Mercurial > repos > fubar > differential_count_models
view rgedgeR/rgedgeRpaired.xml @ 10:755cf582f2c4 draft
Uploaded
author | fubar |
---|---|
date | Sat, 27 Jul 2013 01:39:29 -0400 |
parents | 2e35432ee040 |
children | e7733b353702 |
line wrap: on
line source
<tool id="rgDifferentialCount" name="Differential_Count" version="0.20"> <description>models using BioConductor packages</description> <requirements> <requirement type="package" version="2.12">biocbasics</requirement> <requirement type="package" version="3.0.1">r3</requirement> <requirement type="package" version="1.3.18">graphicsmagick</requirement> <requirement type="package" version="9.07">ghostscript</requirement> </requirements> <command interpreter="python"> rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "DifferentialCounts" --output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes" </command> <inputs> <param name="input1" type="data" format="tabular" label="Select an input matrix - rows are contigs, columns are counts for each sample" help="Use the HTSeq based count matrix preparation tool to create these matrices from BAM/SAM files and a GTF file of genomic features"/> <param name="title" type="text" value="Differential Counts" size="80" label="Title for job outputs" help="Supply a meaningful name here to remind you what the outputs contain"> <sanitizer invalid_char=""> <valid initial="string.letters,string.digits"><add value="_" /> </valid> </sanitizer> </param> <param name="treatment_name" type="text" value="Treatment" size="50" label="Treatment Name"/> <param name="Treat_cols" label="Select columns containing treatment." type="data_column" data_ref="input1" numerical="True" multiple="true" use_header_names="true" size="120" display="checkboxes"> <validator type="no_options" message="Please select at least one column."/> </param> <param name="control_name" type="text" value="Control" size="50" label="Control Name"/> <param name="Control_cols" label="Select columns containing control." type="data_column" data_ref="input1" numerical="True" multiple="true" use_header_names="true" size="120" display="checkboxes" optional="true"> </param> <param name="subjectids" type="text" optional="true" size="120" value = "" label="IF SUBJECTS NOT ALL INDEPENDENT! Enter integers to indicate sample pairing for every column in input" help="Leave blank if no pairing, but eg if data from sample id A99 is in columns 2,4 and id C21 is in 3,5 then enter '1,2,1,2'"> <sanitizer> <valid initial="string.digits"><add value="," /> </valid> </sanitizer> </param> <param name="fQ" type="float" value="0.3" size="5" label="Non-differential contig count quantile threshold - zero to analyze all non-zero read count contigs" help="May be a good or a bad idea depending on the biology and the question. EG 0.3 = sparsest 30% of contigs with at least one read are removed before analysis"/> <param name="useNDF" type="boolean" truevalue="T" falsevalue="F" checked="false" size="1" label="Non differential filter - remove contigs below a threshold (1 per million) for half or more samples" help="May be a good or a bad idea depending on the biology and the question. This was the old default. Quantile based is available as an alternative"/> <conditional name="edgeR"> <param name="doedgeR" type="select" label="Run this model using edgeR" help="edgeR uses a negative binomial model and seems to be powerful, even with few replicates"> <option value="F">Do not run edgeR</option> <option value="T" selected="true">Run edgeR</option> </param> <when value="T"> <param name="edgeR_priordf" type="integer" value="20" size="3" label="prior.df for tagwise dispersion - lower value = more emphasis on each tag's variance. Replaces prior.n and prior.df = prior.n * residual.df" help="0 = Use edgeR default. Use a small value to 'smooth' small samples. See edgeR docs and note below"/> </when> <when value="F"> </when> </conditional> <conditional name="DESeq2"> <param name="doDESeq2" type="select" label="Run the same model with DESeq2 and compare findings" help="DESeq2 is an update to the DESeq package. It uses different assumptions and methods to edgeR"> <option value="F" selected="true">Do not run DESeq2</option> <option value="T">Run DESeq2 (only works if NO second GLM factor supplied at present)</option> </param> <when value="T"> <param name="DESeq_fitType" type="select"> <option value="parametric" selected="true">Parametric (default) fit for