-1]),x.split("_")[-1],y[2]]) | |
1266 | |
1267 best=min(length) | |
1268 for i in range(5): | |
1269 if i<len(best[1]): | |
1270 if best[1][i] == "A": | |
1271 A[i]+=1 | |
1272 elif best[1][i] == "C": | |
1273 C[i]+=1 | |
1274 elif best[1][i] == "G": | |
1275 G[i]+=1 | |
1276 else: | |
1277 T[i]+=1 | |
1278 else: | |
1279 for i in range(5): | |
1280 if i<len(y[0].split("_")[-1]): | |
1281 if y[0].split("_")[-1][i] == "A": | |
1282 A[i]+=1 | |
1283 elif y[0].split("_")[-1][i] == "C": | |
1284 C[i]+=1 | |
1285 elif y[0].split("_")[-1][i] == "G": | |
1286 G[i]+=1 | |
1287 else: | |
1288 T[i]+=1 | |
1289 | |
1290 data = {'A':A,'C':C,'G':G,'T':T} | |
1291 df = pd.DataFrame(data, index=[1,2,3,4,5]) | |
1292 h=df.plot.bar(title="Non-templated nucleotides after templated sequence",color=tuple(["g", "b","gold","r"])) | |
1293 h.set_xlabel("Positions (nt)") | |
1294 h.set_ylabel("Unique sequences") | |
1295 plt.xticks(rotation=0, ha="right") | |
1296 plt.tight_layout() | |
1297 plt.savefig("bar2.png", dpi=300) | |
1298 | |
1299 | |
1300 import logomaker as lm | |
1301 crp_logo = lm.Logo(df, font_name = 'DejaVu Sans') | |
1302 | |
1303 # style using Logo methods | |
1304 crp_logo.style_spines(visible=False) | |
1305 crp_logo.style_spines(spines=['left', 'bottom'], visible=True) | |
1306 crp_logo.style_xticks(rotation=0, fmt='%d', anchor=0) | |
1307 | |
1308 # style using Axes methods | |
1309 crp_logo.ax.set_ylabel("Unique sequences", labelpad=5) | |
1310 crp_logo.ax.set_xlabel("Positions (nt)", labelpad=5) | |
1311 crp_logo.ax.xaxis.set_ticks_position('none') | |
1312 crp_logo.ax.xaxis.set_tick_params(pad=-1) | |
1313 crp_logo.ax.set_title("Non-redundant") | |
1314 figure = plt.gcf() | |
1315 crp_logo.fig.savefig('logo2.png', dpi=300) | |
1316 | |
1317 | |
1318 ################################################################################################################################################################################################################### | |
1319 | |
1320 def ssamples1(tem_names,tem_samp,non_names,non_samp,folder,pro): | |
1321 | |
1322 for i in range(2,len(tem_samp[0])): | |
1323 | |
1324 fp = open(folder+tem_names[i-2]+'.txt','w') | |
1325 fp.write("miRNA id"+"\t"+tem_names[i-2]+"\n") | |
1326 | |
1327 for x in tem_samp: | |
1328 fp.write("%s" % "\t".join([x[0],x[i]])+"\n") | |
1329 | |
1330 for j in range(len(non_names)): | |
1331 if non_names[j]==tem_names[i-2]: | |
1332 for x in non_samp: | |
1333 fp.write("%s" % "\t".join([x[0],x[j+2]])+"\n") | |
1334 fp.close() | |
1335 | |
1336 ################################################################################################################################################################################################################### | |
1337 | |
1338 def download_matures(matures,org_name): | |
1339 | |
1340 #url = 'ftp://mirbase.org/pub/mirbase/21/mature.fa.gz' | |
1341 url = 'ftp://mirbase.org/pub/mirbase/CURRENT/mature.fa.gz' | |
1342 data = urllib.request.urlopen(url).read() | |
1343 file_mirna = gzip.decompress(data).decode('utf-8') | |
