Mercurial > repos > fubar > differential_count_models
comparison rgedgeRpaired.xml @ 25:c0fa3dde02d9 draft
Uploaded
author | fubar |
---|---|
date | Wed, 07 Aug 2013 02:09:35 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
24:48d71bd383a1 | 25:c0fa3dde02d9 |
---|---|
1 <tool id="rgDifferentialCount" name="Differential_Count" version="0.20"> | |
2 <description>models using BioConductor packages</description> | |
3 <requirements> | |
4 <requirement type="package" version="2.12">biocbasics</requirement> | |
5 <requirement type="package" version="3.0.1">r3</requirement> | |
6 <requirement type="package" version="1.3.18">graphicsmagick</requirement> | |
7 <requirement type="package" version="9.07">ghostscript</requirement> | |
8 </requirements> | |
9 | |
10 <command interpreter="python"> | |
11 rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "DifferentialCounts" | |
12 --output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes" | |
13 </command> | |
14 <inputs> | |
15 <param name="input1" type="data" format="tabular" label="Select an input matrix - rows are contigs, columns are counts for each sample" | |
16 help="Use the HTSeq based count matrix preparation tool to create these matrices from BAM/SAM files and a GTF file of genomic features"/> | |
17 <param name="title" type="text" value="Differential Counts" size="80" label="Title for job outputs" | |
18 help="Supply a meaningful name here to remind you what the outputs contain"> | |
19 <sanitizer invalid_char=""> | |
20 <valid initial="string.letters,string.digits"><add value="_" /> </valid> | |
21 </sanitizer> | |
22 </param> | |
23 <param name="treatment_name" type="text" value="Treatment" size="50" label="Treatment Name"/> | |
24 <param name="Treat_cols" label="Select columns containing treatment." type="data_column" data_ref="input1" numerical="True" | |
25 multiple="true" use_header_names="true" size="120" display="checkboxes"> | |
26 <validator type="no_options" message="Please select at least one column."/> | |
27 </param> | |
28 <param name="control_name" type="text" value="Control" size="50" label="Control Name"/> | |
29 <param name="Control_cols" label="Select columns containing control." type="data_column" data_ref="input1" numerical="True" | |
30 multiple="true" use_header_names="true" size="120" display="checkboxes" optional="true"> | |
31 </param> | |
32 <param name="subjectids" type="text" optional="true" size="120" value = "" | |
33 label="IF SUBJECTS NOT ALL INDEPENDENT! Enter comma separated strings to indicate sample labels for (eg) pairing - must be one for every column in input" | |
34 help="Leave blank if no pairing, but eg if data from sample id A99 is in columns 2,4 and id C21 is in 3,5 then enter 'A99,C21,A99,C21'"> | |
35 <sanitizer> | |
36 <valid initial="string.letters,string.digits"><add value="," /> </valid> | |
37 </sanitizer> | |
38 </param> | |
39 <param name="fQ" type="float" value="0.3" size="5" label="Non-differential contig count quantile threshold - zero to analyze all non-zero read count contigs" | |
40 help="May be a good or a bad idea depending on the biology and the question. EG 0.3 = sparsest 30% of contigs with at least one read are removed before analysis"/> | |
41 <param name="useNDF" type="boolean" truevalue="T" falsevalue="F" checked="false" size="1" | |
42 label="Non differential filter - remove contigs below a threshold (1 per million) for half or more samples" | |
43 help="May be a good or a bad idea depending on the biology and the question. This was the old default. Quantile based is available as an alternative"/> | |
44 | |
45 <conditional name="edgeR"> | |
46 <param name="doedgeR" type="select" | |
47 label="Run this model using edgeR" | |
48 help="edgeR uses a negative binomial model and seems to be powerful, even with few replicates"> | |
49 <option value="F">Do not run edgeR</option> | |
50 <option value="T" selected="true">Run edgeR</option> | |
51 </param> | |
52 <when value="T"> | |
53 <param name="edgeR_priordf" type="integer" value="20" size="3" | |
54 label="prior.df for tagwise dispersion - lower value = more emphasis on each tag's variance. Replaces prior.n and prior.df = prior.n * residual.df" | |
55 help="0 = Use edgeR default. Use a small value to 'smooth' small samples. See edgeR docs and note below"/> | |
56 </when> | |
57 <when value="F"></when> | |
58 </conditional> | |
59 <conditional name="DESeq2"> | |
60 <param name="doDESeq2" type="select" | |
61 label="Run the same model with DESeq2 and compare findings" | |
62 help="DESeq2 is an update to the DESeq package. It uses different assumptions and methods to edgeR"> | |
63 <option value="F" selected="true">Do not run DESeq2</option> | |
64 <option value="T">Run DESeq2</option> | |
65 </param> | |
66 <when value="T"> | |
67 <param name="DESeq_fitType" type="select"> | |
68 <option value="parametric" selected="true">Parametric (default) fit for dispersions</option> | |
69 <option value="local">Local fit - this will automagically be used if parametric fit fails</option> | |
70 <option value="mean">Mean dispersion fit- use this if you really understand what you're doing - read the fine manual linked below in the documentation</option> | |
71 </param> | |
72 </when> | |
73 <when value="F"> </when> | |
74 </conditional> | |
75 <param name="doVoom" type="select" | |
76 label="Run the same model with Voom/limma and compare findings" | |
77 help="Voom uses counts per million and a precise transformation of variance so count data can be analysed using limma"> | |
78 <option value="F" selected="true">Do not run VOOM</option> | |
79 <option value="T">Run VOOM</option> | |
80 </param> | |
81 <!-- | |
82 <conditional name="camera"> | |
83 <param name="doCamera" type="select" label="Run the edgeR implementation of Camera GSEA for up/down gene sets" | |
84 help="If yes, you can choose a set of genesets to test and/or supply a gmt format geneset collection from your history"> | |
85 <option value="F" selected="true">Do not run GSEA tests with the Camera algorithm</option> | |
86 <option value="T">Run GSEA tests with the Camera algorithm</option> | |
87 </param> | |
88 <when value="T"> | |
89 <conditional name="gmtSource"> | |
90 <param name="refgmtSource" type="select" | |
91 label="Use a gene set (.gmt) from your history and/or use a built-in (MSigDB etc) gene set"> | |
92 <option value="indexed" selected="true">Use a built-in gene set</option> | |
93 <option value="history">Use a gene set from my history</option> | |
