# HG changeset patch
# User iuc
# Date 1430794049 14400
# Node ID bb725f6d6d38e5dfda3123fbc5b3aaafdecbd888
# Parent 8c31e2aac682a596f52713aab9075445a21d3105
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/rglasso commit 344140b8df53b8b7024618bb04594607a045c03a
diff -r 8c31e2aac682 -r bb725f6d6d38 rg_nri.xml
--- a/rg_nri.xml Wed Apr 29 12:07:11 2015 -0400
+++ b/rg_nri.xml Mon May 04 22:47:29 2015 -0400
@@ -7,145 +7,12 @@
glmnet_lars_2_14
- rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "rg_NRI"
+ rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "rg_NRI"
--output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes"
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-**Before you start**
-
-This is a simple tool to calculate various measures of improvement in prediction between two models described in pickering_paper_
-It is based on an R script pickering_code_ written by Dr John W Pickering and Dr David Cairns from sunny Otago University which
-has been debugged and slightly adjusted to fit a Galaxy tool wrapper.
-
-
-**What it does**
-
-Copied from the documentation in pickering_code_ ::
-
-
- Functions to create risk assessment plots and associated summary statistics
-
-
- (c) 2012 Dr John W Pickering, john.pickering@otago.ac.nz, and Dr David Cairns
- Last modified August 2014
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the distribution
-
- FUNCTIONS
- raplot
- Produces a Risk Assessment Plot and outputs the coordinates of the four curves
- Based on: Pickering, J. W. and Endre, Z. H. (2012). New Metrics for Assessing Diagnostic Potential of
- Candidate Biomarkers. Clinical Journal of the American Society of Nephrology, 7, 1355–1364. doi:10.2215/CJN.09590911
-
- statistics.raplot
- Produces the NRIs, IDIs, IS, IP, AUCs.
- Based on: Pencina, M. J., D'Agostino, R. B. and Steyerberg, E. W. (2011). Extensions of net reclassification improvement calculations to
- measure usefulness of new biomarkers. Statistics in Medicine, 30(1), 11–21. doi:10.1002/sim.4085
- Pencina, M. J., D'Agostino, R. B. and Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the
- ROC curve to reclassification and beyond.
- Statistics in Medicine, 27(2), 157–172. doi:10.1002/sim.2929
- DeLong, E., DeLong, D. and Clarke-Pearson, D. (1988). Comparing the areas under 2 or more correlated receiver operating characteristic curves - a nonparametric approach.
- Biometrics, 44(3), 837–845.
-
- summary.raplot
- Produces the NRIs, IDIs, IS, IP, AUCs with confidence intervals using a bootstrap or asymptotic procedure. (I prefer bootstrap which is chosed by cis=c("boot"))
-
-
- Required arguments for all functions:
- x1 is calculated risk (eg from a glm) for the null model, i.e. predict(,type="response") on a glm object
- x2 is calculated risk (eg from a glm) for the alternative model
- y is the case-control indicator (0 for controls, 1 for cases)
- Optional argument
- t are the boundaries of the risks for each group (ie 0, 1 and the thresholds beteween. eg c(0,0,3,0,7,1)). If missing, defaults to c(0, the incidence, 1)
-
-
-**Input**
-
-The observed and predicted outcomes from two models to be compared.
-
-**Output**
-
-Lots'o'measures (TM) see pickering_paper_ for details
-
-**Attributions**
-
-pickering_paper_ is the paper the caclulations performed by this tool is based on
-
-pickering_code_ is the R function from John Pickering exposed by this Galaxy tool with minor modifications and hacks by Ross Lazarus.