1344 file_mirna = file_mirna.split("\n") | |
1345 | |
1346 for i in range(0,len(file_mirna)-1,2): | |
1347 | |
1348 if org_name in file_mirna[i]: | |
1349 matures.append(file_mirna[i]) | |
1350 matures.append(file_mirna[i+1]) | |
1351 | |
1352 ################################################################################################################################################################################################################### | |
1353 def non_template_ref(sc,st,all_isoforms): | |
1354 | |
1355 pre_uni_seq_con = list(sc) | |
1356 pre_uni_seq_tre = list(st) | |
1357 | |
1358 for x in pre_uni_seq_con: | |
1359 for y in x: | |
1360 if ">"+y[2] not in all_isoforms and ")_" in y[2] : | |
1361 all_isoforms.append(">"+y[2]) | |
1362 all_isoforms.append(y[9]) | |
1363 | |
1364 | |
1365 for x in pre_uni_seq_tre: | |
1366 for y in x: | |
1367 if ">"+y[2] not in all_isoforms and ")_" in y[2]: | |
1368 all_isoforms.append(">"+y[2]) | |
1369 all_isoforms.append(y[9]) | |
1370 | |
1371 ################################################################################################################################################################################################ | |
1372 | |
1373 def deseqe2(sample,mir_names,l,new_d,sample_name,sample_order): | |
1374 | |
1375 for y in mir_names: | |
1376 flag=0 | |
1377 for x in sample: | |
1378 if y[0]==x[0]: | |
1379 flag=1 | |
1380 break | |
1381 if flag==0: | |
1382 sample.append([y[0],"0",y[1]]) | |
1383 | |
1384 sample.sort(key=lambda x: x[0]) | |
1385 sample=list(sample for sample,_ in itertools.groupby(sample)) | |
1386 | |
1387 l.acquire() | |
1388 new_d.append(sample) | |
1389 sample_order.append(sample_name) | |
1390 l.release() | |
1391 | |
1392 ############################################################################################################################################################################################### | |
1393 | |
1394 if __name__ == '__main__': | |
1395 | |
1396 starttime = time.time() | |
1397 | |
1398 q1 = Queue() | |
1399 q2 = Queue() | |
1400 lock = Lock() | |
1401 manager = Manager() | |
1402 | |
1403 mature_mirnas=manager.list() | |
1404 ps_mature=Process(target=download_matures,args=(mature_mirnas,args.org_name)) | |
1405 ps_mature.start() | |
1406 | |
1407 args.control[0]=args.control[0][1:] | |
1408 args.control[len(args.control)-1][:-1] | |
1409 control = [(args.control[i:i+2]) for i in range(0, len(args.control), 2)] | |
1410 | |
1411 args.treated[0]=args.treated[0][1:] | |
1412 args.treated[len(args.treated)-1][:-1] | |
1413 treated = [(args.treated[i:i+2]) for i in range(0, len(args.treated), 2)] | |
1414 | |
1415 | |
1416 ############## Detection of templated isoforms ################ | |
1417 | |
1418 radar = manager.list([0,0,0,0]) | |
1419 samples = manager.list() | |
1420 data= manager.list() | |
1421 names_con=manager.list() | |
1422 samples_mirna_names=manager.list() | |
1423 deseq=manager.list() | |
1424 unmap_seq=manager.Value('i',0) | |
1425 unmap_counts=manager.Value('i',0) | |
1426 LH2E_names=manager.list() | |