94 <option value="both">Add a gene set from my history to a built in gene set</option> | |
95 </param> | |
96 <when value="indexed"> | |
97 <param name="builtinGMT" type="select" label="Select a gene set matrix (.gmt) file to use for the analysis"> | |
98 <options from_data_table="gseaGMT_3.1"> | |
99 <filter type="sort_by" column="2" /> | |
100 <validator type="no_options" message="No GMT v3.1 files are available - please install them"/> | |
101 </options> | |
102 </param> | |
103 </when> | |
104 <when value="history"> | |
105 <param name="ownGMT" type="data" format="gmt" label="Select a Gene Set from your history" /> | |
106 </when> | |
107 <when value="both"> | |
108 <param name="ownGMT" type="data" format="gseagmt" label="Select a Gene Set from your history" /> | |
109 <param name="builtinGMT" type="select" label="Select a gene set matrix (.gmt) file to use for the analysis"> | |
110 <options from_data_table="gseaGMT_4"> | |
111 <filter type="sort_by" column="2" /> | |
112 <validator type="no_options" message="No GMT v4 files are available - please fix tool_data_table and loc files"/> | |
113 </options> | |
114 </param> | |
115 </when> | |
116 </conditional> | |
117 </when> | |
118 <when value="F"> | |
119 </when> | |
120 </conditional> | |
121 --> | |
122 <param name="fdrthresh" type="float" value="0.05" size="5" label="P value threshold for FDR filtering for amily wise error rate control" | |
123 help="Conventional default value of 0.05 recommended"/> | |
124 <param name="fdrtype" type="select" label="FDR (Type II error) control method" | |
125 help="Use fdr or bh typically to control for the number of tests in a reliable way"> | |
126 <option value="fdr" selected="true">fdr</option> | |
127 <option value="BH">Benjamini Hochberg</option> | |
128 <option value="BY">Benjamini Yukateli</option> | |
129 <option value="bonferroni">Bonferroni</option> | |
130 <option value="hochberg">Hochberg</option> | |
131 <option value="holm">Holm</option> | |
132 <option value="hommel">Hommel</option> | |
133 <option value="none">no control for multiple tests</option> | |
134 </param> | |
135 </inputs> | |
136 <outputs> | |
137 <data format="tabular" name="out_edgeR" label="${title}_topTable_edgeR.xls"> | |
138 <filter>edgeR['doedgeR'] == "T"</filter> | |
139 </data> | |
140 <data format="tabular" name="out_DESeq2" label="${title}_topTable_DESeq2.xls"> | |
141 <filter>DESeq2['doDESeq2'] == "T"</filter> | |
142 </data> | |
143 <data format="tabular" name="out_VOOM" label="${title}_topTable_VOOM.xls"> | |
144 <filter>doVoom == "T"</filter> | |
145 </data> | |
146 <data format="html" name="html_file" label="${title}.html"/> | |
147 </outputs> | |
148 <stdio> | |
149 <exit_code range="4" level="fatal" description="Number of subject ids must match total number of samples in the input matrix" /> | |
150 </stdio> | |
151 <tests> | |
152 <test> | |
153 <param name='input1' value='test_bams2mx.xls' ftype='tabular' /> | |
154 <param name='treatment_name' value='liver' /> | |
155 <param name='title' value='edgeRtest' /> | |
156 <param name='useNDF' value='' /> | |
157 <param name='doedgeR' value='T' /> | |
158 <param name='doVoom' value='T' /> | |
159 <param name='doDESeq2' value='T' /> | |
160 <param name='fdrtype' value='fdr' /> | |
161 <param name='edgeR_priordf' value="8" /> | |
162 <param name='fdrthresh' value="0.05" /> | |
163 <param name='control_name' value='heart' /> | |
164 <param name='subjectids' value='' /> | |
165 <param name='Control_cols' value='3,4,5,9' /> | |
166 <param name='Treat_cols' value='2,6,7,8' /> | |
167 <output name='out_edgeR' file='edgeRtest1out.xls' compare='diff' /> | |
168 <output name='html_file' file='edgeRtest1out.html' compare='diff' lines_diff='20' /> | |
169 </test> | |
170 </tests> | |
171 | |
172 <configfiles> | |
173 <configfile name="runme"> | |
174 <![CDATA[ | |
175 # | |
176 # edgeR.Rscript | |
177 # updated npv 2011 for R 2.14.0 and edgeR 2.4.0 by ross | |
178 # Performs DGE on a count table containing n replicates of two conditions | |
179 # | |
180 # Parameters | |
181 # | |
182 # 1 - Output Dir | |
183 | |
184 # Original edgeR code by: S.Lunke and A.Kaspi | |
185 reallybig = log10(.Machine\$double.xmax) | |
186 reallysmall = log10(.Machine\$double.xmin) | |
187 library('stringr') | |
188 library('gplots') | |
189 library('edgeR') | |
190 hmap2 = function(cmat,nsamp=100,outpdfname='heatmap2.pdf', TName='Treatment',group=NA,myTitle='title goes here') | |
191 { | |
192 # Perform clustering for significant pvalues after controlling FWER | |
193 samples = colnames(cmat) | |
194 gu = unique(group) | |
195 gn = rownames(cmat) | |
196 if (length(gu) == 2) { | |
197 col.map = function(g) {if (g==gu[1]) "#FF0000" else "#0000FF"} | |
198 pcols = unlist(lapply(group,col.map)) | |
199 } else { | |
200 colours = rainbow(length(gu),start=0,end=4/6) | |
201 pcols = colours[match(group,gu)] } | |
202 dm = cmat[(! is.na(gn)),] | |
203 # remove unlabelled hm rows | |
204 nprobes = nrow(dm) | |
205 # sub = paste('Showing',nprobes,'contigs ranked for evidence of differential abundance') | |
206 if (nprobes > nsamp) { | |
207 dm =dm[1:nsamp,] | |
208 #sub = paste('Showing',nsamp,'contigs ranked for evidence for differential abundance out of',nprobes,'total') | |
209 } | |
210 newcolnames = substr(colnames(dm),1,20) | |
211 colnames(dm) = newcolnames | |
212 pdf(outpdfname) | |
213 heatmap.2(dm,main=myTitle,ColSideColors=pcols,col=topo.colors(100),dendrogram="col",key=T,density.info='none', | |
214 Rowv=F,scale='row',trace='none',margins=c(8,8),cexRow=0.4,cexCol=0.5) | |
215 dev.off() | |
216 } | |
217 | |
218 hmap = function(cmat,nmeans=4,outpdfname="heatMap.pdf",nsamp=250,TName='Treatment',group=NA,myTitle="Title goes here") | |
219 { | |
220 # for 2 groups only was | |
221 #col.map = function(g) {if (g==TName) "#FF0000" else "#0000FF"} | |
222 #pcols = unlist(lapply(group,col.map)) | |
223 gu = unique(group) | |
224 colours = rainbow(length(gu),start=0.3,end=0.6) | |
225 pcols = colours[match(group,gu)] | |
226 nrows = nrow(cmat) | |
227 mtitle = paste(myTitle,'Heatmap: n contigs =',nrows) | |
228 if (nrows > nsamp) { | |
229 cmat = cmat[c(1:nsamp),] | |
230 mtitle = paste('Heatmap: Top ',nsamp,' DE contigs (of ',nrows,')',sep='') | |
231 } | |
232 newcolnames = substr(colnames(cmat),1,20) | |
233 colnames(cmat) = newcolnames | |
234 pdf(outpdfname) | |
235 heatmap(cmat,scale='row',main=mtitle,cexRow=0.3,cexCol=0.4,Rowv=NA,ColSideColors=pcols) | |
236 dev.off() | |
237 } | |
