Mercurial > repos > fubar > rglasso_1_9_8
comparison rg_nri.xml @ 17:0e87f636bdd8 draft
Uploaded
author | iuc |
---|---|
date | Tue, 28 Apr 2015 22:56:48 -0400 |
parents | |
children | bb725f6d6d38 |
comparison
equal
deleted
inserted
replaced
16:fa6d1e1a84c9 | 17:0e87f636bdd8 |
---|---|
1 <tool id="rg_nri" name="NRI" version="0.03"> | |
2 <description>and other model improvement measures</description> | |
3 <requirements> | |
4 <requirement type="package" version="3.1.1">R_3_1_1</requirement> | |
5 <requirement type="package" version="1.3.18">graphicsmagick</requirement> | |
6 <requirement type="package" version="9.10">ghostscript</requirement> | |
7 <requirement type="package" version="2.14">glmnet_lars_2_14</requirement> | |
8 </requirements> | |
9 <command interpreter="python"> | |
10 rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "rg_NRI" | |
11 --output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes" | |
12 </command> | |
13 <inputs> | |
14 <param name="title" type="text" value="NRI test" size="80" label="Plot Title" help="Will appear as the title for the comparison plot"/> | |
15 <param name="input1" type="data" format="tabular" label="Select a tabular file from the baseline model with predicted and observed outcome column for each subject" | |
16 multiple='False' help="Observed and predicted status columns must be selected from this file below - NOTE both models must be in same order with exact matches in all observed outcomes" optional="False"/> | |
17 <param name="input1_observed" label="Select column containing observed outcome (0 for no event, 1 for an event)" type="data_column" data_ref="input1" numerical="True" | |
18 multiple="False" use_header_names="True" optional="False" help = "Observed outcomes are compared in the two files to check that the datasets are from the same data"/> | |
19 <param name="input1_predicted" label="Select column containing predicted event probabilies from baseline model" type="data_column" data_ref="input1" numerical="True" | |
20 multiple="False" use_header_names="True" optional="False" help="Must be in range 0-1"/> | |
21 <param name="input1_id" label="Select column containing subject ID from baseline model" type="data_column" data_ref="input1" numerical="True" | |
22 multiple="False" use_header_names="True" optional="False" help="Subect IDs are needed to match subjects to compare predictions in the two inputs"/> | |
23 <param name="input2" type="data" format="tabular" label="Select a tabular file from the new model with predicted and observed outcome columns for each subject" | |
24 multiple='False' help="Observed and predicted status columns must be selected from this file below" /> | |
25 <param name="input2_observed" label="Select column containing observed outcome (0 for no event, 1 for an event)" type="data_column" data_ref="input2" numerical="True" | |
26 multiple="False" use_header_names="True" optional="False" help = "Observed outcomes are compared in the two files to check that the datasets are from the same data"/> | |
27 <param name="input2_predicted" label="Select column containing predicted event probabilities from the new model" type="data_column" data_ref="input2" numerical="True" | |
28 multiple="False" use_header_names="True" optional="False" help="Must be in range 0-1"/> | |
29 <param name="input2_id" label="Select column containing subject ID from the new model" type="data_column" data_ref="input2" numerical="True" | |
30 multiple="False" use_header_names="True" optional="False" help="Subect IDs are needed to match subjects to compare predictions in the two inputs"/> | |
31 <conditional name="CImeth"> | |
32 <param name="cis" type="select" label="CI calculation method" | |
33 help="Bootstrap will take time - a long time for thousands - asymptotic is quick and informative"> | |
34 <option value="asymptotic" selected="true">Asymptotic estimate</option> | |
35 <option value="boot">Bootstrap for empirical CIs</option> | |
36 </param> | |