dispersions</option> <option value="local">Local fit - use this if parametric fails</option> <option value="mean">Mean dispersion fit- use this if you really understand what you're doing - read the fine manual</option> </param> </when> <when value="F"> </when> </conditional> <param name="doVoom" type="select" label="Run the same model with Voom/limma and compare findings" help="The VOOM transformation allows analysis of count data using limma"> <option value="F" selected="true">Do not run VOOM</option> <option value="T">Run VOOM</option> </param> <param name="fdrthresh" type="float" value="0.05" size="5" label="P value threshold for FDR filtering for amily wise error rate control" help="Conventional default value of 0.05 recommended"/> <param name="fdrtype" type="select" label="FDR (Type II error) control method" help="Use fdr or bh typically to control for the number of tests in a reliable way"> <option value="fdr" selected="true">fdr</option> <option value="BH">Benjamini Hochberg</option> <option value="BY">Benjamini Yukateli</option> <option value="bonferroni">Bonferroni</option> <option value="hochberg">Hochberg</option> <option value="holm">Holm</option> <option value="hommel">Hommel</option> <option value="none">no control for multiple tests</option> </param> </inputs> <outputs> <data format="tabular" name="out_edgeR" label="${title}_topTable_edgeR.xls"> <filter>edgeR['doedgeR'] == "T"</filter> </data> <data format="tabular" name="out_DESeq2" label="${title}_topTable_DESeq2.xls"> <filter>DESeq2['doDESeq2'] == "T"</filter> </data> <data format="tabular" name="out_VOOM" label="${title}_topTable_VOOM.xls"> <filter>doVoom == "T"</filter> </data> <data format="html" name="html_file" label="${title}.html"/> </outputs> <stdio> <exit_code range="4" level="fatal" description="Number of subject ids must match total number of samples in the input matrix" /> </stdio> <tests> <test> <param name='input1' value='test_bams2mx.xls' ftype='tabular' /> <param name='treatment_name' value='case' /> <param name='title' value='edgeRtest' /> <param name='useNDF' value='' /> <param name='doedgeR' value='T' /> <param name='doVoom' value='T' /> <param name='doDESeq2' value='T' /> <param name='fdrtype' value='fdr' /> <param name='edgeR_priordf' value="8" /> <param name='fdrthresh' value="0.05" /> <param name='control_name' value='control' /> <param name='subjectids' value='' /> <param name='Treat_cols' value='3,4,5,9' /> <param name='Control_cols' value='2,6,7,8' /> <output name='out_edgeR' file='edgeRtest1out.xls' compare='diff' /> <output name='html_file' file='edgeRtest1out.html' compare='diff' lines_diff='20' /> </test> </tests> <configfiles> <configfile name="runme"> <![CDATA[ # # edgeR.Rscript # updated npv 2011 for R 2.14.0 and edgeR 2.4.0 by ross # Performs DGE on a count table containing n replicates of two conditions # # Parameters # # 1 - Output Dir # Original edgeR code by: S.Lunke and A.Kaspi reallybig = log10(.Machine\$double.xmax) reallysmall = log10(.Machine\$double.xmin) library('stringr') library('gplots') library('edgeR') hmap2 = function(cmat,nsamp=100,outpdfname='heatmap2.pdf', TName='Treatment',group=NA,myTitle='title goes here') { # Perform clustering for significant pvalues after controlling FWER samples = colnames(cmat) gu = unique(group) if (length(gu) == 2) { col.map = function(g) {if (g==gu[1]) "#FF0000" else "#0000FF"} pcols = unlist(lapply(group,col.map)) } else { colours = rainbow(length(gu),start=0,end=4/6) pcols = colours[match(group,gu)] } gn = rownames(cmat) dm = cmat[(! is.na(gn)),] # remove unlabelled hm rows nprobes = nrow(dm) # sub = paste('Showing',nprobes,'contigs ranked for evidence of differential abundance') if (nprobes > nsamp) { dm =dm[1:nsamp,] #sub = paste('Showing',nsamp,'contigs ranked for evidence for differential abundance out of',nprobes,'total') } newcolnames = substr(colnames(dm),1,20) colnames(dm) = newcolnames pdf(outpdfname) heatmap.2(dm,main=myTitle,ColSideColors=pcols,col=topo.colors(100),dendrogram="col",key=T,density.info='none', Rowv=F,scale='row',trace='none',margins=c(8,8),cexRow=0.4,cexCol=0.5) dev.off() } hmap = function(cmat,nmeans=4,outpdfname="heatMap.pdf",nsamp=250,TName='Treatment',group=NA,myTitle="Title goes here") { # for 2 groups only was #col.map = function(g) {if (g==TName) "#FF0000" else "#0000FF"} #pcols = unlist(lapply(group,col.map)) gu = unique(group) colours = rainbow(length(gu),start=0.3,end=0.6) pcols = colours[match(group,gu)] nrows = nrow(cmat) mtitle = paste(myTitle,'Heatmap: n contigs =',nrows) if (nrows > nsamp) { cmat = cmat[c(1:nsamp),] mtitle = paste('Heatmap: Top ',nsamp,' DE contigs (of ',nrows,')',sep='') } newcolnames = substr(colnames(cmat),1,20) colnames(cmat) = newcolnames pdf(outpdfname) heatmap(cmat,scale='row',main=mtitle,cexRow=0.3,cexCol=0.4,Rowv=NA,ColSideColors=pcols) dev.off() } qqPlot = function(descr='qqplot',pvector, outpdf='qqplot.pdf',...) # stolen from https://gist.github.com/703512 { o = -log10(sort(pvector,decreasing=F)) e = -log10( 1:length(o)/length(o) ) o[o==-Inf] = reallysmall o[o==Inf] = reallybig maint = descr pdf(outpdf) plot(e,o,pch=19,cex=1, main=maint, ..., xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))), xlim=c(0,max(e)), ylim=c(0,max(o))) lines(e,e,col="red") grid(col = "lightgray", lty = "dotted") dev.off() } smearPlot = function(DGEList,deTags, outSmear, outMain) { pdf(outSmear) plotSmear(DGEList,de.tags=deTags,main=outMain) grid(col="lightgray", lty="dotted") dev.off() } boxPlot = function(rawrs,cleanrs,maint,myTitle,pdfname) { # nc = ncol(rawrs) for (i in c(1:nc)) {rawrs[(rawrs[,i] < 0),i] = NA} fullnames = colnames(rawrs) newcolnames = substr(colnames(rawrs),1,20) colnames(rawrs) = newcolnames newcolnames = substr(colnames(cleanrs),1,20) colnames(cleanrs) = newcolnames defpar = par(no.readonly=T) print.noquote('raw contig counts by sample:') print.noquote(summary(rawrs)) print.noquote('normalised contig counts by sample:') print.noquote(summary(cleanrs)) pdf(pdfname) par(mfrow=c(1,2)) boxplot(rawrs,varwidth=T,notch=T,ylab='log contig count',col="maroon",las=3,cex.axis=0.35,main=paste('Raw:',maint)) grid(col="lightgray",lty="dotted") boxplot(cleanrs,varwidth=T,notch=T,ylab='log contig count',col="maroon",las=3,cex.axis=0.35,main=paste('After ',maint)) grid(col="lightgray",lty="dotted") dev.off() pdfname = "sample_counts_histogram.pdf" nc = ncol(rawrs) print.noquote(paste('Using ncol rawrs=',nc)) ncroot = round(sqrt(nc)) if (ncroot*ncroot < nc) { ncroot = ncroot + 1 } m = c() for (i in c(1:nc)) { rhist = hist(rawrs[,i],breaks=100,plot=F) m = append(m,max(rhist\$counts)) } ymax = max(m) pdf(pdfname) par(mfrow=c(ncroot,ncroot)) for (i in c(1:nc)) { hist(rawrs[,i], main=paste("Contig logcount",i), xlab='log raw count', col="maroon", breaks=100,sub=fullnames[i],cex=0.8,ylim=c(0,ymax)) } dev.off() par(defpar) } cumPlot = function(rawrs,cleanrs,maint,myTitle) { # updated to use ecdf pdfname = "Filtering_rowsum_bar_charts.pdf" defpar = par(no.readonly=T) lrs = log(rawrs,10) lim = max(lrs) pdf(pdfname) par(mfrow=c(2,1)) hist(lrs,breaks=100,main=paste('Before:',maint),xlab="# Reads (log)", ylab="Count",col="maroon",sub=myTitle, xlim=c(0,lim),las=1) grid(col="lightgray", lty="dotted") lrs = log(cleanrs,10) hist(lrs,breaks=100,main=paste('After:',maint),xlab="# Reads (log)", ylab="Count",col="maroon",sub=myTitle,xlim=c(0,lim),las=1) grid(col="lightgray", lty="dotted") dev.off() par(defpar) } cumPlot1 = function(rawrs,cleanrs,maint,myTitle) { # updated to use ecdf pdfname = paste(gsub(" ","", myTitle , fixed=TRUE),"RowsumCum.pdf",sep='_') pdf(pdfname) par(mfrow=c(2,1)) lastx = max(rawrs) rawe = knots(ecdf(rawrs)) cleane = knots(ecdf(cleanrs)) cy = 1:length(cleane)/length(cleane) ry = 1:length(rawe)/length(rawe) plot(rawe,ry,type='l',main=paste('Before',maint),xlab="Log Contig Total Reads", ylab="Cumulative proportion",col="maroon",log='x',xlim=c(1,lastx),sub=myTitle) grid(col="blue") plot(cleane,cy,type='l',main=paste('After',maint),xlab="Log Contig Total Reads", ylab="Cumulative proportion",col="maroon",log='x',xlim=c(1,lastx),sub=myTitle) grid(col="blue") dev.off() } doGSEA = function(y=NULL,design=NULL,histgmt="", bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt", ntest=0, myTitle="myTitle", outfname="GSEA.xls", minnin=5, maxnin=2000,fdrthresh=0.05,fdrtype="BH") { sink('Camera.log') genesets = c() if (bigmt > "") { bigenesets = readLines(bigmt) genesets = bigenesets } if (histgmt > "") { hgenesets = readLines(histgmt) if (bigmt > "") { genesets = rbind(genesets,hgenesets) } else { genesets = hgenesets } # use only history if no bi } print.noquote(paste("@@@read",length(genesets), 'genesets from',histgmt,bigmt)) genesets = strsplit(genesets,'\t') # tabular. genesetid\tURLorwhatever\tgene_1\t..