238 | |
239 qqPlot = function(descr='qqplot',pvector, outpdf='qqplot.pdf',...) | |
240 # stolen from https://gist.github.com/703512 | |
241 { | |
242 o = -log10(sort(pvector,decreasing=F)) | |
243 e = -log10( 1:length(o)/length(o) ) | |
244 o[o==-Inf] = reallysmall | |
245 o[o==Inf] = reallybig | |
246 maint = descr | |
247 pdf(outpdf) | |
248 plot(e,o,pch=19,cex=1, main=maint, ..., | |
249 xlab=expression(Expected~~-log[10](italic(p))), | |
250 ylab=expression(Observed~~-log[10](italic(p))), | |
251 xlim=c(0,max(e)), ylim=c(0,max(o))) | |
252 lines(e,e,col="red") | |
253 grid(col = "lightgray", lty = "dotted") | |
254 dev.off() | |
255 } | |
256 | |
257 smearPlot = function(DGEList,deTags, outSmear, outMain) | |
258 { | |
259 pdf(outSmear) | |
260 plotSmear(DGEList,de.tags=deTags,main=outMain) | |
261 grid(col="lightgray", lty="dotted") | |
262 dev.off() | |
263 } | |
264 | |
265 boxPlot = function(rawrs,cleanrs,maint,myTitle,pdfname) | |
266 { # | |
267 nc = ncol(rawrs) | |
268 for (i in c(1:nc)) {rawrs[(rawrs[,i] < 0),i] = NA} | |
269 fullnames = colnames(rawrs) | |
270 newcolnames = substr(colnames(rawrs),1,20) | |
271 colnames(rawrs) = newcolnames | |
272 newcolnames = substr(colnames(cleanrs),1,20) | |
273 colnames(cleanrs) = newcolnames | |
274 defpar = par(no.readonly=T) | |
275 print.noquote('raw contig counts by sample:') | |
276 print.noquote(summary(rawrs)) | |
277 print.noquote('normalised contig counts by sample:') | |
278 print.noquote(summary(cleanrs)) | |
279 pdf(pdfname) | |
280 par(mfrow=c(1,2)) | |
281 boxplot(rawrs,varwidth=T,notch=T,ylab='log contig count',col="maroon",las=3,cex.axis=0.35,main=paste('Raw:',maint)) | |
282 grid(col="lightgray",lty="dotted") | |
283 boxplot(cleanrs,varwidth=T,notch=T,ylab='log contig count',col="maroon",las=3,cex.axis=0.35,main=paste('After ',maint)) | |
284 grid(col="lightgray",lty="dotted") | |
285 dev.off() | |
286 pdfname = "sample_counts_histogram.pdf" | |
287 nc = ncol(rawrs) | |
288 print.noquote(paste('Using ncol rawrs=',nc)) | |
289 ncroot = round(sqrt(nc)) | |
290 if (ncroot*ncroot < nc) { ncroot = ncroot + 1 } | |
291 m = c() | |
292 for (i in c(1:nc)) { | |
293 rhist = hist(rawrs[,i],breaks=100,plot=F) | |
294 m = append(m,max(rhist\$counts)) | |
295 } | |
296 ymax = max(m) | |
297 ncols = length(fullnames) | |
298 if (ncols > 20) | |
299 { | |
300 scale = 7*ncols/20 | |
301 pdf(pdfname,width=scale,height=scale) | |
302 } else { | |
303 pdf(pdfname) | |
304 } | |
305 par(mfrow=c(ncroot,ncroot)) | |
306 for (i in c(1:nc)) { | |
307 hist(rawrs[,i], main=paste("Contig logcount",i), xlab='log raw count', col="maroon", | |
308 breaks=100,sub=fullnames[i],cex=0.8,ylim=c(0,ymax)) | |
309 } | |
310 dev.off() | |
311 par(defpar) | |
312 | |
313 } | |
314 | |
315 cumPlot = function(rawrs,cleanrs,maint,myTitle) | |
316 { # updated to use ecdf | |
317 pdfname = "Filtering_rowsum_bar_charts.pdf" | |
318 defpar = par(no.readonly=T) | |
319 lrs = log(rawrs,10) | |
320 lim = max(lrs) | |
321 pdf(pdfname) | |
322 par(mfrow=c(2,1)) | |
323 hist(lrs,breaks=100,main=paste('Before:',maint),xlab="# Reads (log)", | |
324 ylab="Count",col="maroon",sub=myTitle, xlim=c(0,lim),las=1) | |
325 grid(col="lightgray", lty="dotted") | |
326 lrs = log(cleanrs,10) | |
327 hist(lrs,breaks=100,main=paste('After:',maint),xlab="# Reads (log)", | |
328 ylab="Count",col="maroon",sub=myTitle,xlim=c(0,lim),las=1) | |
329 grid(col="lightgray", lty="dotted") | |
330 dev.off() | |
331 par(defpar) | |
332 } | |
333 | |
334 cumPlot1 = function(rawrs,cleanrs,maint,myTitle) | |
335 { # updated to use ecdf | |
336 pdfname = paste(gsub(" ","", myTitle , fixed=TRUE),"RowsumCum.pdf",sep='_') | |
337 pdf(pdfname) | |
338 par(mfrow=c(2,1)) | |
339 lastx = max(rawrs) | |
340 rawe = knots(ecdf(rawrs)) | |
341 cleane = knots(ecdf(cleanrs)) | |
342 cy = 1:length(cleane)/length(cleane) | |
343 ry = 1:length(rawe)/length(rawe) | |
344 plot(rawe,ry,type='l',main=paste('Before',maint),xlab="Log Contig Total Reads", | |
345 ylab="Cumulative proportion",col="maroon",log='x',xlim=c(1,lastx),sub=myTitle) | |
346 grid(col="blue") | |
347 plot(cleane,cy,type='l',main=paste('After',maint),xlab="Log Contig Total Reads", | |
348 ylab="Cumulative proportion",col="maroon",log='x',xlim=c(1,lastx),sub=myTitle) | |
349 grid(col="blue") | |
350 dev.off() | |
351 } | |
352 | |
353 | |
354 | |
355 doGSEAold = function(y=NULL,design=NULL,histgmt="", | |
356 bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt", | |
357 ntest=0, myTitle="myTitle", outfname="GSEA.xls", minnin=5, maxnin=2000,fdrthresh=0.05,fdrtype="BH") | |
358 { | |
359 sink('Camera.log') | |
360 genesets = c() | |
361 if (bigmt > "") | |
362 { | |
363 bigenesets = readLines(bigmt) | |
364 genesets = bigenesets | |
365 } | |
366 if (histgmt > "") | |
367 { | |
368 hgenesets = readLines(histgmt) | |
369 if (bigmt > "") { | |
370 genesets = rbind(genesets,hgenesets) | |
371 } else { | |
372 genesets = hgenesets | |
373 } # use only history if no bi | |
374 } | |
375 print.noquote(paste("@@@read",length(genesets), 'genesets from',histgmt,bigmt)) | |
376 genesets = strsplit(genesets,'\t') # tabular. genesetid\tURLorwhatever\tgene_1\t..\tgene_n | |
377 outf = outfname | |
378 head=paste(myTitle,'edgeR GSEA') | |
379 write(head,file=outfname,append=F) | |
380 ntest=length(genesets) | |
381 urownames = toupper(rownames(y)) | |
382 upcam = c() | |
383 downcam = c() | |
384 for (i in 1:ntest) { | |
385 gs = unlist(genesets[i]) | |
386 g = gs[1] # geneset_id | |
387 u = gs[2] | |
388 if (u > "") { u = paste("<a href=\'",u,"\'>",u,"</a>",sep="") } | |
389 glist = gs[3:length(gs)] # member gene symbols | |
390 glist = toupper(glist) | |
391 inglist = urownames %in% glist | |
392 nin = sum(inglist) | |
393 if ((nin > minnin) && (nin < maxnin)) { | |
394 ### print(paste('@@found',sum(inglist),'genes in glist')) | |
395 camres = camera(y=y,index=inglist,design=design) | |
396 if (! is.null(camres)) { | |
397 rownames(camres) = g # gene set name | |
398 camres = cbind(GeneSet=g,URL=u,camres) | |
399 if (camres\$Direction == "Up") | |
400 { | |
401 upcam = rbind(upcam,camres) } else { | |
402 downcam = rbind(downcam,camres) | |
403 } | |
404 } | |
405 } | |
406 } | |
407 uscam = upcam[order(upcam\$PValue),] | |
408 unadjp = uscam\$PValue | |
409 uscam\$adjPValue = p.adjust(unadjp,method=fdrtype) | |
410 nup = max(10,sum((uscam\$adjPValue < fdrthresh))) | |
411 dscam = downcam[order(downcam\$PValue),] | |
412 unadjp = dscam\$PValue | |