-
-Galaxy_ (that's what you are using right now!) for gluing everything together
-
-Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is
-licensed to you under the LGPL_ like other rgenetics artefacts
-
-.. _LGPL: http://www.gnu.org/copyleft/lesser.html
-.. _pickering_code: http://www.researchgate.net/publication/264672640_R_function_for_Risk_Assessment_Plot__reclassification_metrics_NRI_IDI_cfNRI
-.. _pickering_paper: http://cjasn.asnjournals.org/content/early/2012/05/24/CJN.09590911.full
-.. _Galaxy: http://getgalaxy.org
-
-
-
-
-
+
0)
cfpup.ne = mean(d[b] > 0)
@@ -400,31 +267,31 @@
### Output
output = c(n, na, nb, pup.ev, pup.ne, pdown.ev, pdown.ne, nri, se.nri, z.nri,
- nri.ev, se.nri.ev, z.nri.ev, nri.ne, se.nri.ne, z.nri.ne,
+ nri.ev, se.nri.ev, z.nri.ev, nri.ne, se.nri.ne, z.nri.ne,
cfpup.ev, cfpup.ne, cfpdown.ev, cfpdown.ne, cfnri, se.cfnri, z.cfnri,
- cfnri.ev, se.cfnri.ev, z.cfnri.ev, cfnri.ne, se.cfnri.ne, z.cfnri.ne,
- improveSens, improveSpec, idi.ev, se.idi.ev, z.idi.ev, idi.ne,
- se.idi.ne, z.idi.ne, idi, se.idi, z.idi, is.x1, NA, is.x2, NA,
- ip.x1, NA, ip.x2, NA, auc.x1, se.auc.x1, auc.x2, se.auc.x2,
+ cfnri.ev, se.cfnri.ev, z.cfnri.ev, cfnri.ne, se.cfnri.ne, z.cfnri.ne,
+ improveSens, improveSpec, idi.ev, se.idi.ev, z.idi.ev, idi.ne,
+ se.idi.ne, z.idi.ne, idi, se.idi, z.idi, is.x1, NA, is.x2, NA,
+ ip.x1, NA, ip.x2, NA, auc.x1, se.auc.x1, auc.x2, se.auc.x2,
roc.test.x1.x2\$p.value,incidence)
- names(output) = c("n", "na", "nb", "pup.ev", "pup.ne", "pdown.ev", "pdown.ne",
+ names(output) = c("n", "na", "nb", "pup.ev", "pup.ne", "pdown.ev", "pdown.ne",
"nri", "se.nri", "z.nri", "nri.ev", "se.nri.ev", "z.nri.ev",
"nri.ne", "se.nri.ne", "z.nri.ne",
- "cfpup.ev", "cfpup.ne", "cfpdown.ev", "cfpdown.ne",
+ "cfpup.ev", "cfpup.ne", "cfpdown.ev", "cfpdown.ne",
"cfnri", "se.cfnri", "z.cfnri", "cfnri.ev", "se.cfnri.ev", "z.cfnri.ev",
"cfnri.ne", "se.cfnri.ne", "z.cfnri.ne", "improveSens", "improveSpec",
- "idi.ev", "se.idi.ev", "z.idi.ev", "idi.ne", "se.idi.ne",
- "z.idi.ne", "idi", "se.idi", "z.idi", "is.x1", "se.is.x1",
- "is.x2", "se.is.x2", "ip.x1", "se.ip.x1", "ip.x2", "se.ip.x2",
- "auc.x1", "se.auc.x1", "auc.x2", "se.auc.x2",
+ "idi.ev", "se.idi.ev", "z.idi.ev", "idi.ne", "se.idi.ne",
+ "z.idi.ne", "idi", "se.idi", "z.idi", "is.x1", "se.is.x1",
+ "is.x2", "se.is.x2", "ip.x1", "se.ip.x1", "ip.x2", "se.ip.x2",
+ "auc.x1", "se.auc.x1", "auc.x2", "se.auc.x2",
"roc.test.x1.x2.pvalue","incidence")
resdf = data.frame(N=n, Na=na, Nb=nb, pup.ev=pup.ev, pup.ne=pup.ne, pdown.ev=pdown.ev, pdown.ne=pdown.ne, NRI=nri, NRI.se=se.nri, NRI.z=z.nri,
- NRI.ev=nri.ev, NRI.ev.se=se.nri.ev, NRI.ev.z=z.nri.ev, NRI.ne=nri.ne, NRI.ne.se=se.nri.ne, NRI.ne.z=z.nri.ne,
+ NRI.ev=nri.ev, NRI.ev.se=se.nri.ev, NRI.ev.z=z.nri.ev, NRI.ne=nri.ne, NRI.ne.se=se.nri.ne, NRI.ne.z=z.nri.ne,