37 <when value="boot"> | |
38 <param name="nboot" type="integer" value="1000" label="Number of bootstrap replicates"/> | |
39 </when> | |
40 <when value="asymptotic"> | |
41 <param name="nboot" type="hidden" value="1000"/> | |
42 </when> | |
43 </conditional> | |
44 </inputs> | |
45 <outputs> | |
46 <data format="html" name="html_file" label="${title}.html"/> | |
47 <data format="tabular" name="nri_file" label="${title}_nrires.xls"/> | |
48 </outputs> | |
49 <tests> | |
50 <test> | |
51 <param name='title' value='nri_test1' /> | |
52 <param name='input1' value='nri_test1.xls' ftype='tabular' /> | |
53 <param name='input2' value='nri_test1.xls' ftype='tabular' /> | |
54 <param name='input1_id' value="1" /> | |
55 <param name='input1_observed' value="2" /> | |
56 <param name='input1_predicted' value="3" /> | |
57 <param name='input2_observed' value="2" /> | |
58 <param name='input2_predicted' value="4" /> | |
59 <output name='html_file' file='nri_test1_out.html' compare='diff' lines_diff='10' /> | |
60 <output name='nri_file' file='nri_test1_out.xls' /> | |
61 </test> | |
62 </tests> | |
63 <help> | |
64 | |
65 **Before you start** | |
66 | |
67 This is a simple tool to calculate various measures of improvement in prediction between two models described in pickering_paper_ | |
68 It is based on an R script pickering_code_ written by Dr John W Pickering and Dr David Cairns from sunny Otago University which | |
69 has been debugged and slightly adjusted to fit a Galaxy tool wrapper. | |
70 | |
71 | |
72 **What it does** | |
73 | |
74 Copied from the documentation in pickering_code_ :: | |
75 | |
76 | |
77 Functions to create risk assessment plots and associated summary statistics | |
78 | |
79 | |
80 (c) 2012 Dr John W Pickering, john.pickering@otago.ac.nz, and Dr David Cairns | |
81 Last modified August 2014 | |
82 | |
83 Redistribution and use in source and binary forms, with or without | |
84 modification, are permitted provided that the following conditions are met: | |
85 * Redistributions of source code must retain the above copyright | |
86 notice, this list of conditions and the following disclaimer. | |
87 * Redistributions in binary form must reproduce the above copyright | |
88 notice, this list of conditions and the following disclaimer in | |
89 the documentation and/or other materials provided with the distribution | |
90 | |
91 FUNCTIONS | |
92 raplot | |
93 Produces a Risk Assessment Plot and outputs the coordinates of the four curves | |
94 Based on: Pickering, J. W. and Endre, Z. H. (2012). New Metrics for Assessing Diagnostic Potential of | |
95 Candidate Biomarkers. Clinical Journal of the American Society of Nephrology, 7, 1355–1364. doi:10.2215/CJN.09590911 | |
96 | |
97 statistics.raplot | |
98 Produces the NRIs, IDIs, IS, IP, AUCs. | |
99 Based on: Pencina, M. J., D'Agostino, R. B. and Steyerberg, E. W. (2011). Extensions of net reclassification improvement calculations to | |
100 measure usefulness of new biomarkers. Statistics in Medicine, 30(1), 11–21. doi:10.1002/sim.4085 | |
101 Pencina, M. J., D'Agostino, R. B. and Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the | |
102 ROC curve to reclassification and beyond. | |
103 Statistics in Medicine, 27(2), 157–172. doi:10.1002/sim.2929 | |
104 DeLong, E., DeLong, D. and Clarke-Pearson, D. (1988). Comparing the areas under 2 or more correlated receiver operating characteristic curves - a nonparametric approach. | |
105 Biometrics, 44(3), 837–845. | |
106 | |
107 summary.raplot | |
108 Produces the NRIs, IDIs, IS, IP, AUCs with confidence intervals using a bootstrap or asymptotic procedure. (I prefer bootstrap which is chosed by cis=c("boot")) | |
109 | |
110 | |
111 Required arguments for all functions: | |
112 x1 is calculated risk (eg from a glm) for the null model, i.e. predict(,type="response") on a glm object | |
113 x2 is calculated risk (eg from a glm) for the alternative model | |
114 y is the case-control indicator (0 for controls, 1 for cases) | |