413 dscam\$adjPValue = p.adjust(unadjp,method=fdrtype) | |
414 ndown = max(10,sum((dscam\$adjPValue < fdrthresh))) | |
415 write.table(uscam,file=paste('camera_up',outfname,sep='_'),quote=F,sep='\t',row.names=F) | |
416 write.table(dscam,file=paste('camera_down',outfname,sep='_'),quote=F,sep='\t',row.names=F) | |
417 print.noquote(paste('@@@@@ Camera up top',nup,'gene sets:')) | |
418 write.table(head(uscam,nup),file="",quote=F,sep='\t',row.names=F) | |
419 print.noquote(paste('@@@@@ Camera down top',ndown,'gene sets:')) | |
420 write.table(head(dscam,ndown),file="",quote=F,sep='\t',row.names=F) | |
421 sink() | |
422 } | |
423 | |
424 | |
425 | |
426 | |
427 doGSEA = function(y=NULL,design=NULL,histgmt="", | |
428 bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt", | |
429 ntest=0, myTitle="myTitle", outfname="GSEA.xls", minnin=5, maxnin=2000,fdrthresh=0.05,fdrtype="BH") | |
430 { | |
431 sink('Camera.log') | |
432 genesets = c() | |
433 if (bigmt > "") | |
434 { | |
435 bigenesets = readLines(bigmt) | |
436 genesets = bigenesets | |
437 } | |
438 if (histgmt > "") | |
439 { | |
440 hgenesets = readLines(histgmt) | |
441 if (bigmt > "") { | |
442 genesets = rbind(genesets,hgenesets) | |
443 } else { | |
444 genesets = hgenesets | |
445 } # use only history if no bi | |
446 } | |
447 print.noquote(paste("@@@read",length(genesets), 'genesets from',histgmt,bigmt)) | |
448 genesets = strsplit(genesets,'\t') # tabular. genesetid\tURLorwhatever\tgene_1\t..\tgene_n | |
449 outf = outfname | |
450 head=paste(myTitle,'edgeR GSEA') | |
451 write(head,file=outfname,append=F) | |
452 ntest=length(genesets) | |
453 urownames = toupper(rownames(y)) | |
454 upcam = c() | |
455 downcam = c() | |
456 incam = c() | |
457 urls = c() | |
458 gsids = c() | |
459 for (i in 1:ntest) { | |
460 gs = unlist(genesets[i]) | |
461 gsid = gs[1] # geneset_id | |
462 url = gs[2] | |
463 if (url > "") { url = paste("<a href=\'",url,"\'>",url,"</a>",sep="") } | |
464 glist = gs[3:length(gs)] # member gene symbols | |
465 glist = toupper(glist) | |
466 inglist = urownames %in% glist | |
467 nin = sum(inglist) | |
468 if ((nin > minnin) && (nin < maxnin)) { | |
469 incam = c(incam,inglist) | |
470 gsids = c(gsids,gsid) | |
471 urls = c(urls,url) | |
472 } | |
473 } | |
474 incam = as.list(incam) | |
475 names(incam) = gsids | |
476 allcam = camera(y=y,index=incam,design=design) | |
477 allcamres = cbind(geneset=gsids,allcam,URL=urls) | |
478 for (i in 1:ntest) { | |
479 camres = allcamres[i] | |
480 res = try(test = (camres\$Direction == "Up")) | |
481 if ("try-error" %in% class(res)) { | |
482 cat("test failed, camres = :") | |
483 print.noquote(camres) | |
484 } else { if (camres\$Direction == "Up") | |
485 { upcam = rbind(upcam,camres) | |
486 } else { downcam = rbind(downcam,camres) | |
487 } | |
488 | |
489 } | |
490 } | |
491 uscam = upcam[order(upcam\$PValue),] | |
492 unadjp = uscam\$PValue | |
493 uscam\$adjPValue = p.adjust(unadjp,method=fdrtype) | |
494 nup = max(10,sum((uscam\$adjPValue < fdrthresh))) | |
495 dscam = downcam[order(downcam\$PValue),] | |
496 unadjp = dscam\$PValue | |
497 dscam\$adjPValue = p.adjust(unadjp,method=fdrtype) | |
498 ndown = max(10,sum((dscam\$adjPValue < fdrthresh))) | |
499 write.table(uscam,file=paste('camera_up',outfname,sep='_'),quote=F,sep='\t',row.names=F) | |
500 write.table(dscam,file=paste('camera_down',outfname,sep='_'),quote=F,sep='\t',row.names=F) | |
501 print.noquote(paste('@@@@@ Camera up top',nup,'gene sets:')) | |
502 write.table(head(uscam,nup),file="",quote=F,sep='\t',row.names=F) | |
503 print.noquote(paste('@@@@@ Camera down top',ndown,'gene sets:')) | |
504 write.table(head(dscam,ndown),file="",quote=F,sep='\t',row.names=F) | |
505 sink() | |
506 } | |
507 | |
508 | |
509 edgeIt = function (Count_Matrix=c(),group=c(),out_edgeR=F,out_VOOM=F,out_DESeq2=F,fdrtype='fdr',priordf=5, | |
510 fdrthresh=0.05,outputdir='.', myTitle='Differential Counts',libSize=c(),useNDF=F, | |
511 filterquantile=0.2, subjects=c(),mydesign=NULL, | |
512 doDESeq2=T,doVoom=T,doCamera=T,doedgeR=T,org='hg19', | |
513 histgmt="", bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt", | |
514 doCook=F,DESeq_fitType="parameteric") | |
515 { | |
516 # Error handling | |
517 if (length(unique(group))!=2){ | |
518 print("Number of conditions identified in experiment does not equal 2") | |
519 q() | |
520 } | |
521 require(edgeR) | |
522 options(width = 512) | |
523 mt = paste(unlist(strsplit(myTitle,'_')),collapse=" ") | |
524 allN = nrow(Count_Matrix) | |
525 nscut = round(ncol(Count_Matrix)/2) | |
526 colTotmillionreads = colSums(Count_Matrix)/1e6 | |
527 counts.dataframe = as.data.frame(c()) | |
528 rawrs = rowSums(Count_Matrix) | |
529 nonzerod = Count_Matrix[(rawrs > 0),] # remove all zero count genes | |
530 nzN = nrow(nonzerod) | |
531 nzrs = rowSums(nonzerod) | |
532 zN = allN - nzN | |
533 print('# Quantiles for non-zero row counts:',quote=F) | |
534 print(quantile(nzrs,probs=seq(0,1,0.1)),quote=F) | |
535 if (useNDF == T) | |
536 { | |
537 gt1rpin3 = rowSums(Count_Matrix/expandAsMatrix(colTotmillionreads,dim(Count_Matrix)) >= 1) >= nscut | |
538 lo = colSums(Count_Matrix[!gt1rpin3,]) | |
539 workCM = Count_Matrix[gt1rpin3,] | |
540 cleanrs = rowSums(workCM) | |
541 cleanN = length(cleanrs) | |
542 meth = paste( "After removing",length(lo),"contigs with fewer than ",nscut," sample read counts >= 1 per million, there are",sep="") | |
543 print(paste("Read",allN,"contigs. Removed",zN,"contigs with no reads.",meth,cleanN,"contigs"),quote=F) | |
544 maint = paste('Filter >=1/million reads in >=',nscut,'samples') | |
545 } else { | |
546 useme = (nzrs > quantile(nzrs,filterquantile)) | |
547 workCM = nonzerod[useme,] | |
548 lo = colSums(nonzerod[!useme,]) | |
549 cleanrs = rowSums(workCM) | |
550 cleanN = length(cleanrs) | |
551 meth = paste("After filtering at count quantile =",filterquantile,", there are",sep="") | |
552 print(paste('Read',allN,"contigs. Removed",zN,"with no reads.",meth,cleanN,"contigs"),quote=F) | |
553 maint = paste('Filter below',filterquantile,'quantile') | |
554 } | |
555 cumPlot(rawrs=rawrs,cleanrs=cleanrs,maint=maint,myTitle=myTitle) | |
556 allgenes = rownames(workCM) | |
557 reg = "^chr([0-9]+):([0-9]+)-([0-9]+)" | |
558 genecards="<a href=\'http://www.genecards.org/index.php?path=/Search/keyword/" | |
559 ucsc = paste("<a href=\'http://genome.ucsc.edu/cgi-bin/hgTracks?db=",org,sep='') | |
560 testreg = str_match(allgenes,reg) | |