cfpup.ev=cfpup.ev, cfpup.ne=cfpup.ne, cfpdown.ev=cfpdown.ev, cfpdown.ne=cfpdown.ne, CFNRI=cfnri, CFNRI.se=se.cfnri, CFNRI.z=z.cfnri,
- CFNRI.ev=cfnri.ev, CFNRI.ev.se=se.cfnri.ev, CFNRI.ev.z=z.cfnri.ev, CFNRI.ne=cfnri.ne, CFNRI.ne.se=se.cfnri.ne, CFNRI.ne.z=z.cfnri.ne,
- improvSens=improveSens, improvSpec=improveSpec, IDI.ev=idi.ev, IDI.ev.se=se.idi.ev, IDI.ev.z=z.idi.ev, IDI.ne=idi.ne,
- IDI.ne.se=se.idi.ne, IDI.ne.z=z.idi.ne, IDI=idi, IDI.se=se.idi, IDI.z=z.idi, isx1=is.x1, isx2=is.x2,
- ipxi=ip.x1, ipx2=ip.x2, AUC.x1=auc.x1, AUC.x1.se=se.auc.x1, AUC.x2=auc.x2, AUC.x2.se=se.auc.x2,
+ CFNRI.ev=cfnri.ev, CFNRI.ev.se=se.cfnri.ev, CFNRI.ev.z=z.cfnri.ev, CFNRI.ne=cfnri.ne, CFNRI.ne.se=se.cfnri.ne, CFNRI.ne.z=z.cfnri.ne,
+ improvSens=improveSens, improvSpec=improveSpec, IDI.ev=idi.ev, IDI.ev.se=se.idi.ev, IDI.ev.z=z.idi.ev, IDI.ne=idi.ne,
+ IDI.ne.se=se.idi.ne, IDI.ne.z=z.idi.ne, IDI=idi, IDI.se=se.idi, IDI.z=z.idi, isx1=is.x1, isx2=is.x2,
+ ipxi=ip.x1, ipx2=ip.x2, AUC.x1=auc.x1, AUC.x1.se=se.auc.x1, AUC.x2=auc.x2, AUC.x2.se=se.auc.x2,
roctestpval=roc.test.x1.x2\$p.value,incidence=incidence)
tr = t(resdf)
tresdf = data.frame(measure=colnames(resdf),value=tr[,1])
@@ -453,7 +320,7 @@
boot.index = sample(length(y), replace = TRUE)
risk.model1.boot = x1[boot.index]
risk.model2.boot = x2[boot.index]
- cc.status.boot = y[boot.index]
+ cc.status.boot = y[boot.index]
r = statistics.raplot(x1 = risk.model1.boot, x2 = risk.model2.boot, y = cc.status.boot)
results.boot[i, ] = r\$output
}
@@ -478,87 +345,87 @@
results.matrix[2, ] = c("Events (n)", results["na"])
results.matrix[3, ] = c("Non-events (n)", results["nb"])
results.matrix[4, ] = c("Category free NRI and summary statistics","-------------------------")
- results.matrix[5, ] = c("cfNRI events (%)",
- paste(round(100*results["cfnri.ev"], dp-2), " (",
+ results.matrix[5, ] = c("cfNRI events (%)",
+ paste(round(100*results["cfnri.ev"], dp-2), " (",
round(100*results["cfnri.ev"] - z * 100*results["se.cfnri.ev"], dp-2),
- " to ", round(100*results["cfnri.ev"] +
+ " to ", round(100*results["cfnri.ev"] +
z * 100*results["se.cfnri.ev"], dp-2), ")", sep = ""))
- results.matrix[6, ] = c("cfNRI non-events (%)",
+ results.matrix[6, ] = c("cfNRI non-events (%)",
paste(round(100*results["cfnri.ne"], dp-2), " (",
round(100*results["cfnri.ne"] - z * 100*results["se.cfnri.ne"], dp)-2,
- " to ", round(100*results["cfnri.ne"] + z * 100*results["se.cfnri.ne"],
- dp-2), ")", sep = ""))
- results.matrix[7, ] = c("cfNRI (%)",
- paste(round(100*results["cfnri"], dp-2), " (",
- round(100*results["cfnri"] - z * 100*results["se.cfnri"], dp-2),
- " to ", round(100*results["cfnri"] + z * 100*results["se.cfnri"],
+ " to ", round(100*results["cfnri.ne"] + z * 100*results["se.cfnri.ne"],
+ dp-2), ")", sep = ""))
+ results.matrix[7, ] = c("cfNRI (%)",
+ paste(round(100*results["cfnri"], dp-2), " (",