\tgene_n outf = outfname head=paste(myTitle,'edgeR GSEA') write(head,file=outfname,append=F) ntest=length(genesets) urownames = toupper(rownames(y)) upcam = c() downcam = c() for (i in 1:ntest) { gs = unlist(genesets[i]) g = gs[1] # geneset_id u = gs[2] if (u > "") { u = paste("<a href=\'",u,"\'>",u,"</a>",sep="") } glist = gs[3:length(gs)] # member gene symbols glist = toupper(glist) inglist = urownames %in% glist nin = sum(inglist) if ((nin > minnin) && (nin < maxnin)) { ### print(paste('@@found',sum(inglist),'genes in glist')) camres = camera(y=y,index=inglist,design=design) if (! is.null(camres)) { rownames(camres) = g # gene set name camres = cbind(GeneSet=g,URL=u,camres) if (camres\$Direction == "Up") { upcam = rbind(upcam,camres) } else { downcam = rbind(downcam,camres) } } } } uscam = upcam[order(upcam\$PValue),] unadjp = uscam\$PValue uscam\$adjPValue = p.adjust(unadjp,method=fdrtype) nup = max(10,sum((uscam\$adjPValue < fdrthresh))) dscam = downcam[order(downcam\$PValue),] unadjp = dscam\$PValue dscam\$adjPValue = p.adjust(unadjp,method=fdrtype) ndown = max(10,sum((dscam\$adjPValue < fdrthresh))) write.table(uscam,file=paste('camera_up',outfname,sep='_'),quote=F,sep='\t',row.names=F) write.table(dscam,file=paste('camera_down',outfname,sep='_'),quote=F,sep='\t',row.names=F) print.noquote(paste('@@@@@ Camera up top',nup,'gene sets:')) write.table(head(uscam,nup),file="",quote=F,sep='\t',row.names=F) print.noquote(paste('@@@@@ Camera down top',ndown,'gene sets:')) write.table(head(dscam,ndown),file="",quote=F,sep='\t',row.names=F) sink() } edgeIt = function (Count_Matrix,group,out_edgeR=F,out_VOOM=F,out_DESeq2=F,fdrtype='fdr',priordf=5, fdrthresh=0.05,outputdir='.', myTitle='Differential Counts',libSize=c(),useNDF=F, filterquantile=0.2, subjects=c(),mydesign=NULL, doDESeq2=T,doVoom=T,doCamera=T,doedgeR=T,org='hg19', histgmt="", bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt", doCook=F,DESeq_fitType="parameteric") { # Error handling if (length(unique(group))!=2){ print("Number of conditions identified in experiment does not equal 2") q() } require(edgeR) options(width = 512) mt = paste(unlist(strsplit(myTitle,'_')),collapse=" ") allN = nrow(Count_Matrix) nscut = round(ncol(Count_Matrix)/2) colTotmillionreads = colSums(Count_Matrix)/1e6 counts.dataframe = as.data.frame(c()) rawrs = rowSums(Count_Matrix) nonzerod = Count_Matrix[(rawrs > 0),] # remove all zero count genes nzN = nrow(nonzerod) nzrs = rowSums(nonzerod) zN = allN - nzN print('# Quantiles for non-zero row counts:',quote=F) print(quantile(nzrs,probs=seq(0,1,0.1)),quote=F) if (useNDF == "T") { gt1rpin3 = rowSums(Count_Matrix/expandAsMatrix(colTotmillionreads,dim(Count_Matrix)) >= 1) >= nscut lo = colSums(Count_Matrix[!gt1rpin3,]) workCM = Count_Matrix[gt1rpin3,] cleanrs = rowSums(workCM) cleanN = length(cleanrs) meth = paste( "After removing",length(lo),"contigs with fewer than ",nscut," sample read counts >= 1 per million, there are",sep="") print(paste("Read",allN,"contigs. Removed",zN,"contigs with no reads.",meth,cleanN,"contigs"),quote=F) maint = paste('Filter >=1/million reads in >=',nscut,'samples') } else { useme = (nzrs > quantile(nzrs,filterquantile)) workCM = nonzerod[useme,] lo = colSums(nonzerod[!useme,]) cleanrs = rowSums(workCM) cleanN = length(cleanrs) meth = paste("After filtering at count quantile =",filterquantile,", there are",sep="") print(paste('Read',allN,"contigs. Removed",zN,"with no reads.",meth,cleanN,"contigs"),quote=F) maint = paste('Filter below',filterquantile,'quantile') } cumPlot(rawrs=rawrs,cleanrs=cleanrs,maint=maint,myTitle=myTitle) allgenes = rownames(workCM) reg = "^chr([0-9]+):([0-9]+)-([0-9]+)" genecards="<a href=\'http://www.genecards.org/index.php?path=/Search/keyword/" ucsc = paste("<a href=\'http://genome.ucsc.edu/cgi-bin/hgTracks?db=",org,sep='') testreg = str_match(allgenes,reg) if (sum(!is.na(testreg[,1]))/length(testreg[,1]) > 0.8) # is ucsc style string { print("@@ using ucsc substitution for urls") contigurls = paste0(ucsc,"&position=chr",testreg[,2],":",testreg[,3],"-",testreg[,4],"\'>",allgenes,"</a>") } else { print("@@ using genecards substitution for urls") contigurls = paste0(genecards,allgenes,"\'>",allgenes,"</a>") } print.noquote("# urls") print.noquote(head(contigurls)) print(paste("# Total low count contigs per sample = ",paste(lo,collapse=',')),quote=F) cmrowsums = rowSums(workCM) TName=unique(group)[1] CName=unique(group)[2] if (is.null(mydesign)) { if (length(subjects) == 0) { mydesign = model.matrix(~group) } else { subjf = factor(subjects) mydesign = model.matrix(~subjf+group) # we block on subject so make group last to simplify finding it } } print.noquote(paste('Using samples:',paste(colnames(workCM),collapse=','))) print.noquote('Using design matrix:') print.noquote(mydesign) if (doedgeR) { sink('edgeR.log') #### Setup DGEList object DGEList = DGEList(counts=workCM, group = group) DGEList = calcNormFactors(DGEList) DGEList = estimateGLMCommonDisp(DGEList,mydesign) comdisp = DGEList\$common.dispersion DGEList = estimateGLMTrendedDisp(DGEList,mydesign) if (edgeR_priordf > 0) { print.noquote(paste("prior.df =",edgeR_priordf)) DGEList = estimateGLMTagwiseDisp(DGEList,mydesign,prior.df = edgeR_priordf) } else { DGEList = estimateGLMTagwiseDisp(DGEList,mydesign) } DGLM = glmFit(DGEList,design=mydesign) DE = glmLRT(DGLM,coef=ncol(DGLM\$design)) # always last one - subject is first if needed efflib = DGEList\$samples\$lib.size*DGEList\$samples\$norm.factors normData = (1e+06*DGEList\$counts/efflib) uoutput = cbind( Name=as.character(rownames(DGEList\$counts)), DE\$table, adj.p.value=p.adjust(DE\$table\$PValue, method=fdrtype), Dispersion=DGEList\$tagwise.dispersion,totreads=cmrowsums,normData, DGEList\$counts ) soutput = uoutput[order(DE\$table\$PValue),] # sorted into p value order - for quick toptable goodness = gof(DGLM, pcutoff=fdrthresh) if (sum(goodness\$outlier) > 0) { print.noquote('GLM outliers:') print(paste(rownames(DGLM)[(goodness\$outlier)],collapse=','),quote=F) } else { print('No GLM fit outlier genes found\n') } z = limma::zscoreGamma(goodness\$gof.statistic, shape=goodness\$df/2, scale=2) pdf("edgeR_GoodnessofFit.pdf") qq = qqnorm(z, panel.first=grid(), main="tagwise dispersion") abline(0,1,lwd=3) points(qq\$x[goodness\$outlier],qq\$y[goodness\$outlier], pch=16, col="maroon") dev.off() estpriorn = getPriorN(DGEList) print(paste("Common Dispersion =",comdisp,"CV = ",sqrt(comdisp),"getPriorN = ",estpriorn),quote=F) efflib = DGEList\$samples\$lib.size*DGEList\$samples\$norm.factors normData = (1e+06*DGEList\$counts/efflib) uniqueg = unique(group) #### Plot MDS sample_colors = match(group,levels(group)) sampleTypes = levels(factor(group)) print.noquote(sampleTypes) pdf("edgeR_MDSplot.pdf") plotMDS.DGEList(DGEList,main=paste("edgeR MDS for",myTitle),cex=0.5,col=sample_colors,pch=sample_colors) legend(x="topleft", legend = sampleTypes,col=c(1:length(sampleTypes)), pch=19) grid(col="blue") dev.off() colnames(normData) = paste( colnames(normData),'N',sep="_") print(paste('Raw sample read totals',paste(colSums(nonzerod,na.rm=T),collapse=','))) nzd = data.frame(log(nonzerod + 1e-2,10)) boxPlot(rawrs=nzd,cleanrs=log(normData,10),maint='TMM Normalisation',myTitle=myTitle,pdfname="edgeR_raw_norm_counts_box.pdf") write.table(soutput,out_edgeR, quote=FALSE, sep="\t",row.names=F) tt = cbind( Name=as.character(rownames(DGEList\$counts)), DE\$table, adj.p.value=p.adjust(DE\$table\$PValue, method=fdrtype), Dispersion=DGEList\$tagwise.dispersion,totreads=cmrowsums ) print.noquote("# edgeR Top tags\n") tt = cbind(tt,URL=contigurls) # add to end so table isn't laid out strangely tt = tt[order(DE\$table\$PValue),] print.noquote(tt[1:50,]) deTags = rownames(uoutput[uoutput\$adj.p.value < fdrthresh,]) nsig = length(deTags) print(paste('#',nsig,'tags significant at adj p=',fdrthresh),quote=F) deColours = ifelse(deTags,'red','black') pdf("edgeR_BCV_vs_abundance.pdf") plotBCV(DGEList, cex=0.3, main="Biological CV vs abundance") dev.off() dg = DGEList[order(DE\$table\$PValue),] #normData = (1e+06 * dg\$counts/expandAsMatrix(dg\$samples\$lib.size, dim(dg))) efflib = dg\$samples\$lib.size*dg\$samples\$norm.factors normData = (1e+06*dg\$counts/efflib) outpdfname="edgeR_heatmap.pdf" hmap2(normData,nsamp=100,TName=TName,group=group,outpdfname=outpdfname,myTitle=myTitle) outSmear = "edgeR_smearplot.pdf" outMain = paste("Smear Plot for ",TName,' Vs ',CName,' (FDR@',fdrthresh,' N = ',nsig,')',sep='') smearPlot(DGEList=DGEList,deTags=deTags, outSmear=outSmear, outMain = outMain) qqPlot(descr=paste(myTitle,'edgeR QQ plot'),pvector=DE\$table\$PValue,outpdf='edgeR_qqplot.pdf') norm.factor = DGEList\$samples\$norm.factors topresults.edgeR = soutput[which(soutput\$adj.p.value < fdrthresh), ] edgeRcountsindex = which(allgenes %in% rownames(topresults.edgeR)) edgeRcounts = rep(0, length(allgenes)) edgeRcounts[edgeRcountsindex] = 1 # Create venn diagram of hits sink() } ### doedgeR if (doDESeq2 == T) { sink("DESeq2.log") # DESeq2 require('DESeq2') library('RColorBrewer') pdata = data.frame(Name=colnames(workCM),Rx=group,row.names=colnames(workCM)) deSEQds = DESeqDataSetFromMatrix(countData = workCM, colData = pdata, design = formula(~ Rx)) #DESeq2 = DESeq(deSEQds,fitType='local',pAdjustMethod=fdrtype) #rDESeq = results(DESeq2) #newCountDataSet(workCM, group) deSeqDatsizefac = estimateSizeFactors(deSEQds) deSeqDatdisp = estimateDispersions(deSeqDatsizefac,fitType=DESeq_fitType) resDESeq = nbinomWaldTest(deSeqDatdisp, pAdjustMethod=fdrtype) rDESeq = as.data.frame(results(resDESeq)) rDESeq = cbind(Contig=rownames(workCM),rDESeq,NReads=cmrowsums,URL=contigurls) srDESeq = rDESeq[order(rDESeq\$pvalue),] qqPlot(descr=paste(myTitle,'DESeq2 qqplot'),pvector=rDESeq\$pvalue,outpdf='DESeq2_qqplot.pdf') cat("# DESeq top 50\n") print.noquote(srDESeq[1:50,]) write.table(srDESeq,out_DESeq2, quote=FALSE, sep="\t",row.names=F) topresults.DESeq = rDESeq[which(rDESeq\$padj < fdrthresh), ] DESeqcountsindex = which(allgenes %in% rownames(topresults.DESeq)) DESeqcounts = rep(0, length(allgenes)) DESeqcounts[DESeqcountsindex] = 1 pdf("DESeq2_dispersion_estimates.pdf") plotDispEsts(resDESeq) dev.off() ysmall = abs(min(rDESeq\$log2FoldChange)) ybig = abs(max(rDESeq\$log2FoldChange)) ylimit = min(4,ysmall,ybig) pdf("DESeq2_MA_plot.pdf") plotMA(resDESeq,main=paste(myTitle,"DESeq2 MA plot"),ylim=c(-ylimit,ylimit)) dev.off() rlogres = rlogTransformation(resDESeq) sampledists = dist( t( assay(rlogres) ) ) sdmat = as.matrix(sampledists) pdf("DESeq2_sample_distance_plot.pdf") heatmap.2(sdmat,trace="none",main=paste(myTitle,"DESeq2 sample distances"), col = colorRampPalette( rev(brewer.pal(9, "RdBu")) )(255)) dev.off() sink() result = try( (ppca = plotPCA( varianceStabilizingTransformation(deSeqDatdisp,blind=T), intgroup=c("Rx","Name")) ) ) if ("try-error" %in% class(result)) { print.noquote('DESeq2 plotPCA failed.') } else { pdf("DESeq2_PCA_plot.pdf") #### wtf - print? Seems needed to get this to work print(ppca) dev.off() } } if (doVoom == T) { sink('VOOM.log') if (doedgeR == F) { #### Setup DGEList object DGEList = DGEList(counts=workCM, group = group) DGEList = calcNormFactors(DGEList) DGEList = estimateGLMCommonDisp(DGEList,mydesign) comdisp = DGEList\$common.dispersion DGEList = estimateGLMTrendedDisp(DGEList,mydesign) DGEList = estimateGLMTagwiseDisp(DGEList,mydesign) } pdf("VOOM_mean_variance_plot.pdf") dat.voomed = voom(DGEList, mydesign, plot = TRUE, lib.size = colSums(workCM) * norm.factor) dev.off() # Use limma to fit data fit = lmFit(dat.voomed, mydesign) fit = eBayes(fit) rvoom = topTable(fit, coef = length(colnames(mydesign)), adj = fdrtype, n = Inf, sort="none") qqPlot(descr=paste(myTitle,'VOOM-limma QQ plot'),pvector=rvoom\$P.Value,outpdf='VOOM_qqplot.pdf') rownames(rvoom) = rownames(workCM) rvoom = cbind(rvoom,NReads=cmrowsums,URL=contigurls) srvoom = rvoom[order(rvoom\$P.Value),] write.table(srvoom,out_VOOM, quote=FALSE, sep="\t",row.names=F) # Use an FDR cutoff to find interesting samples for edgeR, DESeq and voom/limma topresults.voom = srvoom[which(rvoom\$adj.P.Val < fdrthresh), ] voomcountsindex = which(allgenes %in% topresults.voom\$ID) voomcounts = rep(0, length(allgenes)) voomcounts[voomcountsindex] = 1 cat("# VOOM top 50\n") print(srvoom[1:50,]) sink() } if (doCamera) { doGSEA(y=DGEList,design=mydesign,histgmt=histgmt,bigmt=bigmt,ntest=20,myTitle=myTitle, outfname=paste(mt,"GSEA.xls",sep="_"),fdrthresh=fdrthresh,fdrtype=fdrtype) } if ((doDESeq2==T) || (doVoom==T) || (doedgeR==T)) { if ((doVoom==T) && (doDESeq2==T) && (doedgeR==T)) { vennmain = paste(mt,'Voom,edgeR and DESeq2 overlap at FDR=',fdrthresh) counts.dataframe = data.frame(edgeR = edgeRcounts, DESeq2 = DESeqcounts, VOOM_limma = voomcounts, row.names = allgenes) } else if ((doDESeq2==T) && (doedgeR==T)) { vennmain = paste(mt,'DESeq2 and edgeR overlap at FDR=',fdrthresh) counts.dataframe = data.frame(edgeR = edgeRcounts, DESeq2 = DESeqcounts, row.names = allgenes) } else if ((doVoom==T) && (doedgeR==T)) { vennmain = paste(mt,'Voom and edgeR overlap at FDR=',fdrthresh) counts.dataframe = data.frame(edgeR = edgeRcounts, VOOM_limma = voomcounts, row.names = allgenes) } if (nrow(counts.dataframe > 1)) { counts.venn = vennCounts(counts.dataframe) vennf = "Venn_significant_genes_overlap.pdf" pdf(vennf) vennDiagram(counts.venn,main=vennmain,col="maroon") dev.off() } } #### doDESeq2 or doVoom #Return our main table