561 if (sum(!is.na(testreg[,1]))/length(testreg[,1]) > 0.8) # is ucsc style string | |
562 { | |
563 print("@@ using ucsc substitution for urls") | |
564 contigurls = paste0(ucsc,"&position=chr",testreg[,2],":",testreg[,3],"-",testreg[,4],"\'>",allgenes,"</a>") | |
565 } else { | |
566 print("@@ using genecards substitution for urls") | |
567 contigurls = paste0(genecards,allgenes,"\'>",allgenes,"</a>") | |
568 } | |
569 print.noquote("# urls") | |
570 print.noquote(head(contigurls)) | |
571 print(paste("# Total low count contigs per sample = ",paste(lo,collapse=',')),quote=F) | |
572 cmrowsums = rowSums(workCM) | |
573 TName=unique(group)[1] | |
574 CName=unique(group)[2] | |
575 if (is.null(mydesign)) { | |
576 if (length(subjects) == 0) | |
577 { | |
578 mydesign = model.matrix(~group) | |
579 } | |
580 else { | |
581 subjf = factor(subjects) | |
582 mydesign = model.matrix(~subjf+group) # we block on subject so make group last to simplify finding it | |
583 } | |
584 } | |
585 print.noquote(paste('Using samples:',paste(colnames(workCM),collapse=','))) | |
586 print.noquote('Using design matrix:') | |
587 print.noquote(mydesign) | |
588 if (doedgeR) { | |
589 sink('edgeR.log') | |
590 #### Setup DGEList object | |
591 DGEList = DGEList(counts=workCM, group = group) | |
592 DGEList = calcNormFactors(DGEList) | |
593 | |
594 DGEList = estimateGLMCommonDisp(DGEList,mydesign) | |
595 comdisp = DGEList\$common.dispersion | |
596 DGEList = estimateGLMTrendedDisp(DGEList,mydesign) | |
597 if (edgeR_priordf > 0) { | |
598 print.noquote(paste("prior.df =",edgeR_priordf)) | |
599 DGEList = estimateGLMTagwiseDisp(DGEList,mydesign,prior.df = edgeR_priordf) | |
600 } else { | |
601 DGEList = estimateGLMTagwiseDisp(DGEList,mydesign) | |
602 } | |
603 DGLM = glmFit(DGEList,design=mydesign) | |
604 DE = glmLRT(DGLM,coef=ncol(DGLM\$design)) # always last one - subject is first if needed | |
605 efflib = DGEList\$samples\$lib.size*DGEList\$samples\$norm.factors | |
606 normData = (1e+06*DGEList\$counts/efflib) | |
607 uoutput = cbind( | |
608 Name=as.character(rownames(DGEList\$counts)), | |
609 DE\$table, | |
610 adj.p.value=p.adjust(DE\$table\$PValue, method=fdrtype), | |
611 Dispersion=DGEList\$tagwise.dispersion,totreads=cmrowsums,normData, | |
612 DGEList\$counts | |
613 ) | |
614 soutput = uoutput[order(DE\$table\$PValue),] # sorted into p value order - for quick toptable | |
615 goodness = gof(DGLM, pcutoff=fdrthresh) | |
616 if (sum(goodness\$outlier) > 0) { | |
617 print.noquote('GLM outliers:') | |
618 print(paste(rownames(DGLM)[(goodness\$outlier)],collapse=','),quote=F) | |
619 } else { | |
620 print('No GLM fit outlier genes found\n') | |
621 } | |
622 z = limma::zscoreGamma(goodness\$gof.statistic, shape=goodness\$df/2, scale=2) | |
623 pdf("edgeR_GoodnessofFit.pdf") | |
624 qq = qqnorm(z, panel.first=grid(), main="tagwise dispersion") | |
625 abline(0,1,lwd=3) | |
626 points(qq\$x[goodness\$outlier],qq\$y[goodness\$outlier], pch=16, col="maroon") | |
627 dev.off() | |
628 estpriorn = getPriorN(DGEList) | |
629 print(paste("Common Dispersion =",comdisp,"CV = ",sqrt(comdisp),"getPriorN = ",estpriorn),quote=F) | |
630 efflib = DGEList\$samples\$lib.size*DGEList\$samples\$norm.factors | |
631 normData = (1e+06*DGEList\$counts/efflib) | |
632 uniqueg = unique(group) | |
633 #### Plot MDS | |
634 sample_colors = match(group,levels(group)) | |
635 sampleTypes = levels(factor(group)) | |
636 print.noquote(sampleTypes) | |
637 pdf("edgeR_MDSplot.pdf") | |
638 plotMDS.DGEList(DGEList,main=paste("edgeR MDS for",myTitle),cex=0.5,col=sample_colors,pch=sample_colors) | |
639 legend(x="topleft", legend = sampleTypes,col=c(1:length(sampleTypes)), pch=19) | |
640 grid(col="blue") | |
641 dev.off() | |
642 colnames(normData) = paste( colnames(normData),'N',sep="_") | |
643 print(paste('Raw sample read totals',paste(colSums(nonzerod,na.rm=T),collapse=','))) | |
644 nzd = data.frame(log(nonzerod + 1e-2,10)) | |
645 try( boxPlot(rawrs=nzd,cleanrs=log(normData,10),maint='TMM Normalisation',myTitle=myTitle,pdfname="edgeR_raw_norm_counts_box.pdf") ) | |
646 write.table(soutput,file=out_edgeR, quote=FALSE, sep="\t",row.names=F) | |
647 tt = cbind( | |
648 Name=as.character(rownames(DGEList\$counts)), | |
649 DE\$table, | |
650 adj.p.value=p.adjust(DE\$table\$PValue, method=fdrtype), | |
651 Dispersion=DGEList\$tagwise.dispersion,totreads=cmrowsums | |
652 ) | |
653 print.noquote("# edgeR Top tags\n") | |
654 tt = cbind(tt,URL=contigurls) # add to end so table isn't laid out strangely | |
655 tt = tt[order(DE\$table\$PValue),] | |
656 print.noquote(tt[1:50,]) | |
657 deTags = rownames(uoutput[uoutput\$adj.p.value < fdrthresh,]) | |
658 nsig = length(deTags) | |
659 print(paste('#',nsig,'tags significant at adj p=',fdrthresh),quote=F) | |
660 deColours = ifelse(deTags,'red','black') | |
661 pdf("edgeR_BCV_vs_abundance.pdf") | |
662 plotBCV(DGEList, cex=0.3, main="Biological CV vs abundance") | |
663 dev.off() | |
664 dg = DGEList[order(DE\$table\$PValue),] | |
665 #normData = (1e+06 * dg\$counts/expandAsMatrix(dg\$samples\$lib.size, dim(dg))) | |
666 efflib = dg\$samples\$lib.size*dg\$samples\$norm.factors | |
667 normData = (1e+06*dg\$counts/efflib) | |
668 outpdfname="edgeR_top_100_heatmap.pdf" | |
669 hmap2(normData,nsamp=100,TName=TName,group=group,outpdfname=outpdfname,myTitle=paste('edgeR Heatmap',myTitle)) | |
670 outSmear = "edgeR_smearplot.pdf" | |
671 outMain = paste("Smear Plot for ",TName,' Vs ',CName,' (FDR@',fdrthresh,' N = ',nsig,')',sep='') | |
672 smearPlot(DGEList=DGEList,deTags=deTags, outSmear=outSmear, outMain = outMain) | |
673 qqPlot(descr=paste(myTitle,'edgeR adj p QQ plot'),pvector=tt\$adj.p.value,outpdf='edgeR_qqplot.pdf') | |
674 norm.factor = DGEList\$samples\$norm.factors | |
675 topresults.edgeR = soutput[which(soutput\$adj.p.value < fdrthresh), ] | |
676 edgeRcountsindex = which(allgenes %in% rownames(topresults.edgeR)) | |
677 edgeRcounts = rep(0, length(allgenes)) | |
678 edgeRcounts[edgeRcountsindex] = 1 # Create venn diagram of hits | |
679 sink() | |
680 } ### doedgeR | |
681 if (doDESeq2 == T) | |
682 { | |
683 sink("DESeq2.log") | |
684 # DESeq2 | |
685 require('DESeq2') | |
686 library('RColorBrewer') | |
687 if (length(subjects) == 0) | |
688 { | |
689 pdata = data.frame(Name=colnames(workCM),Rx=group,row.names=colnames(workCM)) | |
690 deSEQds = DESeqDataSetFromMatrix(countData = workCM, colData = pdata, design = formula(~ Rx)) | |
691 } else { | |
692 pdata = data.frame(Name=colnames(workCM),Rx=group,subjects=subjects,row.names=colnames(workCM)) | |