1427 ini_c_samples = manager.list() | |
1428 | |
1429 | |
1430 radar1 = manager.list([0,0,0,0]) | |
1431 samples1 = manager.list() | |
1432 data1 = manager.list() | |
1433 names_tre = manager.list() | |
1434 samples_mirna_names1=manager.list() | |
1435 deseq1=manager.list() | |
1436 unmap1_seq = manager.Value('i',0) | |
1437 unmap1_counts = manager.Value('i',0) | |
1438 LH8E_names=manager.list() | |
1439 ini_t_samples = manager.list() | |
1440 ps_mature.join() | |
1441 | |
1442 | |
1443 mature_mirnas=list(mature_mirnas) | |
1444 | |
1445 | |
1446 starttime1 = time.time() | |
1447 ps_sam = [Process(target=sam,args=(mature_mirnas,path[1][:-1],path[0].split(",")[0],"c",lock,samples,data,names_con,unmap_seq,samples_mirna_names,deseq,LH2E_names,"0",ini_c_samples,unmap_counts)) for path in control] | |
1448 ps_sam.extend([Process(target=sam,args=(mature_mirnas,path[1][:-1],path[0].split(",")[0],"t",lock,samples1,data1,names_tre,unmap1_seq,samples_mirna_names1,deseq1,LH8E_names,"0",ini_t_samples,unmap1_counts)) for path in treated]) | |
1449 | |
1450 [p.start() for p in ps_sam] | |
1451 [p.join() for p in ps_sam] | |
1452 print('SAM took {} seconds'.format(time.time() - starttime1)) | |
1453 | |
1454 ps_hist=[Process(target=hist_red,args=(ini_c_samples,'c'))] | |
1455 ps_hist.extend([Process(target=hist_red,args=(ini_t_samples,'t'))]) | |
1456 [x.start() for x in ps_hist] | |
1457 | |
1458 starttime200=time.time() | |
1459 | |
1460 sc = list(samples) | |
1461 st = list(samples1) | |
1462 | |
1463 names_con=list(names_con) | |
1464 names_tre=list(names_tre) | |
1465 samples_mirna_names=list(samples_mirna_names) | |
1466 samples_mirna_names.sort() | |
1467 samples_mirna_names=list(samples_mirna_names for samples_mirna_names,_ in itertools.groupby(samples_mirna_names)) | |
1468 | |
1469 samples_mirna_names1=list(samples_mirna_names1) | |
1470 samples_mirna_names1.sort() | |
1471 samples_mirna_names1=list(samples_mirna_names1 for samples_mirna_names1,_ in itertools.groupby(samples_mirna_names1)) | |
1472 | |
1473 deseq=list(deseq) | |
1474 deseq1=list(deseq1) | |
1475 | |
1476 new_names_con=manager.list() | |
1477 new_names_tre=manager.list() | |
1478 new_deseq=manager.list() | |
1479 new_deseq1=manager.list() | |
1480 ps_deseq=[Process(target=deseqe2,args=(sampp,samples_mirna_names,lock,new_deseq,names_con[i],new_names_con)) for i,sampp in enumerate(deseq)] | |
1481 ps_deseq.extend([Process(target=deseqe2,args=(sampp,samples_mirna_names1,lock,new_deseq1,names_tre[i],new_names_tre)) for i,sampp in enumerate(deseq1)]) | |
1482 | |
1483 [z.start() for z in ps_deseq] | |
1484 [z.join() for z in ps_deseq] | |
1485 new_deseq=list(new_deseq) | |
1486 new_deseq1=list(new_deseq1) | |
1487 | |
1488 LH2E=[[x[0],x[2]] for x in new_deseq[0]] | |
1489 [LH2E[i].append(y[i][1]) for i,_ in enumerate(LH2E) for y in new_deseq] | |
1490 | |
1491 LH8E=[[x[0],x[2]] for x in new_deseq1[0]] | |
1492 [LH8E[i].append(y[i][1]) for i,_ in enumerate(LH8E) for y in new_deseq1] | |
1493 | |
1494 print('Deseq took {} seconds'.format(time.time() - starttime200)) | |