115 Optional argument | |
116 t are the boundaries of the risks for each group (ie 0, 1 and the thresholds beteween. eg c(0,0,3,0,7,1)). If missing, defaults to c(0, the incidence, 1) | |
117 | |
118 | |
119 **Input** | |
120 | |
121 The observed and predicted outcomes from two models to be compared. | |
122 | |
123 **Output** | |
124 | |
125 Lots'o'measures (TM) see pickering_paper_ for details | |
126 | |
127 **Attributions** | |
128 | |
129 pickering_paper_ is the paper the caclulations performed by this tool is based on | |
130 | |
131 pickering_code_ is the R function from John Pickering exposed by this Galaxy tool with minor modifications and hacks by Ross Lazarus. | |
132 | |
133 Galaxy_ (that's what you are using right now!) for gluing everything together | |
134 | |
135 Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is | |
136 licensed to you under the LGPL_ like other rgenetics artefacts | |
137 | |
138 .. _LGPL: http://www.gnu.org/copyleft/lesser.html | |
139 .. _pickering_code: http://www.researchgate.net/publication/264672640_R_function_for_Risk_Assessment_Plot__reclassification_metrics_NRI_IDI_cfNRI | |
140 .. _pickering_paper: http://cjasn.asnjournals.org/content/early/2012/05/24/CJN.09590911.full | |
141 .. _Galaxy: http://getgalaxy.org | |
142 | |
143 | |
144 </help> | |
145 | |
146 <configfiles> | |
147 <configfile name="runme"> | |
148 | |
149 <![CDATA[ | |
150 | |
151 ### http://www.researchgate.net/publication/264672640_R_function_for_Risk_Assessment_Plot__reclassification_metrics_NRI_IDI_cfNRI code | |
152 ### http://cjasn.asnjournals.org/content/early/2012/05/24/CJN.09590911.full is the reference | |
153 ### lots of little tweaks and but fixes. Using t as a variable name seems fraught to me. | |
154 ### Ross Lazarus october 2014 for a Galaxy tool wrapper using the toolfactory infrastucture | |
155 | |
156 ############################################################################# | |
157 ###Functions to create risk assessment plots and associated summary statistics | |
158 ############################################################################# | |
159 ### | |
160 ### (c) 2012 Dr John W Pickering, john.pickering@otago.ac.nz, and Dr David Cairns | |
161 ### Last modified August 2014 | |
162 ### | |
163 ### Redistribution and use in source and binary forms, with or without | |
164 ### modification, are permitted provided that the following conditions are met: | |
165 ### * Redistributions of source code must retain the above copyright | |
166 ### notice, this list of conditions and the following disclaimer. | |
167 ### * Redistributions in binary form must reproduce the above copyright | |
168 ### notice, this list of conditions and the following disclaimer in | |
169 ### the documentation and/or other materials provided with the distribution | |
170 | |
171 ### FUNCTIONS | |
172 ### raplot | |
173 ### Produces a Risk Assessment Plot and outputs the coordinates of the four curves | |
174 ### Based on: Pickering, J. W. and Endre, Z. H. (2012). New Metrics for Assessing Diagnostic Potential of | |
175 ### Candidate Biomarkers. Clinical Journal of the American Society of Nephrology, 7, 1355–1364. doi:10.2215/CJN.09590911 | |
176 ### | |
177 ### statistics.raplot | |
178 ### Produces the NRIs, IDIs, IS, IP, AUCs. | |
179 ### Based on: Pencina, M. J., D'Agostino, R. B. and Steyerberg, E. W. (2011). | |
180 ### Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Statistics in Medicine, 30(1), 11–21. doi:10.1002/sim.4085 | |
181 ### Pencina, M. J., D'Agostino, R. B. and Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. | |
182 ### Statistics in Medicine, 27(2), 157–172. doi:10.1002/sim.2929 | |
183 ### DeLong, E., DeLong, D. and Clarke-Pearson, D. (1988). Comparing the areas under 2 or more correlated receiver operating characteristic curves - a nonparametric approach. | |
184 ### Biometrics, 44(3), 837–845. | |
185 ### | |
186 ### summary.raplot | |
