Mercurial > repos > galaxyp > cardinal_segmentations
comparison segmentation.xml @ 1:bb63d8ef0379 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit d2f311f7fff24e54c565127c40414de708e31b3c
| author | galaxyp |
|---|---|
| date | Thu, 25 Oct 2018 07:17:42 -0400 |
| parents | be3e3cd14abc |
| children | 4ba8fcfef86f |
comparison
equal
deleted
inserted
replaced
| 0:be3e3cd14abc | 1:bb63d8ef0379 |
|---|---|
| 1 <tool id="cardinal_segmentations" name="MSI segmentation" version="@VERSION@.0"> | 1 <tool id="cardinal_segmentations" name="MSI segmentation" version="@VERSION@.1"> |
| 2 <description>mass spectrometry imaging spatial clustering</description> | 2 <description>mass spectrometry imaging spatial clustering</description> |
| 3 <macros> | 3 <macros> |
| 4 <import>macros.xml</import> | 4 <import>macros.xml</import> |
| 5 </macros> | 5 </macros> |
| 6 <expand macro="requirements"> | 6 <expand macro="requirements"> |
| 7 <requirement type="package" version="2.2.1">r-gridextra</requirement> | 7 <requirement type="package" version="2.3">r-gridextra</requirement> |
| 8 <requirement type="package" version="0.20-35">r-lattice</requirement> | 8 <requirement type="package" version="0.20_35">r-lattice</requirement> |
| 9 </expand> | 9 </expand> |
| 10 <command detect_errors="exit_code"> | 10 <command detect_errors="exit_code"> |
| 11 <![CDATA[ | 11 <![CDATA[ |
| 12 | 12 |
| 13 @INPUT_LINKING@ | 13 @INPUT_LINKING@ |
| 76 set.seed($setseed) | 76 set.seed($setseed) |
| 77 | 77 |
| 78 #if str( $segm_cond.segmentationtool ) == 'pca': | 78 #if str( $segm_cond.segmentationtool ) == 'pca': |
| 79 print('pca') | 79 print('pca') |
| 80 ##pca | 80 ##pca |
| 81 | 81 |
| 82 component_vector = character() | 82 component_vector = character() |
| 83 for (numberofcomponents in 1:$segm_cond.pca_ncomp) | 83 for (numberofcomponents in 1:$segm_cond.pca_ncomp) |
| 84 {component_vector[numberofcomponents]= paste0("PC", numberofcomponents)} | 84 {component_vector[numberofcomponents]= paste0("PC", numberofcomponents)} |
| 85 pca_result = PCA(msidata, ncomp=$segm_cond.pca_ncomp, column = component_vector, superpose = FALSE, | 85 pca_result = PCA(msidata, ncomp=$segm_cond.pca_ncomp, column = component_vector, superpose = FALSE, |
| 86 method = "$segm_cond.pca_method", scale = $segm_cond.pca_scale, layout = c(ncomp, 1)) | 86 method = "$segm_cond.pca_method", scale = $segm_cond.pca_scale, layout = c(ncomp, 1)) |
| 99 pcaloadings2 = cbind(matrix(unlist(strsplit(rownames(pcaloadings), " = ")), ncol=2, byrow=TRUE)[,2], pcaloadings) | 99 pcaloadings2 = cbind(matrix(unlist(strsplit(rownames(pcaloadings), " = ")), ncol=2, byrow=TRUE)[,2], pcaloadings) |
| 100 colnames(pcaloadings2) = c("mz", colnames(pcaloadings)) | 100 colnames(pcaloadings2) = c("mz", colnames(pcaloadings)) |
| 101 pcascores = (pca_result@resultData\$ncomp\$scores) ### scores for each pixel | 101 pcascores = (pca_result@resultData\$ncomp\$scores) ### scores for each pixel |
| 102 | 102 |
| 103 ## pixel names and coordinates | 103 ## pixel names and coordinates |
| 104 pixel_names = gsub(", y = ", "_", rownames(pcascores)) | 104 ## to remove potential sample names and z dimension, split at comma and take only x and y |
| 105 pixel_names = gsub(" = ", "y_", pixel_names) | 105 x_coords = unlist(lapply(strsplit(rownames(pcascores), ","), `[[`, 1)) |
| 106 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 106 y_coords = unlist(lapply(strsplit(rownames(pcascores), ","), `[[`, 2)) |
| 107 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 107 x_coordinates = gsub("x = ","",x_coords) |
| 108 y_coordinates = gsub(" y = ","",y_coords) | |
| 109 | |
| 110 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