+ round(100*results["cfnri"] - z * 100*results["se.cfnri"], dp-2),
+ " to ", round(100*results["cfnri"] + z * 100*results["se.cfnri"],
dp-2), ")", sep = ""))
results.matrix[8, ] = c("NRI and summary statistics","-------------------------")
- results.matrix[9, ] = c("NRI events (%)",
- paste(round(100*results["nri.ev"], dp-2), " (",
+ results.matrix[9, ] = c("NRI events (%)",
+ paste(round(100*results["nri.ev"], dp-2), " (",
round(100*results["nri.ev"] - z * 100*results["se.nri.ev"], dp-2),
- " to ", round(100*results["nri.ev"] +
+ " to ", round(100*results["nri.ev"] +
z * 100*results["se.nri.ev"], dp-2), ")", sep = ""))
- results.matrix[10, ] = c("NRI non-events (%)",
+ results.matrix[10, ] = c("NRI non-events (%)",
paste(round(100*results["nri.ne"], dp-2), " (",
round(100*results["nri.ne"] - z * 100*results["se.nri.ne"], dp-2),
- " to ", round(100*results["nri.ne"] + z * 100*results["se.nri.ne"],
- dp-2), ")", sep = ""))
- results.matrix[11, ] = c("NRI (%)",
- paste(round(100*results["nri"], dp-2), " (",
- round(100*results["nri"] - z * 100*results["se.nri"], dp-2),
- " to ", round(100*results["nri"] + z * 100*results["se.nri"],
+ " to ", round(100*results["nri.ne"] + z * 100*results["se.nri.ne"],
+ dp-2), ")", sep = ""))
+ results.matrix[11, ] = c("NRI (%)",
+ paste(round(100*results["nri"], dp-2), " (",
+ round(100*results["nri"] - z * 100*results["se.nri"], dp-2),
+ " to ", round(100*results["nri"] + z * 100*results["se.nri"],
dp-2), ")", sep = ""))
results.matrix[12, ] = c("IDI and summary statistics","-------------------------")
- results.matrix[13, ] = c("IDI events",
- paste(round(results["idi.ev"], dp), " (",
- round(results["idi.ev"] - z * results["se.idi.ev"], dp),
- " to ", round(results["idi.ev"] + z * results["se.idi.ev"],
+ results.matrix[13, ] = c("IDI events",
+ paste(round(results["idi.ev"], dp), " (",
+ round(results["idi.ev"] - z * results["se.idi.ev"], dp),
+ " to ", round(results["idi.ev"] + z * results["se.idi.ev"],
dp), ")", sep = ""))
- results.matrix[14, ] = c("IDI non-events",
- paste(round(results["idi.ne"], dp), " (",
- round(results["idi.ne"] - z * results["se.idi.ne"], dp),
- " to ", round(results["idi.ne"] + z * results["se.idi.ne"],
+ results.matrix[14, ] = c("IDI non-events",
+ paste(round(results["idi.ne"], dp), " (",
+ round(results["idi.ne"] - z * results["se.idi.ne"], dp),
+ " to ", round(results["idi.ne"] + z * results["se.idi.ne"],
dp), ")", sep = ""))
- results.matrix[15, ] = c("IDI",
- paste(round(results["idi"], dp), " (",
- round(results["idi"] - z * results["se.idi"], dp),
- " to ", round(results["idi"] + z * results["se.idi"],
+ results.matrix[15, ] = c("IDI",
+ paste(round(results["idi"], dp), " (",
+ round(results["idi"] - z * results["se.idi"], dp),
+ " to ", round(results["idi"] + z * results["se.idi"],
dp), ")", sep = ""))
- results.matrix[16, ] = c("IS (null model)",