187 ### Produces the NRIs, IDIs, IS, IP, AUCs with confidence intervals using a bootstrap or asymptotic procedure. (I prefer bootstrap which is chosed by cis=c("boot")) | |
188 | |
189 | |
190 ### Required arguments for all functions: | |
191 ### x1 is calculated risk (eg from a glm) for the null model, i.e. predict(,type="response") on a glm object | |
192 ### x2 is calculated risk (eg from a glm) for the alternative model | |
193 ### y is the case-control indicator (0 for controls, 1 for cases) | |
194 ### Optional argument | |
195 ### t are the boundaries of the risks for each group (ie 0, 1 and the thresholds beteween. eg c(0,0,3,0,7,1)). If missing, defaults to c(0, the incidence, 1) | |
196 | |
197 | |
198 ### risk assessment plot | |
199 | |
200 library('e1071') | |
201 library('caret') | |
202 library('pROC') | |
203 library('Hmisc') | |
204 library('pracma') | |
205 | |
206 raplot = function(x1, x2, y, outplot, title) { | |
207 | |
208 roc.model1 = roc(y, x1) | |
209 roc.model2 = roc(y, x2) | |
210 sens.model1 = roc.model1\$sensitivities | |
211 spec.model1 = 1 - roc.model1\$specificities | |
212 n.model1 = length(sens.model1) | |
213 thresh.model1 = roc.model1\$thresholds | |
214 thresh.model1 = thresh.model1[c(-1,-n.model1)] | |
215 sens.model1 = sens.model1[c(-1,-n.model1)] | |
216 spec.model1 = spec.model1[c(-1,-n.model1)] | |
217 sens.model2 = roc.model2\$sensitivities | |
218 spec.model2 = 1 - roc.model2\$specificities | |
219 n.model2 = length(sens.model2) | |
220 thresh.model2 = roc.model2\$thresholds | |
221 thresh.model2[1]=0 | |
222 thresh.model2[length(thresh.model2)]=1 | |
223 thresh.model2 = thresh.model2[c(-1,-n.model2)] | |
224 sens.model2 = sens.model2[c(-1,-n.model2)] | |
225 spec.model2 = spec.model2[c(-1,-n.model2)] | |
226 | |
227 n.model1 = length(sens.model1) | |
228 n.model2 = length(sens.model2) | |
229 | |
230 ### actual plotting | |
231 pdf(outplot) | |
232 plot(thresh.model1, sens.model1, xlim = c(0, 1), ylim = c(0, 1), type = "n", | |
233 lty = 2, lwd = 2, xlab = "Risk of Event", ylab = "", col = "black", main=title) | |
234 grid() | |
235 | |
236 polygon(x = c(thresh.model1, thresh.model2[n.model2:1]), | |
237 y = c(sens.model1, sens.model2[n.model2:1]), border = NA, col = gray(0.8)) | |
238 polygon(x = c(thresh.model1, thresh.model2[n.model2:1]), | |
239 y = c(spec.model1, spec.model2[n.model2:1]), border = NA, col = gray(0.8)) | |
240 | |
241 lines(thresh.model1, sens.model1, type = "l", lty = 2, lwd = 2, col = "black") | |
242 lines(thresh.model2, sens.model2, type = "l", lty = 1, lwd = 2, col = "black") | |
243 | |
244 lines(thresh.model1, spec.model1, type = "l", lty = 2, lwd = 2, col = "red") | |
245 lines(thresh.model2, spec.model2, type = "l", lty = 1, lwd = 2, col = "red") | |
246 | |
247 text(x = -0.15, y = 0.4, labels = "Sensitivity, ", col = "black", xpd = TRUE, srt = 90) | |
248 text(x = -0.15, y = 0.4 + 0.175, labels = "1-Specificity", col = "red", xpd = TRUE, srt = 90) | |
249 legend("topleft", c("Event: New model", "Event: Baseline model", | |
250 "No Event: New model", "No Event: Baseline model"), | |
251 col = c("black", "black", "red", "red"), | |
252 lty = c(1,2, 1, 2), lwd = 2, bty = "n") | |
253 dev.off() | |
254 return(data.frame("Null.p.sens"=thresh.model1, | |
255 "Null.sens"=sens.model1, | |
256 "Null.p.1spec"=thresh.model1, | |
257 "Null.1spec"=sens.model1, | |
258 "Alt.p.sens"=thresh.model2, | |
259 "Alt.sens"=sens.model2, | |
260 "Alt.p.1spec"=thresh.model2, | |
261 "Alt.1spec"=sens.model2)) | |
262 | |
263 } | |
264 | |
265 | |
266 | |
267 ### statistics from a raplot (is an adaptation of improveProb() from Hmisc) | |
268 | |
269 statistics.raplot = function(x1, x2, y, threshvec) | |
270 { | |
271 | |
272 s = is.na(x1 + x2 + y) ###Remove rows with missing data | |
273 if (any(s)) { | |
274 smiss = sum(s) | |
275 s = !s | |
276 x1 = x1[s] | |
277 x2 = x2[s] | |
278 y = y[s] | |
279 print.noquote(paste('Warning: removed',smiss,'cases with missing values')) | |