1495 | |
1496 merg_nam_LH2E=manager.list() | |
1497 merg_nam_LH8E=manager.list() | |
1498 | |
1499 LH2E_copy=copy.deepcopy(list(LH2E)) | |
1500 LH8E_copy=copy.deepcopy(list(LH8E)) | |
1501 | |
1502 fil_sort_tre=manager.list() | |
1503 fil_sort_con=manager.list() | |
1504 raw_sort_tre=manager.list() | |
1505 raw_sort_con=manager.list() | |
1506 | |
1507 ps_main = Process(target=main_temp,args=(list(LH2E), samples_mirna_names, list(LH8E), samples_mirna_names1,1,list(names_con),list(names_tre),fil_sort_tre,fil_sort_con,raw_sort_tre,raw_sort_con)) | |
1508 ps_main.start() | |
1509 | |
1510 if args.anal=="2": | |
1511 all_iso = manager.list() | |
1512 ps_non_iso = Process(target=non_template_ref,args=(sc,st,all_iso)) | |
1513 ps_non_iso.start() | |
1514 | |
1515 ps_merge = [Process(target=merging_names,args=(LH2E_copy,merg_nam_LH2E))] | |
1516 ps_merge.extend([Process(target=merging_names,args=(LH8E_copy,merg_nam_LH8E))]) | |
1517 [x.start() for x in ps_merge] | |
1518 [x.join() for x in ps_merge] | |
1519 | |
1520 merg_nam_LH2E=list(merg_nam_LH2E) | |
1521 merg_nam_LH8E=list(merg_nam_LH8E) | |
1522 | |
1523 starttime2 = time.time() | |
1524 procs = [Process(target=DB_write,args=(x[0],x[1],x[2],x[3],1)) for x in data] | |
1525 procs.extend([Process(target=DB_write,args=(x[0],x[1],x[2],x[3],1)) for x in data1]) | |
1526 procs.extend([Process(target=make_spider,args=(merg_nam_LH2E,merg_nam_LH8E))]) | |
1527 if args.anal == "1": | |
1528 procs.extend([Process(target=pie_temp,args=(merg_nam_LH2E,unmap_seq.value,unmap_counts.value,merg_nam_LH8E,unmap1_seq.value,unmap1_counts.value))]) | |
1529 | |
1530 [p.start() for p in procs] | |
1531 | |
1532 | |
1533 if args.anal=="1": | |
1534 [x.join() for x in ps_hist] | |
1535 [p.join() for p in procs] | |
1536 ps_pdf = Process(target=pdf_before_DE,args=(args.anal)) | |
1537 ps_pdf.start() | |
1538 | |
1539 print('Graphs took {} seconds'.format(time.time() - starttime2)) | |
1540 | |
1541 ps_main.join() | |
1542 | |
1543 fil_sort_con=list(fil_sort_con) | |
1544 fil_sort_tre=list(fil_sort_tre) | |
1545 if fil_sort_con==[]: | |
1546 fil_sort_con=raw_sort_con | |
1547 fil_sort_tre=raw_sort_tre | |
1548 | |
1549 raw_sort_con=list(raw_sort_con) | |
1550 raw_sort_tre=list(raw_sort_tre) | |
1551 names_con=list(new_names_con) | |
1552 names_tre=list(new_names_tre) | |
1553 | |
1554 ps_write = Process(target=write_main,args=(raw_sort_con, raw_sort_tre, fil_sort_con, fil_sort_tre, names_con,names_tre,1)) | |
1555 ps_write.start() | |
1556 | |
1557 ps1_matrix = [Process(target=ssamples,args=(names_con,fil_sort_con,"Diff/temp_con/",0))] | |
1558 ps1_matrix.extend([Process(target=ssamples,args=(names_tre,fil_sort_tre,"Diff/temp_tre/",0))]) | |
1559 [p.start() for p in ps1_matrix] | |
1560 | |
1561 if args.anal=="1": | |
1562 ps_pdf.join() | |
1563 if args.anal=="2": | |
1564 [p.join() for p in procs] | |
1565 [x.join() for x in ps_hist] | |
1566 | |
1567 ps_write.join() | |
1568 [p.join() for p in ps1_matrix] | |
1569 | |
1570 | |
1571 ############################## Detection of Both ####################################### | |