- paste(round(results["is.x1"], dp), " (",
- round(results["is.x1"] - z * results["se.is.x1"], dp),
- " to ", round(results["is.x1"] + z * results["se.is.x1"],
+ results.matrix[16, ] = c("IS (null model)",
+ paste(round(results["is.x1"], dp), " (",
+ round(results["is.x1"] - z * results["se.is.x1"], dp),
+ " to ", round(results["is.x1"] + z * results["se.is.x1"],
dp), ")", sep = ""))
- results.matrix[17, ] = c("IS (alt model)",
- paste(round(results["is.x2"], dp), " (",
- round(results["is.x2"] - z * results["se.is.x2"], dp),
- " to ", round(results["is.x2"] + z * results["se.is.x2"],
+ results.matrix[17, ] = c("IS (alt model)",
+ paste(round(results["is.x2"], dp), " (",
+ round(results["is.x2"] - z * results["se.is.x2"], dp),
+ " to ", round(results["is.x2"] + z * results["se.is.x2"],
dp), ")", sep = ""))
- results.matrix[18, ] = c("IP (null model)",
- paste(round(results["ip.x1"], dp), " (",
- round(results["ip.x1"] - z * results["se.ip.x1"], dp),
- " to ", round(results["ip.x1"] + z * results["se.ip.x1"],
+ results.matrix[18, ] = c("IP (null model)",
+ paste(round(results["ip.x1"], dp), " (",
+ round(results["ip.x1"] - z * results["se.ip.x1"], dp),
+ " to ", round(results["ip.x1"] + z * results["se.ip.x1"],
dp), ")", sep = ""))
- results.matrix[19, ] = c("IP (alt model)",
- paste(round(results["ip.x2"], dp), " (",
- round(results["ip.x2"] - z * results["se.ip.x2"], dp),
- " to ", round(results["ip.x2"] + z * results["se.ip.x2"],
+ results.matrix[19, ] = c("IP (alt model)",
+ paste(round(results["ip.x2"], dp), " (",
+ round(results["ip.x2"] - z * results["se.ip.x2"], dp),
+ " to ", round(results["ip.x2"] + z * results["se.ip.x2"],
dp), ")", sep = ""))
results.matrix[20, ] = c("AUC","-------------------------")
- results.matrix[21, ] = c("AUC (null model)",
- paste(round(results["auc.x1"], dp), " (",
- round(results["auc.x1"] - z * results["se.auc.x1"], dp),
- " to ", round(results["auc.x1"] + z * results["se.auc.x1"],
+ results.matrix[21, ] = c("AUC (null model)",
+ paste(round(results["auc.x1"], dp), " (",
+ round(results["auc.x1"] - z * results["se.auc.x1"], dp),
+ " to ", round(results["auc.x1"] + z * results["se.auc.x1"],
dp), ")", sep = ""))
- results.matrix[22, ] = c("AUC (alt model)",
- paste(round(results["auc.x2"], dp), " (",
- round(results["auc.x2"] - z * results["se.auc.x2"], dp),
- " to ", round(results["auc.x2"] + z * results["se.auc.x2"],
+ results.matrix[22, ] = c("AUC (alt model)",
+ paste(round(results["auc.x2"], dp), " (",
+ round(results["auc.x2"] - z * results["se.auc.x2"], dp),
+ " to ", round(results["auc.x2"] + z * results["se.auc.x2"],
dp), ")", sep = ""))
results.matrix[23, ] = c("difference (P)", round(results["roc.test.x1.x2.pvalue"], dp))
results.matrix[24, ] = c("Incidence", round(results["incidence"], dp))
-
+
return(results.matrix)
}