280 } | |
281 n = length(y) | |
282 y = as.numeric(y) | |
283 u = sort(unique(y)) | |
284 if (length(u) != 2 || u[1] != 0 || u[2] != 1) { | |
285 print.noquote("INPUT ERROR: y must have only two values: 0 and 1") | |
286 sink() | |
287 quit(save="no",status=2) | |
288 } | |
289 r = range(x1, x2) | |
290 if (r[1] < 0 || r[2] > 1) { | |
291 print.noquote("INPUT ERROR: x1 and x2 must be in [0,1]") | |
292 sink() | |
293 quit(save="no",status=3) | |
294 } | |
295 incidence=sum(y)/n | |
296 if (missing(threshvec)) { | |
297 threshvec=c(0, incidence,1) | |
298 print(paste('threshvec missing. using',paste(threshvec,collapse=','))) | |
299 } | |
300 a = (y == 1) | |
301 b = (y == 0) | |
302 na = sum(a) | |
303 nb = sum(b) | |
304 d = x2 - x1 | |
305 ### NRI | |
306 n.thresh=length(threshvec)-1 | |
307 risk.class.x1.ev=cut2(x1[a],threshvec) | |
308 risk.class.x2.ev=cut2(x2[a],threshvec) | |
309 thresh=c() | |
310 lt = length(threshvec) | |
311 for (i in 1:(lt-1)) { | |
312 thresh[i] = paste("[",toString(threshvec[i]),",",toString(threshvec[i+1]),"]") | |
313 } | |
314 levels(risk.class.x1.ev)=thresh | |
315 levels(risk.class.x2.ev)=thresh | |
316 cM.ev=confusionMatrix(risk.class.x2.ev,risk.class.x1.ev) | |
317 pup.ev=0 | |
318 pdown.ev=0 | |
319 for (i in 1:(n.thresh-1)) { pup.ev = pup.ev + sum(cM.ev\$table[(i+1):n.thresh,i])} | |
320 for (i in 2:n.thresh) { pdown.ev = pdown.ev + sum(cM.ev\$table[1:(i-1),i])} | |
321 pup.ev=pup.ev/na | |
322 pdown.ev=pdown.ev/na | |
323 risk.class.x1.ne=cut2(x1[b],threshvec) | |
324 risk.class.x2.ne=cut2(x2[b],threshvec) | |
325 levels(risk.class.x1.ne)=thresh | |
326 levels(risk.class.x2.ne)=thresh | |
327 cM.ne=confusionMatrix(risk.class.x2.ne,risk.class.x1.ne) | |
328 pup.ne=0 | |
329 pdown.ne=0 | |
330 for (i in 1:(n.thresh-1)){pup.ne=pup.ev+sum(cM.ne\$table[(i+1):n.thresh,i])} | |
331 for (i in 2:n.thresh){pdown.ne=pdown.ne+sum(cM.ne\$table[1:(i-1),i])} | |
332 pdown.ne=pdown.ne/nb | |
333 pup.ne=pup.ne/nb | |
334 nri = pup.ev - pdown.ev - (pup.ne - pdown.ne) | |
335 se.nri = sqrt((pup.ev + pdown.ev)/na + (pup.ne + pdown.ne)/nb) | |
336 z.nri = nri/se.nri | |
337 nri.ev = pup.ev - pdown.ev | |
338 se.nri.ev = sqrt((pup.ev + pdown.ev)/na) | |
339 z.nri.ev = nri.ev/se.nri.ev | |
340 nri.ne = pdown.ne - pup.ne | |
341 se.nri.ne = sqrt((pdown.ne + pup.ne)/nb) | |
342 z.nri.ne = nri.ne/se.nri.ne | |
343 ### Category Free NRI calculations | |
344 cfpup.ev = mean(d[a] > 0) | |
345 cfpup.ne = mean(d[b] > 0) | |
346 cfpdown.ev = mean(d[a] < 0) | |
347 cfpdown.ne = mean(d[b] < 0) | |
348 cfnri = cfpup.ev - cfpdown.ev - (cfpup.ne - cfpdown.ne) | |
349 se.cfnri = sqrt((cfpup.ev + cfpdown.ev)/na + (cfpup.ne + cfpdown.ne)/nb) | |
350 z.cfnri = cfnri/se.cfnri | |
351 cfnri.ev = cfpup.ev - cfpdown.ev | |
352 se.cfnri.ev = sqrt((cfpup.ev + cfpdown.ev)/na) | |
353 z.cfnri.ev = cfnri.ev/se.cfnri.ev | |
354 cfnri.ne = cfpdown.ne - cfpup.ne | |
355 se.cfnri.ne = sqrt((cfpdown.ne + cfpup.ne)/nb) | |
356 z.cfnri.ne = cfnri.ne/se.cfnri.ne | |
357 ### IDI calculations | |
358 improveSens = sum(d[a])/na | |
359 improveSpec = -sum(d[b])/nb | |
360 idi.ev = mean(improveSens) | |
361 idi.ne = mean(improveSpec) | |
362 idi = idi.ev - idi.ne | |
363 var.ev = var(d[a])/na | |
364 se.idi.ev = sqrt(var.ev) | |
365 z.idi.ev = idi.ev/se.idi.ev | |
366 var.ne = var(d[b])/nb | |
367 se.idi.ne = sqrt(var.ne) | |
368 z.idi.ne = idi.ne/se.idi.ne | |
369 se.idi = sqrt(var.ev + var.ne) | |
370 z.idi = idi/se.idi | |
371 ### AUC calculations | |
372 roc.x1 = roc(y, x1) | |
373 auc.x1 = auc(roc.x1) | |
374 ci.auc.x1 = ci.auc(roc.x1) | |
375 se.auc.x1 = (ci.auc.x1[3] - auc.x1)/qnorm(0.975) | |
376 roc.x2 = roc(y, x2) | |
377 auc.x2 = auc(roc.x2) | |
378 ci.auc.x2 = ci.auc(roc.x2) | |
379 se.auc.x2 = (ci.auc.x2[3] - auc.x2)/qnorm(0.975) | |
380 roc.test.x1.x2 = roc.test(roc.x1, roc.x2) ###Uses the default Delong method | |
381 sens.x1 = roc.x1\$sensitivities | |
382 spec.x1 = 1 - roc.x1\$specificities | |