693 deSEQds = DESeqDataSetFromMatrix(countData = workCM, colData = pdata, design = formula(~ subjects + Rx)) | |
694 } | |
695 #DESeq2 = DESeq(deSEQds,fitType='local',pAdjustMethod=fdrtype) | |
696 #rDESeq = results(DESeq2) | |
697 #newCountDataSet(workCM, group) | |
698 deSeqDatsizefac = estimateSizeFactors(deSEQds) | |
699 deSeqDatdisp = estimateDispersions(deSeqDatsizefac,fitType=DESeq_fitType) | |
700 resDESeq = nbinomWaldTest(deSeqDatdisp, pAdjustMethod=fdrtype) | |
701 rDESeq = as.data.frame(results(resDESeq)) | |
702 rDESeq = cbind(Contig=rownames(workCM),rDESeq,NReads=cmrowsums,URL=contigurls) | |
703 srDESeq = rDESeq[order(rDESeq\$pvalue),] | |
704 qqPlot(descr=paste(myTitle,'DESeq2 adj p qq plot'),pvector=rDESeq\$padj,outpdf='DESeq2_qqplot.pdf') | |
705 cat("# DESeq top 50\n") | |
706 print.noquote(srDESeq[1:50,]) | |
707 write.table(srDESeq,file=out_DESeq2, quote=FALSE, sep="\t",row.names=F) | |
708 topresults.DESeq = rDESeq[which(rDESeq\$padj < fdrthresh), ] | |
709 DESeqcountsindex = which(allgenes %in% rownames(topresults.DESeq)) | |
710 DESeqcounts = rep(0, length(allgenes)) | |
711 DESeqcounts[DESeqcountsindex] = 1 | |
712 pdf("DESeq2_dispersion_estimates.pdf") | |
713 plotDispEsts(resDESeq) | |
714 dev.off() | |
715 ysmall = abs(min(rDESeq\$log2FoldChange)) | |
716 ybig = abs(max(rDESeq\$log2FoldChange)) | |
717 ylimit = min(4,ysmall,ybig) | |
718 pdf("DESeq2_MA_plot.pdf") | |
719 plotMA(resDESeq,main=paste(myTitle,"DESeq2 MA plot"),ylim=c(-ylimit,ylimit)) | |
720 dev.off() | |
721 rlogres = rlogTransformation(resDESeq) | |
722 sampledists = dist( t( assay(rlogres) ) ) | |
723 sdmat = as.matrix(sampledists) | |
724 pdf("DESeq2_sample_distance_plot.pdf") | |
725 heatmap.2(sdmat,trace="none",main=paste(myTitle,"DESeq2 sample distances"), | |
726 col = colorRampPalette( rev(brewer.pal(9, "RdBu")) )(255)) | |
727 dev.off() | |
728 ###outpdfname="DESeq2_top50_heatmap.pdf" | |
729 ###hmap2(sresDESeq,nsamp=50,TName=TName,group=group,outpdfname=outpdfname,myTitle=paste('DESeq2 vst rlog Heatmap',myTitle)) | |
730 sink() | |
731 result = try( (ppca = plotPCA( varianceStabilizingTransformation(deSeqDatdisp,blind=T), intgroup=c("Rx","Name")) ) ) | |
732 if ("try-error" %in% class(result)) { | |
733 print.noquote('DESeq2 plotPCA failed.') | |
734 } else { | |
735 pdf("DESeq2_PCA_plot.pdf") | |
736 #### wtf - print? Seems needed to get this to work | |
737 print(ppca) | |
738 dev.off() | |
739 } | |
740 } | |
741 | |
742 if (doVoom == T) { | |
743 sink('VOOM.log') | |
744 if (doedgeR == F) { | |
745 #### Setup DGEList object | |
746 DGEList = DGEList(counts=workCM, group = group) | |
747 DGEList = calcNormFactors(DGEList) | |
748 DGEList = estimateGLMCommonDisp(DGEList,mydesign) | |
749 DGEList = estimateGLMTrendedDisp(DGEList,mydesign) | |
750 DGEList = estimateGLMTagwiseDisp(DGEList,mydesign) | |
751 DGEList = estimateGLMTagwiseDisp(DGEList,mydesign) | |
752 norm.factor = DGEList\$samples\$norm.factors | |
753 } | |
754 pdf("VOOM_mean_variance_plot.pdf") | |
755 dat.voomed = voom(DGEList, mydesign, plot = TRUE, lib.size = colSums(workCM) * norm.factor) | |
756 dev.off() | |
757 # Use limma to fit data | |
758 fit = lmFit(dat.voomed, mydesign) | |
759 fit = eBayes(fit) | |
760 rvoom = topTable(fit, coef = length(colnames(mydesign)), adj = fdrtype, n = Inf, sort="none") | |
761 qqPlot(descr=paste(myTitle,'VOOM-limma adj p QQ plot'),pvector=rvoom\$adj.P.Val,outpdf='VOOM_qqplot.pdf') | |
762 rownames(rvoom) = rownames(workCM) | |
763 rvoom = cbind(rvoom,NReads=cmrowsums,URL=contigurls) | |
764 srvoom = rvoom[order(rvoom\$P.Value),] | |
765 cat("# VOOM top 50\n") | |
766 print(srvoom[1:50,]) | |
767 write.table(srvoom,file=out_VOOM, quote=FALSE, sep="\t",row.names=F) | |
768 # Use an FDR cutoff to find interesting samples for edgeR, DESeq and voom/limma | |
769 topresults.voom = rvoom[which(rvoom\$adj.P.Val < fdrthresh), ] | |
770 voomcountsindex = which(allgenes %in% topresults.voom\$ID) | |
771 voomcounts = rep(0, length(allgenes)) | |
772 voomcounts[voomcountsindex] = 1 | |
773 sink() | |
774 } | |
775 | |
776 if (doCamera) { | |
777 doGSEA(y=DGEList,design=mydesign,histgmt=histgmt,bigmt=bigmt,ntest=20,myTitle=myTitle, | |
778 outfname=paste(mt,"GSEA.xls",sep="_"),fdrthresh=fdrthresh,fdrtype=fdrtype) | |
779 } | |
780 | |
781 if ((doDESeq2==T) || (doVoom==T) || (doedgeR==T)) { | |
782 if ((doVoom==T) && (doDESeq2==T) && (doedgeR==T)) { | |
783 vennmain = paste(mt,'Voom,edgeR and DESeq2 overlap at FDR=',fdrthresh) | |
784 counts.dataframe = data.frame(edgeR = edgeRcounts, DESeq2 = DESeqcounts, | |
785 VOOM_limma = voomcounts, row.names = allgenes) | |
786 } else if ((doDESeq2==T) && (doedgeR==T)) { | |
787 vennmain = paste(mt,'DESeq2 and edgeR overlap at FDR=',fdrthresh) | |
788 counts.dataframe = data.frame(edgeR = edgeRcounts, DESeq2 = DESeqcounts, row.names = allgenes) | |
789 } else if ((doVoom==T) && (doedgeR==T)) { | |
790 vennmain = paste(mt,'Voom and edgeR overlap at FDR=',fdrthresh) | |
791 counts.dataframe = data.frame(edgeR = edgeRcounts, VOOM_limma = voomcounts, row.names = allgenes) | |
792 } | |
793 | |
794 if (nrow(counts.dataframe > 1)) { | |
795 counts.venn = vennCounts(counts.dataframe) | |
796 vennf = "Venn_significant_genes_overlap.pdf" | |
797 pdf(vennf) | |
798 vennDiagram(counts.venn,main=vennmain,col="maroon") | |
799 dev.off() | |
800 } | |
801 } #### doDESeq2 or doVoom | |
802 | |
803 } | |
804 #### Done | |
805 | |
806 ###sink(stdout(),append=T,type="message") | |
807 builtin_gmt = "" | |
808 history_gmt = "" | |
809 history_gmt_name = "" | |
810 out_edgeR = F | |
811 out_DESeq2 = F | |
812 out_VOOM = "$out_VOOM" | |
813 doDESeq2 = $DESeq2.doDESeq2 # make these T or F | |
814 doVoom = $doVoom | |
815 doCamera = F | |
816 doedgeR = $edgeR.doedgeR | |
817 edgeR_priordf = 0 | |
818 | |
819 | |
820 #if $doVoom == "T": | |
821 out_VOOM = "$out_VOOM" | |
822 #end if | |
823 | |
824 #if $DESeq2.doDESeq2 == "T": | |
825 out_DESeq2 = "$out_DESeq2" | |
826 DESeq_fitType = "$DESeq2.DESeq_fitType" | |
827 #end if | |
828 | |
829 #if $edgeR.doedgeR == "T": | |
830 out_edgeR = "$out_edgeR" | |
831 edgeR_priordf = $edgeR.edgeR_priordf | |
832 #end if | |
833 | |
834 <!-- | |
835 #if $camera.doCamera == 'T' | |
836 doCamera = $camera.doCamera | |
837 #if $camera.gmtSource.refgmtSource == "indexed" or $camera.gmtSource.refgmtSource == "both": | |
838 builtin_gmt = "${camera.gmtSource.builtinGMT.fields.path}" | |
839 #end if | |
