Mercurial > repos > fubar > differential_count_models
diff rgedgeR/rgedgeRpaired.xml @ 16:cddf60746340 draft
Uploaded
author | fubar |
---|---|
date | Sat, 27 Jul 2013 04:19:51 -0400 |
parents | 993d35bcf98c |
children | b1cf0745bde5 |
line wrap: on
line diff
--- a/rgedgeR/rgedgeRpaired.xml Sat Jul 27 02:25:17 2013 -0400 +++ b/rgedgeR/rgedgeRpaired.xml Sat Jul 27 04:19:51 2013 -0400 @@ -539,7 +539,7 @@ outSmear = "edgeR_smearplot.pdf" outMain = paste("Smear Plot for ",TName,' Vs ',CName,' (FDR@',fdrthresh,' N = ',nsig,')',sep='') smearPlot(DGEList=DGEList,deTags=deTags, outSmear=outSmear, outMain = outMain) - qqPlot(descr=paste(myTitle,'edgeR QQ plot'),pvector=DE\$table\$PValue,outpdf='edgeR_qqplot.pdf') + qqPlot(descr=paste(myTitle,'edgeR adj p QQ plot'),pvector=tt\$adj.p.value,outpdf='edgeR_qqplot.pdf') norm.factor = DGEList\$samples\$norm.factors topresults.edgeR = soutput[which(soutput\$adj.p.value < fdrthresh), ] edgeRcountsindex = which(allgenes %in% rownames(topresults.edgeR)) @@ -564,7 +564,7 @@ rDESeq = as.data.frame(results(resDESeq)) rDESeq = cbind(Contig=rownames(workCM),rDESeq,NReads=cmrowsums,URL=contigurls) srDESeq = rDESeq[order(rDESeq\$pvalue),] - qqPlot(descr=paste(myTitle,'DESeq2 qqplot'),pvector=rDESeq\$pvalue,outpdf='DESeq2_qqplot.pdf') + qqPlot(descr=paste(myTitle,'DESeq2 adj p qq plot'),pvector=rDESeq\$padj,outpdf='DESeq2_qqplot.pdf') cat("# DESeq top 50\n") print.noquote(srDESeq[1:50,]) write.table(srDESeq,file=out_DESeq2, quote=FALSE, sep="\t",row.names=F) @@ -619,7 +619,7 @@ fit = lmFit(dat.voomed, mydesign) fit = eBayes(fit) rvoom = topTable(fit, coef = length(colnames(mydesign)), adj = fdrtype, n = Inf, sort="none") - qqPlot(descr=paste(myTitle,'VOOM-limma QQ plot'),pvector=rvoom\$P.Value,outpdf='VOOM_qqplot.pdf') + qqPlot(descr=paste(myTitle,'VOOM-limma adj p QQ plot'),pvector=rvoom\$adj.P.Val,outpdf='VOOM_qqplot.pdf') rownames(rvoom) = rownames(workCM) rvoom = cbind(rvoom,NReads=cmrowsums,URL=contigurls) srvoom = rvoom[order(rvoom\$P.Value),] @@ -804,6 +804,45 @@ suggested by the excellent documentation and vignettes for the Bioconductor packages invoked. The Tool Factory is used to automatically lay these out for you to enjoy. +**Note on Voom** + +The voom from limma version 3.16.6 help in R includes this from the authors - but you should read the paper to interpret this method. + +This function is intended to process RNA-Seq or ChIP-Seq data prior to linear modelling in limma. + +voom is an acronym for mean-variance modelling at the observational level. +The key concern is to estimate the mean-variance relationship in the data, then use this to compute appropriate weights for each observation. +Count data almost show non-trivial mean-variance relationships. Raw counts show increasing variance with increasing count size, while log-counts typically show a decreasing mean-variance trend. +This function estimates the mean-variance trend for log-counts, then assigns a weight to each observation based on its predicted variance. +The weights are then used in the linear modelling process to adjust for heteroscedasticity. + +In an experiment, a count value is observed for each tag in each sample. A tag-wise mean-variance trend is computed using lowess. +The tag-wise mean is the mean log2 count with an offset of 0.5, across samples for a given tag. +The tag-wise variance is the quarter-root-variance of normalized log2 counts per million values with an offset of 0.5, across samples for a given tag. +Tags with zero counts across all samples are not included in the lowess fit. Optional normalization is performed using normalizeBetweenArrays. +Using fitted values of log2 counts from a linear model fit by lmFit, variances from the mean-variance trend were interpolated for each observation. +This was carried out by approxfun. Inverse variance weights can be used to correct for mean-variance trend in the count data. + + +Author(s) + +Charity Law and Gordon Smyth + +References + +Law, CW (2013). Precision weights for gene expression analysis. PhD Thesis. University of Melbourne, Australia. + +Law, CW, Chen, Y, Shi, W, Smyth, GK (2013). Voom! Precision weights unlock linear model analysis tools for RNA-seq read counts. +Technical Report 1 May 2013, Bioinformatics Division, Walter and Eliza Hall Institute of Medical Reseach, Melbourne, Australia. +http://www.statsci.org/smyth/pubs/VoomPreprint.pdf + +See Also + +A voom case study is given in the edgeR User's Guide. + +vooma is a similar function but for microarrays instead of RNA-seq. + + ***old rant on changes to Bioconductor package variable names between versions*** The edgeR authors made a small cosmetic change in the name of one important variable (from p.value to PValue)