383 n.x1 = length(sens.x1) | |
384 x1 = roc.x1\$thresholds | |
385 x1 = x1[c(-1,-n.x1)] | |
386 sens.x1 = sens.x1[c(-1,-n.x1)] | |
387 spec.x1 = spec.x1[c(-1,-n.x1)] | |
388 sens.x2 = roc.x2\$sensitivities | |
389 spec.x2 = 1 - roc.x2\$specificities | |
390 n.x2 = length(sens.x2) | |
391 x2 = roc.x2\$thresholds | |
392 x2 = x2[c(-1,-n.x2)] | |
393 sens.x2 = sens.x2[c(-1,-n.x2)] | |
394 spec.x2 = spec.x2[c(-1,-n.x2)] | |
395 ### Integrated sensitivity and 1-specificity calculations | |
396 is.x1 = trapz(x = x1, y = sens.x1) ### area under curves (relates to integrated sens, 1-spec) | |
397 is.x2 = trapz(x = x2, y = sens.x2) | |
398 ip.x1 = trapz(x = x1, y = spec.x1) | |
399 ip.x2 = trapz(x = x2, y = spec.x2) | |
400 | |
401 ### Output | |
402 output = c(n, na, nb, pup.ev, pup.ne, pdown.ev, pdown.ne, nri, se.nri, z.nri, | |
403 nri.ev, se.nri.ev, z.nri.ev, nri.ne, se.nri.ne, z.nri.ne, | |
404 cfpup.ev, cfpup.ne, cfpdown.ev, cfpdown.ne, cfnri, se.cfnri, z.cfnri, | |
405 cfnri.ev, se.cfnri.ev, z.cfnri.ev, cfnri.ne, se.cfnri.ne, z.cfnri.ne, | |
406 improveSens, improveSpec, idi.ev, se.idi.ev, z.idi.ev, idi.ne, | |
407 se.idi.ne, z.idi.ne, idi, se.idi, z.idi, is.x1, NA, is.x2, NA, | |
408 ip.x1, NA, ip.x2, NA, auc.x1, se.auc.x1, auc.x2, se.auc.x2, | |
409 roc.test.x1.x2\$p.value,incidence) | |
410 names(output) = c("n", "na", "nb", "pup.ev", "pup.ne", "pdown.ev", "pdown.ne", | |
411 "nri", "se.nri", "z.nri", "nri.ev", "se.nri.ev", "z.nri.ev", | |
412 "nri.ne", "se.nri.ne", "z.nri.ne", | |
413 "cfpup.ev", "cfpup.ne", "cfpdown.ev", "cfpdown.ne", | |
414 "cfnri", "se.cfnri", "z.cfnri", "cfnri.ev", "se.cfnri.ev", "z.cfnri.ev", | |
415 "cfnri.ne", "se.cfnri.ne", "z.cfnri.ne", "improveSens", "improveSpec", | |
416 "idi.ev", "se.idi.ev", "z.idi.ev", "idi.ne", "se.idi.ne", | |
417 "z.idi.ne", "idi", "se.idi", "z.idi", "is.x1", "se.is.x1", | |
418 "is.x2", "se.is.x2", "ip.x1", "se.ip.x1", "ip.x2", "se.ip.x2", | |
419 "auc.x1", "se.auc.x1", "auc.x2", "se.auc.x2", | |
420 "roc.test.x1.x2.pvalue","incidence") | |
421 resdf = data.frame(N=n, Na=na, Nb=nb, pup.ev=pup.ev, pup.ne=pup.ne, pdown.ev=pdown.ev, pdown.ne=pdown.ne, NRI=nri, NRI.se=se.nri, NRI.z=z.nri, | |
422 NRI.ev=nri.ev, NRI.ev.se=se.nri.ev, NRI.ev.z=z.nri.ev, NRI.ne=nri.ne, NRI.ne.se=se.nri.ne, NRI.ne.z=z.nri.ne, | |
423 cfpup.ev=cfpup.ev, cfpup.ne=cfpup.ne, cfpdown.ev=cfpdown.ev, cfpdown.ne=cfpdown.ne, CFNRI=cfnri, CFNRI.se=se.cfnri, CFNRI.z=z.cfnri, | |
424 CFNRI.ev=cfnri.ev, CFNRI.ev.se=se.cfnri.ev, CFNRI.ev.z=z.cfnri.ev, CFNRI.ne=cfnri.ne, CFNRI.ne.se=se.cfnri.ne, CFNRI.ne.z=z.cfnri.ne, | |
425 improvSens=improveSens, improvSpec=improveSpec, IDI.ev=idi.ev, IDI.ev.se=se.idi.ev, IDI.ev.z=z.idi.ev, IDI.ne=idi.ne, | |
426 IDI.ne.se=se.idi.ne, IDI.ne.z=z.idi.ne, IDI=idi, IDI.se=se.idi, IDI.z=z.idi, isx1=is.x1, isx2=is.x2, | |
427 ipxi=ip.x1, ipx2=ip.x2, AUC.x1=auc.x1, AUC.x1.se=se.auc.x1, AUC.x2=auc.x2, AUC.x2.se=se.auc.x2, | |
428 roctestpval=roc.test.x1.x2\$p.value,incidence=incidence) | |
429 tr = t(resdf) | |
430 tresdf = data.frame(measure=colnames(resdf),value=tr[,1]) | |
431 return(list(resdf=tresdf,output=output)) | |
432 } | |
433 | |
434 | |
435 ### More comprehensive summary statistics from a raplot | |
436 ### Choice of confidence intervals determined through asymptotics or bootstrapping (n.boot = ### of bootstrap resamples) | |
437 ### dp is number of decimal places for results table | |
438 | |
439 summary.raplot = function(x1, x2, y, threshvec, cis = "boot", conf.level = 0.95, n.boot = 2000, dp = 4, stat_ra=NA) | |
440 { | |
441 results = stat_ra | |
442 if (cis == "boot") { | |
443 print.noquote("Bootstrap estimates for SE") | |
444 results.boot = matrix(NA, n.boot, length(names(results))) | |
445 | |
446 colnames(results.boot) = names(results) | |
447 | |
448 for (i in 1:n.boot) { | |
449 ###boot.index = sample(length(cc.status), replace = TRUE) | |
450 ###risk.model1.boot = risk.model1[boot.index] | |
451 ###risk.model2.boot = risk.model2[boot.index] | |