840 #if $camera.gmtSource.refgmtSource == "history" or $camera.gmtSource.refgmtSource == "both": | |
841 history_gmt = "${camera.gmtSource.ownGMT}" | |
842 history_gmt_name = "${camera.gmtSource.ownGMT.name}" | |
843 #end if | |
844 #end if | |
845 --> | |
846 | |
847 if (sum(c(doedgeR,doVoom,doDESeq2)) == 0) | |
848 { | |
849 write("No methods chosen - nothing to do! Please try again after choosing one or more methods", stderr()) | |
850 quit(save="no",status=2) | |
851 } | |
852 | |
853 Out_Dir = "$html_file.files_path" | |
854 Input = "$input1" | |
855 TreatmentName = "$treatment_name" | |
856 TreatmentCols = "$Treat_cols" | |
857 ControlName = "$control_name" | |
858 ControlCols= "$Control_cols" | |
859 org = "$input1.dbkey" | |
860 if (org == "") { org = "hg19"} | |
861 fdrtype = "$fdrtype" | |
862 fdrthresh = $fdrthresh | |
863 useNDF = $useNDF | |
864 fQ = $fQ # non-differential centile cutoff | |
865 myTitle = "$title" | |
866 sids = strsplit("$subjectids",',') | |
867 subjects = unlist(sids) | |
868 nsubj = length(subjects) | |
869 TCols = as.numeric(strsplit(TreatmentCols,",")[[1]])-1 | |
870 CCols = as.numeric(strsplit(ControlCols,",")[[1]])-1 | |
871 cat('Got TCols=') | |
872 cat(TCols) | |
873 cat('; CCols=') | |
874 cat(CCols) | |
875 cat('\n') | |
876 useCols = c(TCols,CCols) | |
877 if (file.exists(Out_Dir) == F) dir.create(Out_Dir) | |
878 Count_Matrix = read.table(Input,header=T,row.names=1,sep='\t') #Load tab file assume header | |
879 snames = colnames(Count_Matrix) | |
880 nsamples = length(snames) | |
881 if (nsubj > 0 & nsubj != nsamples) { | |
882 options("show.error.messages"=T) | |
883 mess = paste('Fatal error: Supplied subject id list',paste(subjects,collapse=','), | |
884 'has length',nsubj,'but there are',nsamples,'samples',paste(snames,collapse=',')) | |
885 write(mess, stderr()) | |
886 quit(save="no",status=4) | |
887 } | |
888 if (length(subjects) != 0) {subjects = subjects[useCols]} | |
889 Count_Matrix = Count_Matrix[,useCols] ### reorder columns | |
890 rn = rownames(Count_Matrix) | |
891 islib = rn %in% c('librarySize','NotInBedRegions') | |
892 LibSizes = Count_Matrix[subset(rn,islib),][1] # take first | |
893 Count_Matrix = Count_Matrix[subset(rn,! islib),] | |
894 group = c(rep(TreatmentName,length(TCols)), rep(ControlName,length(CCols)) ) #Build a group descriptor | |
895 group = factor(group, levels=c(ControlName,TreatmentName)) | |
896 colnames(Count_Matrix) = paste(group,colnames(Count_Matrix),sep="_") #Relable columns | |
897 results = edgeIt(Count_Matrix=Count_Matrix,group=group, out_edgeR=out_edgeR, out_VOOM=out_VOOM, out_DESeq2=out_DESeq2, | |
898 fdrtype='BH',mydesign=NULL,priordf=edgeR_priordf,fdrthresh=fdrthresh,outputdir='.', | |
899 myTitle=myTitle,useNDF=F,libSize=c(),filterquantile=fQ,subjects=subjects, | |
900 doDESeq2=doDESeq2,doVoom=doVoom,doCamera=doCamera,doedgeR=doedgeR,org=org, | |
901 histgmt=history_gmt,bigmt=builtin_gmt,DESeq_fitType=DESeq_fitType) | |
902 sessionInfo() | |
903 ]]> | |
904 </configfile> | |
905 </configfiles> | |
906 <help> | |
907 | |
908 **What it does** | |
909 | |
910 Allows short read sequence counts from controlled experiments to be analysed for differentially expressed genes. | |
911 Optionally adds a term for subject if not all samples are independent or if some other factor needs to be blocked in the design. | |
912 | |
913 **Input** | |
914 | |
915 Requires a count matrix as a tabular file. These are best made using the companion HTSeq_ based counter Galaxy wrapper | |
916 and your fave gene model to generate inputs. Each row is a genomic feature (gene or exon eg) and each column the | |
917 non-negative integer count of reads from one sample overlapping the feature. | |
918 The matrix must have a header row uniquely identifying the source samples, and unique row names in | |
919 the first column. Typically the row names are gene symbols or probe ids for downstream use in GSEA and other methods. | |
920 | |
921 **Specifying comparisons** | |
922 | |
923 This is basically dumbed down for two factors - case vs control. | |
924 | |
925 More complex interfaces are possible but painful at present. | |
926 Probably need to specify a phenotype file to do this better. | |
927 Work in progress. Send code. | |
928 | |
929 If you have (eg) paired samples and wish to include a term in the GLM to account for some other factor (subject in the case of paired samples), | |
930 put a comma separated list of indicators for every sample (whether modelled or not!) indicating (eg) the subject number or | |
931 A list of integers, one for each subject or an empty string if samples are all independent. | |
932 If not empty, there must be exactly as many integers in the supplied integer list as there are columns (samples) in the count matrix. | |
933 Integers for samples that are not in the analysis *must* be present in the string as filler even if not used. | |
934 | |
935 So if you have 2 pairs out of 6 samples, you need to put in unique integers for the unpaired ones | |
936 eg if you had 6 samples with the first two independent but the second and third pairs each being from independent subjects. you might use | |
937 8,9,1,1,2,2 | |
938 as subject IDs to indicate two paired samples from the same subject in columns 3/4 and 5/6 | |
939 | |
940 **Methods available** | |
941 | |
942 You can run 3 popular Bioconductor packages available for count data. | |
943 | |
944 edgeR - see edgeR_ for details | |
945 | |
946 VOOM/limma - see limma_VOOM_ for details | |
947 | |
948 DESeq2 - see DESeq2_ for details | |
949 | |
950 and optionally camera in edgeR which works better if MSigDB is installed. | |
951 | |
952 **Outputs** | |
953 | |
954 Some helpful plots and analysis results. Note that most of these are produced using R code | |
955 suggested by the excellent documentation and vignettes for the Bioconductor | |
956 packages invoked. The Tool Factory is used to automatically lay these out for you to enjoy. | |
957 | |
958 **Note on Voom** | |
959 | |
960 The voom from limma version 3.16.6 help in R includes this from the authors - but you should read the paper to interpret this method. | |
961 | |
962 This function is intended to process RNA-Seq or ChIP-Seq data prior to linear modelling in limma. | |
963 | |
964 voom is an acronym for mean-variance modelling at the observational level. | |
965 The key concern is to estimate the mean-variance relationship in the data, then use this to compute appropriate weights for each observation. | |
