Mercurial > repos > galaxyp > pyprophet
comparison pyprophet.xml @ 0:f795005c14b7 draft default tip
Uploaded
| author | galaxyp |
|---|---|
| date | Mon, 11 May 2015 12:31:49 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:f795005c14b7 |
|---|---|
| 1 <tool id="gp_pyprophet" name="PyProphet" version="0.1.0"> | |
| 2 <description></description> | |
| 3 <requirements> | |
| 4 <requirement type="package" version="0.3.2">pyprophet</requirement> | |
| 5 </requirements> | |
| 6 <command> | |
| 7 <![CDATA[ | |
| 8 pyprophet | |
| 9 --apply_scorer $scorer | |
| 10 --apply_weights $weights | |
| 11 --num_processes "\${GALAXY_SLOTS:-24}" | |
| 12 $compute_prop | |
| 13 $use_all_groups | |
| 14 $ignore_nan | |
| 15 $random | |
| 16 --final_statistics.lambda $lambda | |
| 17 --semi_supervised_learner.initial_fdr $initial_fdr | |
| 18 --semi_supervised_learner.initial_lambda $iteration_lambda | |
| 19 --semi_supervised_learner.iteration_fdr $iteration_fdr | |
| 20 --semi_supervised_learner.iteration_lambda $iteration_lambda | |
| 21 --semi_supervised_learner.num_iter $num_iter | |
| 22 --xeval.fraction $xeval_fraction | |
| 23 --xeval.num_iter $xeval_num_iter | |
| 24 | |
| 25 ${input} | |
| 26 | |
| 27 ]]> | |
| 28 </command> | |
| 29 <inputs> | |
| 30 <param name="input" format="txt" type="data" label="Input files" help="" /> | |
| 31 <param name="scorer" format="txt" type="data" optional="True" label="File of existing classifier" | |
| 32 help="(--apply_scorer)" /> | |
| 33 <param name="weights" format="txt" type="data" optional="True" label="File of existing LDA weights" | |
| 34 help="(--apply_weights)" /> | |
| 35 | |
| 36 <param name="lambda" type="float" value="0.4" label="Final statistics lambda" help="(--final_statistics.lambda)" /> | |
| 37 <param name="initial_fdr" type="float" value="0.15" label="Semi supervised learner initial fdr" | |
| 38 help="(--semi_supervised_learner.initial_fdr)" /> | |
| 39 <param name="initial_lambda" type="float" value="0.4" label="Semi supervised learner initial lambda" | |
| 40 help="(--semi_supervised_learner.initial_lambda)" /> | |
| 41 <param name="iteration_fdr" type="float" value="0.02" label="Semi supervised learner iteration fdr" | |
| 42 help="(--semi_supervised_learner.iteration_fdr)" /> | |
| 43 <param name="iteration_lambda" type="float" value="0.4" label="Semi supervised learner iteration lambda" | |
| 44 help="(--semi_supervised_learner.iteration_lambda)" /> | |
| 45 <param name="num_iter" type="integer" value="5" label="Semi supervised learner num iter" | |
| 46 help="(--semi_supervised_learner.num_iter)" /> | |
| 47 <param name="xeval_fraction" type="float" value="0.5" label="Xeval fraction" | |
| 48 help="(--xeval.fraction)" /> | |
| 49 <param name="xeval_num_iter" type="integer" value="5" label="Xeval num iter" | |
| 50 help="(--xeval.num_iter)" /> | |
| 51 <param name="random" type="boolean" truevalue="--is_test" falsevalue="" checked="False" | |
| 52 label="Do not use random seed" help="(--is_test)" /> | |
| 53 <param name="ignore_nan" type="boolean" truevalue="--ignore.invalid_score_columns" falsevalue="" checked="False" | |
| 54 label="Ignore score columns which only contain NaN or infinity values" help="(--ignore.invalid_score_columns)" /> | |
| 55 <param name="use_all_groups" type="boolean" truevalue="--final_statistics.fdr_all_pg" falsevalue="" checked="False" | |
| 56 label="Use all peak groups for score and q-value calculation" help="(--final_statistics.fdr_all_pg)" /> | |
| 57 <param name="compute_prop" type="boolean" truevalue="--compute.probabilities" falsevalue="" checked="False" | |
| 58 label="Compute approximate binned probability values" help="(--compute.probabilities)" /> | |
| 59 | |
| 60 </inputs> | |
| 61 <outputs> | |
| 62 <data format="tabular" name="output" /> | |
| 63 </outputs> | |
| 64 <help> | |
| 65 <![CDATA[ | |
| 66 **What it does** | |
| 67 | |
| 68 The algorithm can take targeted proteomics data, learn a linear separation between true signal and the noise signal and then compute a q-value (false discovery rate) to achieve experiment-wide cutoffs. | |
| 69 | |
| 70 This program is a reimplementation of the original algorithm by `Uwe Schmitt`_. | |
| 71 | |
| 72 ..`Uwe Schmitt`: https://github.com/uweschmitt/pyprophet | |
| 73 | |
| 74 ]]> | |
| 75 </help> | |
| 76 <citations> | |
| 77 <citation type="doi">10.1038/nmeth.1584</citation> | |
| 78 </citations> | |
| 79 </tool> |