452 ###cc.status.boot = cc.status[boot.index] | |
453 boot.index = sample(length(y), replace = TRUE) | |
454 risk.model1.boot = x1[boot.index] | |
455 risk.model2.boot = x2[boot.index] | |
456 cc.status.boot = y[boot.index] | |
457 r = statistics.raplot(x1 = risk.model1.boot, x2 = risk.model2.boot, y = cc.status.boot) | |
458 results.boot[i, ] = r\$output | |
459 } | |
460 | |
461 results.se.boot = apply(results.boot, 2, sd) | |
462 print(paste(results.se.boot,collapse=',')) | |
463 | |
464 | |
465 results[grep("se", names(results))] = results.se.boot[grep("se", names(results)) - 1] | |
466 | |
467 } | |
468 | |
469 | |
470 | |
471 ### calculate cis and return | |
472 | |
473 z = abs(qnorm((1 - conf.level)/2)) | |
474 | |
475 results.matrix = matrix(NA, 24, 2) | |
476 | |
477 results.matrix[1, ] = c("Total (n)", results["n"]) | |
478 results.matrix[2, ] = c("Events (n)", results["na"]) | |
479 results.matrix[3, ] = c("Non-events (n)", results["nb"]) | |
480 results.matrix[4, ] = c("Category free NRI and summary statistics","-------------------------") | |
481 results.matrix[5, ] = c("cfNRI events (%)", | |
482 paste(round(100*results["cfnri.ev"], dp-2), " (", | |
483 round(100*results["cfnri.ev"] - z * 100*results["se.cfnri.ev"], dp-2), | |
484 " to ", round(100*results["cfnri.ev"] + | |
485 z * 100*results["se.cfnri.ev"], dp-2), ")", sep = "")) | |
486 results.matrix[6, ] = c("cfNRI non-events (%)", | |
487 paste(round(100*results["cfnri.ne"], dp-2), " (", | |
488 round(100*results["cfnri.ne"] - z * 100*results["se.cfnri.ne"], dp)-2, | |
489 " to ", round(100*results["cfnri.ne"] + z * 100*results["se.cfnri.ne"], | |
490 dp-2), ")", sep = "")) | |
491 results.matrix[7, ] = c("cfNRI (%)", | |
492 paste(round(100*results["cfnri"], dp-2), " (", | |
493 round(100*results["cfnri"] - z * 100*results["se.cfnri"], dp-2), | |
494 " to ", round(100*results["cfnri"] + z * 100*results["se.cfnri"], | |
495 dp-2), ")", sep = "")) | |
496 results.matrix[8, ] = c("NRI and summary statistics","-------------------------") | |
497 results.matrix[9, ] = c("NRI events (%)", | |
498 paste(round(100*results["nri.ev"], dp-2), " (", | |
499 round(100*results["nri.ev"] - z * 100*results["se.nri.ev"], dp-2), | |
500 " to ", round(100*results["nri.ev"] + | |
501 z * 100*results["se.nri.ev"], dp-2), ")", sep = "")) | |
502 results.matrix[10, ] = c("NRI non-events (%)", | |
503 paste(round(100*results["nri.ne"], dp-2), " (", | |
504 round(100*results["nri.ne"] - z * 100*results["se.nri.ne"], dp-2), | |
505 " to ", round(100*results["nri.ne"] + z * 100*results["se.nri.ne"], | |
506 dp-2), ")", sep = "")) | |
507 results.matrix[11, ] = c("NRI (%)", | |
508 paste(round(100*results["nri"], dp-2), " (", | |
509 round(100*results["nri"] - z * 100*results["se.nri"], dp-2), | |
510 " to ", round(100*results["nri"] + z * 100*results["se.nri"], | |
511 dp-2), ")", sep = "")) | |
512 results.matrix[12, ] = c("IDI and summary statistics","-------------------------") | |
513 results.matrix[13, ] = c("IDI events", | |
514 paste(round(results["idi.ev"], dp), " (", | |
515 round(results["idi.ev"] - z * results["se.idi.ev"], dp), | |
516 " to ", round(results["idi.ev"] + z * results["se.idi.ev"], | |
517 dp), ")", sep = "")) | |
518 results.matrix[14, ] = c("IDI non-events", | |
519 paste(round(results["idi.ne"], dp), " (", | |
520 round(results["idi.ne"] - z * results["se.idi.ne"], dp), | |
521 " to ", round(results["idi.ne"] + z * results["se.idi.ne"], | |
522 dp), ")", sep = "")) | |
523 results.matrix[15, ] = c("IDI", | |
524 paste(round(results["idi"], dp), " (", | |
525 round(results["idi"] - z * results["se.idi"], dp), | |
526 " to ", round(results["idi"] + z * results["se.idi"], | |
527 dp), ")", sep = "")) | |
528 results.matrix[16, ] = c("IS (null model)", | |
529 paste(round(results["is.x1"], dp), " (", | |
530 round(results["is.x1"] - z * results["se.is.x1"], dp), | |
531 " to ", round(results["is.x1"] + z * results["se.is.x1"], | |