@@ -624,6 +491,139 @@
sink()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**Before you start**
+
+This is a simple tool to calculate various measures of improvement in prediction between two models described in pickering_paper_
+It is based on an R script pickering_code_ written by Dr John W Pickering and Dr David Cairns from sunny Otago University which
+has been debugged and slightly adjusted to fit a Galaxy tool wrapper.
+
+
+**What it does**
+
+Copied from the documentation in pickering_code_ ::
+
+
+ Functions to create risk assessment plots and associated summary statistics
+
+
+ (c) 2012 Dr John W Pickering, john.pickering@otago.ac.nz, and Dr David Cairns
+ Last modified August 2014
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the distribution
+
+ FUNCTIONS
+ raplot
+ Produces a Risk Assessment Plot and outputs the coordinates of the four curves
+ Based on: Pickering, J. W. and Endre, Z. H. (2012). New Metrics for Assessing Diagnostic Potential of
+ Candidate Biomarkers. Clinical Journal of the American Society of Nephrology, 7, 1355–1364. doi:10.2215/CJN.09590911
+
+ statistics.raplot
+ Produces the NRIs, IDIs, IS, IP, AUCs.
+ Based on: Pencina, M. J., D'Agostino, R. B. and Steyerberg, E. W. (2011). Extensions of net reclassification improvement calculations to
+ measure usefulness of new biomarkers. Statistics in Medicine, 30(1), 11–21. doi:10.1002/sim.4085
+ Pencina, M. J., D'Agostino, R. B. and Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the
+ ROC curve to reclassification and beyond.
+ Statistics in Medicine, 27(2), 157–172. doi:10.1002/sim.2929
+ DeLong, E., DeLong, D. and Clarke-Pearson, D. (1988). Comparing the areas under 2 or more correlated receiver operating characteristic curves - a nonparametric approach.
+ Biometrics, 44(3), 837–845.
+
+ summary.raplot
+ Produces the NRIs, IDIs, IS, IP, AUCs with confidence intervals using a bootstrap or asymptotic procedure. (I prefer bootstrap which is chosed by cis=c("boot"))
+
+
+ Required arguments for all functions:
+ x1 is calculated risk (eg from a glm) for the null model, i.e. predict(,type="response") on a glm object
+ x2 is calculated risk (eg from a glm) for the alternative model
+ y is the case-control indicator (0 for controls, 1 for cases)
+ Optional argument
+ t are the boundaries of the risks for each group (ie 0, 1 and the thresholds beteween. eg c(0,0,3,0,7,1)). If missing, defaults to c(0, the incidence, 1)
+
+
+**Input**
+
+The observed and predicted outcomes from two models to be compared.
+
+**Output**
+
+Lots'o'measures (TM) see pickering_paper_ for details
+
+**Attributions**
+
+pickering_paper_ is the paper the caclulations performed by this tool is based on
+
+pickering_code_ is the R function from John Pickering exposed by this Galaxy tool with minor modifications and hacks by Ross Lazarus.