uoutput } #### Done ###sink(stdout(),append=T,type="message") builtin_gmt="" history_gmt="" out_edgeR = F out_DESeq2 = F out_VOOM = F doDESeq2 = $DESeq2.doDESeq2 # make these T or F doVoom = $doVoom doCamera = F doedgeR = $edgeR.doedgeR edgeR_priordf = 0 #if $DESeq2.doDESeq2 == "T" out_DESeq2 = "$out_DESeq2" DESeq_fitType = "$DESeq2.DESeq_fitType" #end if #if $edgeR.doedgeR == "T" out_edgeR = "$out_edgeR" edgeR_priordf = $edgeR.edgeR_priordf #end if #if $doVoom == "T" out_VOOM = "$out_VOOM" #end if Out_Dir = "$html_file.files_path" Input = "$input1" TreatmentName = "$treatment_name" TreatmentCols = "$Treat_cols" ControlName = "$control_name" ControlCols= "$Control_cols" org = "$input1.dbkey" if (org == "") { org = "hg19"} fdrtype = "$fdrtype" fdrthresh = $fdrthresh useNDF = "$useNDF" fQ = $fQ # non-differential centile cutoff myTitle = "$title" subjects = c($subjectids) nsubj = length(subjects) if (nsubj > 0) { if (doDESeq2) { print('WARNING - cannot yet use DESeq2 for 2 way anova - see the docs') doDESeq2 = F } } TCols = as.numeric(strsplit(TreatmentCols,",")[[1]])-1 CCols = as.numeric(strsplit(ControlCols,",")[[1]])-1 cat('Got TCols=') cat(TCols) cat('; CCols=') cat(CCols) cat('\n') useCols = c(TCols,CCols) if (file.exists(Out_Dir) == F) dir.create(Out_Dir) Count_Matrix = read.table(Input,header=T,row.names=1,sep='\t') #Load tab file assume header snames = colnames(Count_Matrix) nsamples = length(snames) if (nsubj > 0 & nsubj != nsamples) { options("show.error.messages"=T) mess = paste('Fatal error: Supplied subject id list',paste(subjects,collapse=','), 'has length',nsubj,'but there are',nsamples,'samples',paste(snames,collapse=',')) write(mess, stderr()) quit(save="no",status=4) } Count_Matrix = Count_Matrix[,useCols] ### reorder columns if (length(subjects) != 0) {subjects = subjects[useCols]} rn = rownames(Count_Matrix) islib = rn %in% c('librarySize','NotInBedRegions') LibSizes = Count_Matrix[subset(rn,islib),][1] # take first Count_Matrix = Count_Matrix[subset(rn,! islib),] group = c(rep(TreatmentName,length(TCols)), rep(ControlName,length(CCols)) ) #Build a group descriptor group = factor(group, levels=c(ControlName,TreatmentName)) colnames(Count_Matrix) = paste(group,colnames(Count_Matrix),sep="_") #Relable columns results = edgeIt(Count_Matrix=Count_Matrix,group=group,out_edgeR=out_edgeR, out_VOOM=out_VOOM, out_DESeq2=out_DESeq2, fdrtype='BH',priordf=edgeR_priordf,fdrthresh=0.05,outputdir='.', myTitle=myTitle,useNDF=F,libSize=c(),filterquantile=fQ,subjects=c(), doDESeq2=doDESeq2,doVoom=doVoom,doCamera=doCamera,doedgeR=doedgeR,org=org, histgmt=history_gmt,bigmt=builtin_gmt,DESeq_fitType=DESeq_fitType) sessionInfo() ]]> </configfile> </configfiles> <help> ---- **What it does** Allows short read sequence counts from controlled experiments to be analysed for differentially expressed genes. Optionally adds a term for subject if not all samples are independent or if some other factor needs to be blocked in the design. **Input** Requires a count matrix as a tabular file. These are best made using the companion HTSeq_ based counter Galaxy wrapper and your fave gene model to generate inputs. Each row is a genomic feature (gene or exon eg) and each column the non-negative integer count of reads from one sample overlapping the feature. The matrix must have a header row uniquely identifying the source samples, and unique row names in the first column. Typically the row names are gene symbols or probe ids for downstream use in GSEA and other methods. **Specifying comparisons** This is basically dumbed down for two factors - case vs control. More complex interfaces are possible but painful at present. Probably need to specify a phenotype file to do this better. Work in progress. Send code. If you have (eg) paired samples and wish to include a term in the GLM to account for some other factor (subject in the case of paired samples), put a comma separated list of indicators for every sample (whether modelled or not!) indicating (eg) the subject number or A list of integers, one for each subject or an empty string if samples are all independent. If not empty, there must be exactly as many integers in the supplied integer list as there are columns (samples) in the count matrix. Integers for samples that are not in the analysis *must* be present in the string as filler even if not used. So if you have 2 pairs out of 6 samples, you need to put in unique integers