966 Count data almost show non-trivial mean-variance relationships. Raw counts show increasing variance with increasing count size, while log-counts typically show a decreasing mean-variance trend. | |
967 This function estimates the mean-variance trend for log-counts, then assigns a weight to each observation based on its predicted variance. | |
968 The weights are then used in the linear modelling process to adjust for heteroscedasticity. | |
969 | |
970 In an experiment, a count value is observed for each tag in each sample. A tag-wise mean-variance trend is computed using lowess. | |
971 The tag-wise mean is the mean log2 count with an offset of 0.5, across samples for a given tag. | |
972 The tag-wise variance is the quarter-root-variance of normalized log2 counts per million values with an offset of 0.5, across samples for a given tag. | |
973 Tags with zero counts across all samples are not included in the lowess fit. Optional normalization is performed using normalizeBetweenArrays. | |
974 Using fitted values of log2 counts from a linear model fit by lmFit, variances from the mean-variance trend were interpolated for each observation. | |
975 This was carried out by approxfun. Inverse variance weights can be used to correct for mean-variance trend in the count data. | |
976 | |
977 | |
978 Author(s) | |
979 | |
980 Charity Law and Gordon Smyth | |
981 | |
982 References | |
983 | |
984 Law, CW (2013). Precision weights for gene expression analysis. PhD Thesis. University of Melbourne, Australia. | |
985 | |
986 Law, CW, Chen, Y, Shi, W, Smyth, GK (2013). Voom! Precision weights unlock linear model analysis tools for RNA-seq read counts. | |
987 Technical Report 1 May 2013, Bioinformatics Division, Walter and Eliza Hall Institute of Medical Reseach, Melbourne, Australia. | |
988 http://www.statsci.org/smyth/pubs/VoomPreprint.pdf | |
989 | |
990 See Also | |
991 | |
992 A voom case study is given in the edgeR User's Guide. | |
993 | |
994 vooma is a similar function but for microarrays instead of RNA-seq. | |
995 | |
996 | |
997 ***old rant on changes to Bioconductor package variable names between versions*** | |
998 | |
999 The edgeR authors made a small cosmetic change in the name of one important variable (from p.value to PValue) | |
1000 breaking this and all other code that assumed the old name for this variable, | |
1001 between edgeR2.4.4 and 2.4.6 (the version for R 2.14 as at the time of writing). | |
1002 This means that all code using edgeR is sensitive to the version. I think this was a very unwise thing | |
1003 to do because it wasted hours of my time to track down and will similarly cost other edgeR users dearly | |
1004 when their old scripts break. This tool currently now works with 2.4.6. | |
1005 | |
1006 **Note on prior.N** | |
1007 | |
1008 http://seqanswers.com/forums/showthread.php?t=5591 says: | |
1009 | |
1010 *prior.n* | |
1011 | |
1012 The value for prior.n determines the amount of smoothing of tagwise dispersions towards the common dispersion. | |
1013 You can think of it as like a "weight" for the common value. (It is actually the weight for the common likelihood | |
1014 in the weighted likelihood equation). The larger the value for prior.n, the more smoothing, i.e. the closer your | |
1015 tagwise dispersion estimates will be to the common dispersion. If you use a prior.n of 1, then that gives the | |
1016 common likelihood the weight of one observation. | |
1017 | |
1018 In answer to your question, it is a good thing to squeeze the tagwise dispersions towards a common value, | |
1019 or else you will be using very unreliable estimates of the dispersion. I would not recommend using the value that | |
1020 you obtained from estimateSmoothing()---this is far too small and would result in virtually no moderation | |
1021 (squeezing) of the tagwise dispersions. How many samples do you have in your experiment? | |
1022 What is the experimental design? If you have few samples (less than 6) then I would suggest a prior.n of at least 10. | |
1023 If you have more samples, then the tagwise dispersion estimates will be more reliable, | |
1024 so you could consider using a smaller prior.n, although I would hesitate to use a prior.n less than 5. | |
1025 | |
1026 | |
1027 From Bioconductor Digest, Vol 118, Issue 5, Gordon writes: | |
1028 | |
1029 Dear Dorota, | |
1030 | |
1031 The important settings are prior.df and trend. | |
1032 | |
1033 prior.n and prior.df are related through prior.df = prior.n * residual.df, | |
1034 and your experiment has residual.df = 36 - 12 = 24. So the old setting of | |
1035 prior.n=10 is equivalent for your data to prior.df = 240, a very large | |
1036 value. Going the other way, the new setting of prior.df=10 is equivalent | |
1037 to prior.n=10/24. | |
1038 | |
1039 To recover old results with the current software you would use | |
1040 | |
1041 estimateTagwiseDisp(object, prior.df=240, trend="none") | |
1042 | |
1043 To get the new default from old software you would use | |
1044 | |
1045 estimateTagwiseDisp(object, prior.n=10/24, trend=TRUE) | |
1046 | |
1047 Actually the old trend method is equivalent to trend="loess" in the new | |
1048 software. You should use plotBCV(object) to see whether a trend is | |
1049 required. | |
1050 | |
1051 Note you could also use | |
1052 | |
1053 prior.n = getPriorN(object, prior.df=10) | |
1054 | |
1055 to map between prior.df and prior.n. | |
1056 | |
1057 ---- | |
1058 | |
1059 **Attributions** | |
1060 | |
1061 edgeR - edgeR_ | |
1062 | |
1063 VOOM/limma - limma_VOOM_ | |
1064 | |
1065 DESeq2 - DESeq2_ for details | |
1066 | |
1067 See above for Bioconductor package documentation for packages exposed in Galaxy by this tool and app store package. | |
1068 | |
1069 Galaxy_ (that's what you are using right now!) for gluing everything together | |
1070 | |
1071 Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is | |
1072 licensed to you under the LGPL_ like other rgenetics artefacts | |
1073 | |
1074 .. _LGPL: http://www.gnu.org/copyleft/lesser.html | |
1075 .. _HTSeq: http://www-huber.embl.de/users/anders/HTSeq/doc/index.html | |
1076 .. _edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html | |
1077 .. _DESeq2: http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html | |
1078 .. _limma_VOOM: http://www.bioconductor.org/packages/release/bioc/html/limma.html | |
1079 .. _Galaxy: http://getgalaxy.org | |
1080 </help> | |
1081 | |
1082 </tool> | |
1083 | |
1084 |