+
+Galaxy_ (that's what you are using right now!) for gluing everything together
+
+Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is
+licensed to you under the LGPL_ like other rgenetics artefacts
+
+.. _LGPL: http://www.gnu.org/copyleft/lesser.html
+.. _pickering_code: http://www.researchgate.net/publication/264672640_R_function_for_Risk_Assessment_Plot__reclassification_metrics_NRI_IDI_cfNRI
+.. _pickering_paper: http://cjasn.asnjournals.org/content/early/2012/05/24/CJN.09590911.full
+.. _Galaxy: http://getgalaxy.org
+
+
+
+
doi: 10.2215/CJN.09590911
diff -r 8c31e2aac682 -r bb725f6d6d38 rglasso_cox.xml
--- a/rglasso_cox.xml Wed Apr 29 12:07:11 2015 -0400
+++ b/rglasso_cox.xml Mon May 04 22:47:29 2015 -0400
@@ -7,223 +7,9 @@
glmnet_lars_2_14
- rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "rglasso"
+ rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "rglasso"
--output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes"
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- l
-
-
-
- l
-
-
-
-
-
-
-
-
-
- model['output_full'] == 'T'
-
-
- model['output_pred'] == 'T'
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-**Before you start**
-
-Please read the glmnet documentation @ glmnet_
-
-This Galaxy wrapper merely exposes that code and the glmnet_ documentation is essential reading
-before getting useful results here.
-
-**What it does**
-
-From documentation at glmnet_ ::
-
- Glmnet is a package that fits a generalized linear model via penalized maximum likelihood.
- The regularization path is computed for the lasso or elasticnet penalty at a grid of values for the regularization parameter lambda.
- The algorithm is extremely fast, and can exploit sparsity in the input matrix x.
- It fits linear, logistic and multinomial, poisson, and Cox regression models.
- A variety of predictions can be made from the fitted models.
-
-Internal cross validation is used to optimise the choice of lambda based on CV AUC for logistic (binomial outcome) models, or CV mse for gaussian.
-
-**Warning about the tyrany of dimensionality**
-
-Yes, this package will select 'optimal' models even when you (optimistically) supply more predictors than you have cases.
-The model returned is unlikely to represent the only informative regularisation path through your data - if you run repeatedly with
-exactly the same settings, you will probably see many different models being selected.
-This is not a software bug - the real problem is that you just don't have enough information in your data.
-
-Sufficiently big jobs will take a while (eg each lasso regression with 20k features on 1k samples takes about 2-3 minutes on our aged cluster)
-
-**Input**
-
-Assuming you have more measurements than samples, you supply data as a tabular text file where each row is a sample and columns
-are variables. You specify which columns are dependent (predictors) and which are observations for each sample. Each of multiple
-dependent variable columns will be run and reported independently. Predictors can be forced in to the model.
-
-**Output**
-
-For each selected dependent regression variable, a brief report of the model coefficients predicted at the
-'optimal' nfold CV value of lambda.
-
-**Predicted event probabilities for Cox and Logistic models**
-
-If you want to compare (eg) two competing clinical predictions, there's a companion generic NRI tool
-for predicted event probabilities. Estimates dozens of measures of improvement in prediction. Currently only works for identical id subjects
-but can probably be extended to independent sample predictions.
-
-Given a model, we can generate a predicted p (for status 1) in binomial or cox frameworks so models can be evaluated in terms of NRI.
-Of course, estimates are likely substantially inflated over 'real world' performance by being estimated from the same sample - but you probably
-already knew that since you were smart enough to reach this far down into the on screen help. The author salutes you, intrepid reader!
-
-It may seem an odd thing to do, but we can predict p for an event for each subject from our original data, given a parsimonious model. Doing
-this for two separate models (eg, forcing in an additional known explanatory measurement to the new model) allows comparison of the two models
-predicted status for each subject, or the same model in independent populations to see how badly it does
-
-**Attributions**
-
-glmnet_ is the R package exposed by this Galaxy tool.