for the unpaired ones eg if you had 6 samples with the first two independent but the second and third pairs each being from independent subjects. you might use 8,9,1,1,2,2 as subject IDs to indicate two paired samples from the same subject in columns 3/4 and 5/6 **Methods available** You can run 3 popular Bioconductor packages available for count data. edgeR - see edgeR_ for details VOOM/limma - see limma_VOOM_ for details DESeq2 - see DESeq2_ for details and optionally camera in edgeR which works better if MSigDB is installed. **Outputs** Some helpful plots and analysis results. Note that most of these are produced using R code suggested by the excellent documentation and vignettes for the Bioconductor packages invoked. The Tool Factory is used to automatically lay these out for you to enjoy. ***old rant on changes to Bioconductor package variable names between versions*** The edgeR authors made a small cosmetic change in the name of one important variable (from p.value to PValue) breaking this and all other code that assumed the old name for this variable, between edgeR2.4.4 and 2.4.6 (the version for R 2.14 as at the time of writing). This means that all code using edgeR is sensitive to the version. I think this was a very unwise thing to do because it wasted hours of my time to track down and will similarly cost other edgeR users dearly when their old scripts break. This tool currently now works with 2.4.6. **Note on prior.N** http://seqanswers.com/forums/showthread.php?t=5591 says: *prior.n* The value for prior.n determines the amount of smoothing of tagwise dispersions towards the common dispersion. You can think of it as like a "weight" for the common value. (It is actually the weight for the common likelihood in the weighted likelihood equation). The larger the value for prior.n, the more smoothing, i.e. the closer your tagwise dispersion estimates will be to the common dispersion. If you use a prior.n of 1, then that gives the common likelihood the weight of one observation. In answer to your question, it is a good thing to squeeze the tagwise dispersions towards a common value, or else you will be using very unreliable estimates of the dispersion. I would not recommend using the value that you obtained from estimateSmoothing()---this is far too small and would result in virtually no moderation (squeezing) of the tagwise dispersions. How many samples do you have in your experiment? What is the experimental design? If you have few samples (less than 6) then I would suggest a prior.n of at least 10. If you have more samples, then the tagwise dispersion estimates will be more reliable, so you could consider using a smaller prior.n, although I would hesitate to use a prior.n less than 5. From Bioconductor Digest, Vol 118, Issue 5, Gordon writes: Dear Dorota, The important settings are prior.df and trend. prior.n and prior.df are related through prior.df = prior.n * residual.df, and your experiment has residual.df = 36 - 12 = 24. So the old setting of prior.n=10 is equivalent for your data to prior.df = 240, a very large value. Going the other way, the new setting of prior.df=10 is equivalent to prior.n=10/24. To recover old results with the current software you would use estimateTagwiseDisp(object, prior.df=240, trend="none") To get the new default from old software you would use estimateTagwiseDisp(object, prior.n=10/24, trend=TRUE) Actually the old trend method is equivalent to trend="loess" in the new software. You should use plotBCV(object) to see whether a trend is required. Note you could also use prior.n = getPriorN(object, prior.df=10) to map between prior.df and prior.n. ---- **Attributions** edgeR - edgeR_ VOOM/limma - limma_VOOM_ DESeq2 - DESeq2_ for details See above for Bioconductor package documentation for packages exposed in Galaxy by this tool and app store package. Galaxy_ (that's what you are using right now!) for gluing everything together Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is licensed to you under the LGPL_ like other rgenetics artefacts .. _LGPL: http://www.gnu.org/copyleft/lesser.html .. _HTSeq: http://www-huber.embl.de/users/anders/HTSeq/doc/index.html .. _edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html .. _DESeq2: http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .. _limma_VOOM: http://www.bioconductor.org/packages/release/bioc/html/limma.html .. _Galaxy: http://getgalaxy.org </help> </tool>