1572 | |
1573 starttime10 = time.time() | |
1574 | |
1575 if args.anal == "2": | |
1576 | |
1577 n_data= manager.list() | |
1578 n_names_con=manager.list() | |
1579 n_samples_mirna_names=manager.list() | |
1580 n_deseq=manager.list() | |
1581 n_LH2E_names=manager.list() | |
1582 | |
1583 n_data1 = manager.list() | |
1584 n_names_tre = manager.list() | |
1585 n_samples_mirna_names1=manager.list() | |
1586 n_deseq1=manager.list() | |
1587 n_LH8E_names=manager.list() | |
1588 | |
1589 | |
1590 new_mat_mirnas = list(mature_mirnas) | |
1591 ps_non_iso.join() | |
1592 | |
1593 all_iso=list(all_iso) | |
1594 new_mat_mirnas.extend(all_iso) | |
1595 | |
1596 starttime11=time.time() | |
1597 | |
1598 ps_sam = [Process(target=non_sam,args=(new_mat_mirnas,path[1][:-1],path[0].split(",")[0],"c",lock,n_data,n_names_con,n_deseq,n_samples_mirna_names,n_LH2E_names)) for path in control] | |
1599 ps_sam.extend([Process(target=non_sam,args=(new_mat_mirnas,path[1][:-1],path[0].split(",")[0],"t",lock,n_data1,n_names_tre,n_deseq1,n_samples_mirna_names1,n_LH8E_names)) for path in treated]) | |
1600 | |
1601 [p.start() for p in ps_sam] | |
1602 [p.join() for p in ps_sam] | |
1603 | |
1604 print('Non-sam took {} seconds'.format(time.time() - starttime11)) | |
1605 | |
1606 starttime12=time.time() | |
1607 | |
1608 n_names_con=list(n_names_con) | |
1609 n_names_tre=list(n_names_tre) | |
1610 n_samples_mirna_names=list(n_samples_mirna_names) | |
1611 n_samples_mirna_names.sort() | |
1612 n_samples_mirna_names=list(n_samples_mirna_names for n_samples_mirna_names,_ in itertools.groupby(n_samples_mirna_names)) | |
1613 | |
1614 n_samples_mirna_names1=list(n_samples_mirna_names1) | |
1615 n_samples_mirna_names1.sort() | |
1616 n_samples_mirna_names1=list(n_samples_mirna_names1 for n_samples_mirna_names1,_ in itertools.groupby(n_samples_mirna_names1)) | |
1617 | |
1618 n_deseq=list(n_deseq) | |
1619 n_deseq1=list(n_deseq1) | |
1620 | |
1621 new_n_names_con=manager.list() | |
1622 new_n_names_tre=manager.list() | |
1623 n_new_deseq=manager.list() | |
1624 n_new_deseq1=manager.list() | |
1625 ps_deseq=[Process(target=deseqe2,args=(sampp,n_samples_mirna_names,lock,n_new_deseq,n_names_con[i],new_n_names_con)) for i,sampp in enumerate(n_deseq)] | |
1626 ps_deseq.extend([Process(target=deseqe2,args=(sampp,n_samples_mirna_names1,lock,n_new_deseq1,n_names_tre[i],new_n_names_tre)) for i,sampp in enumerate(n_deseq1)]) | |
1627 | |
1628 [x.start() for x in ps_deseq] | |
1629 [x.join() for x in ps_deseq] | |
1630 n_new_deseq=list(n_new_deseq) | |
1631 n_new_deseq1=list(n_new_deseq1) | |
1632 | |
1633 n_LH2E=[[x[0],x[2]] for x in n_new_deseq[0]] | |
1634 [n_LH2E[i].append(y[i][1]) for i,_ in enumerate(n_LH2E) for y in n_new_deseq] | |
1635 | |
1636 n_LH8E=[[x[0],x[2]] for x in n_new_deseq1[0]] | |
1637 [n_LH8E[i].append(y[i][1]) for i,_ in enumerate(n_LH8E) for y in n_new_deseq1] | |
1638 | |
1639 print('Non-deseq took {} seconds'.format(time.time() - starttime12)) | |
1640 | |
1641 merg_nam_n_LH2E=manager.list() | |
1642 merg_nam_n_LH8E=manager.list() | |