532 dp), ")", sep = "")) | |
533 results.matrix[17, ] = c("IS (alt model)", | |
534 paste(round(results["is.x2"], dp), " (", | |
535 round(results["is.x2"] - z * results["se.is.x2"], dp), | |
536 " to ", round(results["is.x2"] + z * results["se.is.x2"], | |
537 dp), ")", sep = "")) | |
538 results.matrix[18, ] = c("IP (null model)", | |
539 paste(round(results["ip.x1"], dp), " (", | |
540 round(results["ip.x1"] - z * results["se.ip.x1"], dp), | |
541 " to ", round(results["ip.x1"] + z * results["se.ip.x1"], | |
542 dp), ")", sep = "")) | |
543 results.matrix[19, ] = c("IP (alt model)", | |
544 paste(round(results["ip.x2"], dp), " (", | |
545 round(results["ip.x2"] - z * results["se.ip.x2"], dp), | |
546 " to ", round(results["ip.x2"] + z * results["se.ip.x2"], | |
547 dp), ")", sep = "")) | |
548 results.matrix[20, ] = c("AUC","-------------------------") | |
549 results.matrix[21, ] = c("AUC (null model)", | |
550 paste(round(results["auc.x1"], dp), " (", | |
551 round(results["auc.x1"] - z * results["se.auc.x1"], dp), | |
552 " to ", round(results["auc.x1"] + z * results["se.auc.x1"], | |
553 dp), ")", sep = "")) | |
554 results.matrix[22, ] = c("AUC (alt model)", | |
555 paste(round(results["auc.x2"], dp), " (", | |
556 round(results["auc.x2"] - z * results["se.auc.x2"], dp), | |
557 " to ", round(results["auc.x2"] + z * results["se.auc.x2"], | |
558 dp), ")", sep = "")) | |
559 results.matrix[23, ] = c("difference (P)", round(results["roc.test.x1.x2.pvalue"], dp)) | |
560 results.matrix[24, ] = c("Incidence", round(results["incidence"], dp)) | |
561 | |
562 return(results.matrix) | |
563 } | |
564 | |
565 | |
566 | |
567 ]]> | |
568 | |
569 options(width=120) | |
570 options(digits=5) | |
571 logf = file("rgNRI.log", open = "a") | |
572 sink(logf,type = c("output", "message")) | |
573 Out_Dir = "$html_file.files_path" | |
574 Input1 = "$input1" | |
575 Input2 = "$input2" | |
576 myTitle = "$title" | |
577 outtab = "$nri_file" | |
578 input1_obs = $input1_observed | |
579 input1_pred = $input1_predicted | |
580 input1_id = $input1_id | |
581 input2_obs = $input2_observed | |
582 input2_pred = $input2_predicted | |
583 input2_id = $input2_id | |
584 in1 = read.table(Input1,head=T,sep='\t') | |
585 in2 = read.table(Input2,head=T,sep='\t') | |
586 id1 = in1[,input1_id] | |
587 id2 = in2[,input2_id] | |
588 useme1 = in1[which(id1 %in% id2),] | |
589 useme2 = in2[which(id2 %in% id1),] | |
590 id1 = useme1[,input1_id] | |
591 id2 = useme2[,input2_id] | |
592 useme1 = useme1[order(id1),] | |
593 useme2 = useme2[order(id2),] | |
594 x1 = useme1[,input1_pred] | |
595 x2 = useme2[,input2_pred] | |
596 y1 = useme1[,input1_obs] | |
597 y2 = useme2[,input2_obs] | |
598 n.boot = $CImeth.nboot | |
599 conf.level = 0.95 | |
600 cis = "$CImeth.cis" | |
601 digits = 4 | |
602 nydiff = sum(y1 != y2) | |
603 if (nydiff > 0) { | |
604 print.noquote(paste('Input error: observed status column has',nydiff,'differences - cannot reliably proceed')) | |
605 quit(save="no",status=1) | |
606 } | |
607 y = y2 | |
608 outplot = 'rgNRI_EventRisk.pdf' | |
609 res = raplot(x1=x1, x2=x2, y=y, outplot=outplot,title=myTitle) | |
610 | |
611 stats = statistics.raplot(x1=x1, x2=x2, y=y) | |
612 res1 = stats\$resdf | |
613 out1 = stats\$output | |
614 print.noquote('Results:') | |
615 print.noquote(res1,digits=4) | |
616 res2 = summary.raplot(x1=x1, x2=x2, y=y, cis = cis, conf.level = conf.level, n.boot = n.boot, dp = digits, stat_ra=out1) | |
617 print.noquote('Summary:') | |
618 print.noquote(res2,digits=4) | |
619 write.table(format(res1,digits=4),outtab,quote=F, col.names=F,sep="\t",row.names=F) | |
620 print.noquote('SessionInfo for this R session:') | |
621 sessionInfo() | |
622 print.noquote('warnings for this R session:') | |
623 warnings() | |
624 sink() | |
625 </configfile> | |
626 </configfiles> | |
627 <citations> | |
628 <citation type="doi">doi: 10.2215/CJN.09590911</citation> | |
629 </citations> | |
630 </tool> | |
631 | |
632 | |
633 |