-
-Galaxy_ (that's what you are using right now!) for gluing everything together
-
-Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is
-licensed to you under the LGPL_ like other rgenetics artefacts
-
-.. _LGPL: http://www.gnu.org/copyleft/lesser.html
-.. _glmnet: http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
-.. _Galaxy: http://getgalaxy.org
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ l
+
+
+
+ l
+
+
+
+
+
+
+
+
+
+ model['output_full'] == 'T'
+
+
+ model['output_pred'] == 'T'
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**Before you start**
+
+Please read the glmnet documentation @ glmnet_
+
+This Galaxy wrapper merely exposes that code and the glmnet_ documentation is essential reading
+before getting useful results here.
+
+**What it does**
+
+From documentation at glmnet_ ::
+
+ Glmnet is a package that fits a generalized linear model via penalized maximum likelihood.
+ The regularization path is computed for the lasso or elasticnet penalty at a grid of values for the regularization parameter lambda.
+ The algorithm is extremely fast, and can exploit sparsity in the input matrix x.
+ It fits linear, logistic and multinomial, poisson, and Cox regression models.
+ A variety of predictions can be made from the fitted models.
+
+Internal cross validation is used to optimise the choice of lambda based on CV AUC for logistic (binomial outcome) models, or CV mse for gaussian.
+
+**Warning about the tyrany of dimensionality**
+
+Yes, this package will select 'optimal' models even when you (optimistically) supply more predictors than you have cases.
+The model returned is unlikely to represent the only informative regularisation path through your data - if you run repeatedly with
+exactly the same settings, you will probably see many different models being selected.
+This is not a software bug - the real problem is that you just don't have enough information in your data.
+
+Sufficiently big jobs will take a while (eg each lasso regression with 20k features on 1k samples takes about 2-3 minutes on our aged cluster)
+
+**Input**
+
+Assuming you have more measurements than samples, you supply data as a tabular text file where each row is a sample and columns
+are variables. You specify which columns are dependent (predictors) and which are observations for each sample. Each of multiple
+dependent variable columns will be run and reported independently. Predictors can be forced in to the model.
+
+**Output**
+
+For each selected dependent regression variable, a brief report of the model coefficients predicted at the
+'optimal' nfold CV value of lambda.
+
+**Predicted event probabilities for Cox and Logistic models**
+
+If you want to compare (eg) two competing clinical predictions, there's a companion generic NRI tool
+for predicted event probabilities. Estimates dozens of measures of improvement in prediction. Currently only works for identical id subjects
+but can probably be extended to independent sample predictions.
+
+Given a model, we can generate a predicted p (for status 1) in binomial or cox frameworks so models can be evaluated in terms of NRI.
+Of course, estimates are likely substantially inflated over 'real world' performance by being estimated from the same sample - but you probably
+already knew that since you were smart enough to reach this far down into the on screen help. The author salutes you, intrepid reader!
+
+It may seem an odd thing to do, but we can predict p for an event for each subject from our original data, given a parsimonious model. Doing
+this for two separate models (eg, forcing in an additional known explanatory measurement to the new model) allows comparison of the two models
+predicted status for each subject, or the same model in independent populations to see how badly it does
+
+**Attributions**
+
+glmnet_ is the R package exposed by this Galaxy tool.
+
+Galaxy_ (that's what you are using right now!) for gluing everything together
+
+Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is
+licensed to you under the LGPL_ like other rgenetics artefacts
+
+.. _LGPL: http://www.gnu.org/copyleft/lesser.html
+.. _glmnet: http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
+.. _Galaxy: http://getgalaxy.org
+
+
@Article{Friedman2010, title = {Regularization Paths for Generalized Linear Models via Coordinate Descent},
@@ -917,6 +908,3 @@
-
-
-