1643 | |
1644 n_LH2E_copy=copy.deepcopy(list(n_LH2E)) | |
1645 n_LH8E_copy=copy.deepcopy(list(n_LH8E)) | |
1646 | |
1647 n_sort_tre=manager.list() | |
1648 n_sort_con=manager.list() | |
1649 | |
1650 n_fil_sort_con=manager.list() | |
1651 n_fil_sort_tre=manager.list() | |
1652 n_raw_sort_con=manager.list() | |
1653 n_raw_sort_tre=manager.list() | |
1654 | |
1655 ps_main = Process(target=main_temp,args=(list(n_LH2E), n_samples_mirna_names, list(n_LH8E), n_samples_mirna_names1,1,list(n_names_con),list(n_names_tre),n_fil_sort_tre,n_fil_sort_con,n_raw_sort_tre,n_raw_sort_con)) | |
1656 ps_main.start() | |
1657 | |
1658 ps_merge = [Process(target=merging_names,args=(n_LH2E_copy,merg_nam_n_LH2E))] | |
1659 ps_merge.extend([Process(target=merging_names,args=(n_LH8E_copy,merg_nam_n_LH8E))]) | |
1660 [p.start() for p in ps_merge] | |
1661 [p.join() for p in ps_merge] | |
1662 | |
1663 merg_nam_n_LH2E=list(merg_nam_n_LH2E) | |
1664 merg_nam_n_LH8E=list(merg_nam_n_LH8E) | |
1665 | |
1666 procs = [Process(target=DB_write,args=(x[0],x[1],x[2],x[3],2)) for x in n_data] | |
1667 procs.extend([Process(target=DB_write,args=(x[0],x[1],x[2],x[3],2)) for x in n_data1]) | |
1668 procs.extend([Process(target=logo_seq_red,args=(merg_nam_n_LH2E,'c'))]) | |
1669 procs.extend([Process(target=logo_seq_red,args=(merg_nam_n_LH8E,'t'))]) | |
1670 procs.extend([Process(target=pie_non_temp,args=(merg_nam_LH2E,merg_nam_n_LH2E,merg_nam_LH8E,merg_nam_n_LH8E,unmap_seq.value,unmap1_seq.value,unmap_counts.value,unmap1_counts.value))]) | |
1671 | |
1672 starttime13=time.time() | |
1673 [p.start() for p in procs] | |
1674 [p.join() for p in procs] | |
1675 | |
1676 print('Graphs took {} seconds'.format(time.time() - starttime13)) | |
1677 | |
1678 procs1 = Process(target=pdf_before_DE,args=(args.anal)) | |
1679 procs1.start() | |
1680 | |
1681 starttime14=time.time() | |
1682 ps_main.join() | |
1683 | |
1684 n_fil_sort_con=list(n_fil_sort_con) | |
1685 n_fil_sort_tre=list(n_fil_sort_tre) | |
1686 if n_fil_sort_con==[]: | |
1687 n_fil_sort_con=n_raw_sort_con | |
1688 n_fil_sort_tre=n_raw_sort_tre | |
1689 | |
1690 n_raw_sort_con=list(n_raw_sort_con) | |
1691 n_raw_sort_tre=list(n_raw_sort_tre) | |
1692 n_names_con=list(new_n_names_con) | |
1693 n_names_tre=list(new_n_names_tre) | |
1694 | |
1695 ps_write = Process(target=write_main,args=(n_raw_sort_con, n_raw_sort_tre,n_fil_sort_con, n_fil_sort_tre, n_names_con, n_names_tre,2)) | |
1696 ps_write.start() | |
1697 | |
1698 ps1_matrix = [Process(target=ssamples1,args=(n_names_con,n_fil_sort_con,names_con,fil_sort_con,"Diff/n_temp_con/",0))] | |
1699 ps1_matrix.extend([Process(target=ssamples1,args=(n_names_tre,n_fil_sort_tre,names_tre,fil_sort_tre,"Diff/n_temp_tre/",0))]) | |
1700 [p.start() for p in ps1_matrix] | |
1701 | |
1702 ps_write.join() | |
1703 [p.join() for p in ps1_matrix] | |
1704 procs1.join() | |
1705 print('That took {} seconds'.format(time.time() - starttime10)) | |
1706 print('That took {} seconds'.format(time.time() - starttime)) | |
1707 | |
1708 | |
1709 | |
1710 | |
1711 | |
1712 | |
1713 | |
1714 |