| 108 pcascores2 = data.frame(pixel_names, x_coordinates, y_coordinates, pcascores) | 111 pcascores2 = data.frame(pixel_names, x_coordinates, y_coordinates, pcascores) |
| 109 colnames(pcascores2) = c("pixel names", "x", "y", colnames(pcascores)) | 112 colnames(pcascores2) = c("pixel names", "x", "y", colnames(pcascores)) |
| 110 write.table(pcaloadings2, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 113 write.table(pcaloadings2, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
| 111 write.table(pcascores2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 114 write.table(pcascores2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
| 112 | 115 |
| 130 for (iteration in 1:length(skm@resultData)){ | 133 for (iteration in 1:length(skm@resultData)){ |
| 131 skm_cluster = ((skm@resultData)[[iteration]]\$cluster) | 134 skm_cluster = ((skm@resultData)[[iteration]]\$cluster) |
| 132 skm_clusters = cbind(skm_clusters, skm_cluster) } | 135 skm_clusters = cbind(skm_clusters, skm_cluster) } |
| 133 | 136 |
| 134 ## pixel names and coordinates | 137 ## pixel names and coordinates |
| 135 pixel_names = gsub(", y = ", "_", rownames(skm_clusters)) | 138 ## to remove potential sample names and z dimension, split at comma and take only x and y |
| 136 pixel_names = gsub(" = ", "y_", pixel_names) | 139 x_coords = unlist(lapply(strsplit(rownames(skm_clusters), ","), `[[`, 1)) |
| 137 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 140 y_coords = unlist(lapply(strsplit(rownames(skm_clusters), ","), `[[`, 2)) |
| 138 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 141 x_coordinates = gsub("x = ","",x_coords) |
| 142 y_coordinates = gsub(" y = ","",y_coords) | |
| 143 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
| 139 skm_clusters2 = data.frame(pixel_names, x_coordinates, y_coordinates, skm_clusters) | 144 skm_clusters2 = data.frame(pixel_names, x_coordinates, y_coordinates, skm_clusters) |
| 140 colnames(skm_clusters2) = c("pixel names", "x", "y",names(skm@resultData)) | 145 colnames(skm_clusters2) = c("pixel names", "x", "y",names(skm@resultData)) |
| 141 | 146 |
| 142 skm_toplabels = topLabels(skm, n=$segm_cond.kmeans_toplabels) | 147 skm_toplabels = topLabels(skm, n=$segm_cond.kmeans_toplabels) |
| 143 | 148 |
| 166 for (iteration in 1:length(ssc@resultData)){ | 171 for (iteration in 1:length(ssc@resultData)){ |
| 167 ssc_class = ((ssc@resultData)[[iteration]]\$classes) | 172 ssc_class = ((ssc@resultData)[[iteration]]\$classes) |
| 168 ssc_classes = cbind(ssc_classes, ssc_class) } | 173 ssc_classes = cbind(ssc_classes, ssc_class) } |
| 169 | 174 |
| 170 ## pixel names and coordinates | 175 ## pixel names and coordinates |
| 171 pixel_names = gsub(", y = ", "_", rownames(ssc_classes)) | 176 ## to remove potential sample names and z dimension, split at comma and take only x and y |
| 172 pixel_names = gsub(" = ", "y_", pixel_names) | 177 x_coords = unlist(lapply(strsplit(rownames(ssc_classes), ","), `[[`, 1)) |
| 173 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 178 y_coords = unlist(lapply(strsplit(rownames(ssc_classes), ","), `[[`, 2)) |
| 174 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 179 x_coordinates = gsub("x = ","",x_coords) |
| 180 y_coordinates = gsub(" y = ","",y_coords) | |
| 181 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
| 175 ssc_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, ssc_classes) | 182 ssc_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, ssc_classes) |
| 176 colnames(ssc_classes2) = c("pixel names", "x", "y", names(ssc@resultData)) | 183 colnames(ssc_classes2) = c("pixel names", "x", "y", names(ssc@resultData)) |
| 177 | 184 |
| 178 ssc_toplabels = topLabels(ssc, n=$segm_cond.centroids_toplabels) | 185 ssc_toplabels = topLabels(ssc, n=$segm_cond.centroids_toplabels) |
| 179 | 186 |
