Mercurial > repos > fubar > differential_count_models
comparison rgedgeR/rgedgeRpaired.xml @ 0:2122e630b13a draft
Initial commit of replacement for edger_test
author | fubar |
---|---|
date | Fri, 26 Jul 2013 23:50:59 -0400 |
parents | |
children | df4fea3be1b3 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2122e630b13a |
---|---|
1 <tool id="rgDifferentialCount" name="Differential_Count" version="0.20"> | |
2 <description>models using BioConductor packages</description> | |
3 <requirements> | |
4 <requirement type="package" version="2.12">biocbasics</requirement> | |
5 <requirement type="package" version="3.0.1">r3</requirement> | |
6 </requirements> | |
7 | |
8 <command interpreter="python"> | |
9 rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "DifferentialCounts" | |
10 --output_dir "$html_file.files_path" --output_html "$html_file" --output_tab "$outtab" --make_HTML "yes" | |
11 </command> | |
12 <inputs> | |
13 <param name="input1" type="data" format="tabular" label="Select an input matrix - rows are contigs, columns are counts for each sample" | |
14 help="Use the HTSeq based count matrix preparation tool to create these matrices from BAM/SAM files and a GTF file of genomic features"/> | |
15 <param name="title" type="text" value="Differential Counts" size="80" label="Title for job outputs" | |
16 help="Supply a meaningful name here to remind you what the outputs contain"> | |
17 <sanitizer invalid_char=""> | |
18 <valid initial="string.letters,string.digits"><add value="_" /> </valid> | |
19 </sanitizer> | |
20 </param> | |
21 <param name="treatment_name" type="text" value="Treatment" size="50" label="Treatment Name"/> | |
22 <param name="Treat_cols" label="Select columns containing treatment." type="data_column" data_ref="input1" numerical="True" | |
23 multiple="true" use_header_names="true" size="120" display="checkboxes"> | |
24 <validator type="no_options" message="Please select at least one column."/> | |
25 </param> | |
26 <param name="control_name" type="text" value="Control" size="50" label="Control Name"/> | |
27 <param name="Control_cols" label="Select columns containing control." type="data_column" data_ref="input1" numerical="True" | |
28 multiple="true" use_header_names="true" size="120" display="checkboxes" optional="true"> | |
29 </param> | |
30 <param name="subjectids" type="text" optional="true" size="120" value = "" | |
31 label="IF SUBJECTS NOT ALL INDEPENDENT! Enter integers to indicate sample pairing for every column in input" | |
32 help="Leave blank if no pairing, but eg if data from sample id A99 is in columns 2,4 and id C21 is in 3,5 then enter '1,2,1,2'"> | |
33 <sanitizer> | |
34 <valid initial="string.digits"><add value="," /> </valid> | |
35 </sanitizer> | |
36 </param> | |
37 <param name="fQ" type="float" value="0.3" size="5" label="Non-differential contig count quantile threshold - zero to analyze all non-zero read count contigs" | |
38 help="May be a good or a bad idea depending on the biology and the question. EG 0.3 = sparsest 30% of contigs with at least one read are removed before analysis"/> | |
39 <param name="useNDF" type="boolean" truevalue="T" falsevalue="F" checked="false" size="1" | |
40 label="Non differential filter - remove contigs below a threshold (1 per million) for half or more samples" | |
41 help="May be a good or a bad idea depending on the biology and the question. This was the old default. Quantile based is available as an alternative"/> | |
42 | |
43 <conditional name="edgeR"> | |
44 <param name="doedgeR" type="select" | |
45 label="Run this model using edgeR" | |
46 help="edgeR uses a negative binomial model and seems to be powerful, even with few replicates"> | |
47 <option value="F">Do not run edgeR</option> | |
48 <option value="T" selected="true">Run edgeR</option> | |
49 </param> | |
50 <when value="T"> | |
51 <param name="edgeR_priordf" type="integer" value="20" size="3" | |
52 label="prior.df for tagwise dispersion - lower value = more emphasis on each tag's variance. Replaces prior.n and prior.df = prior.n * residual.df" | |
53 help="0 = Use edgeR default. Use a small value to 'smooth' small samples. See edgeR docs and note below"/> | |
54 </when> | |
55 <when value="F"> </when> | |
56 </conditional> | |
57 <conditional name="DESeq2"> | |
58 <param name="doDESeq2" type="select" | |
59 label="Run the same model with DESeq2 and compare findings" | |
60 help="DESeq2 is an update to the DESeq package. It uses different assumptions and methods to edgeR"> | |
61 <option value="F" selected="true">Do not run DESeq2</option> | |
62 <option value="T">Run DESeq2 (only works if NO second GLM factor supplied at present)</option> | |
63 </param> | |
64 <when value="T"> | |
65 <param name="DESeq_fitType" type="select"> | |
66 <option value="parametric" selected="true">Parametric (default) fit for dispersions</option> | |
67 <option value="local">Local fit - use this if parametric fails</option> | |
68 <option value="mean">Mean dispersion fit- use this if you really understand what you're doing - read the fine manual</option> | |
69 </param> | |
70 </when> | |
71 <when value="F"> </when> | |
72 </conditional> | |
73 <param name="doVoom" type="select" | |
74 label="Run the same model with Voom/limma and compare findings" | |
75 help="The VOOM transformation allows analysis of count data using limma"> | |
76 <option value="F" selected="true">Do not run VOOM</option> | |
77 <option value="T">Run VOOM</option> | |
78 </param> | |
79 <param name="fdrthresh" type="float" value="0.05" size="5" label="P value threshold for FDR filtering for amily wise error rate control" | |
80 help="Conventional default value of 0.05 recommended"/> | |
81 <param name="fdrtype" type="select" label="FDR (Type II error) control method" | |
82 help="Use fdr or bh typically to control for the number of tests in a reliable way"> | |
83 <option value="fdr" selected="true">fdr</option> | |
84 <option value="BH">Benjamini Hochberg</option> | |
85 <option value="BY">Benjamini Yukateli</option> | |
86 <option value="bonferroni">Bonferroni</option> | |
87 <option value="hochberg">Hochberg</option> | |
88 <option value="holm">Holm</option> | |
89 <option value="hommel">Hommel</option> | |
90 <option value="none">no control for multiple tests</option> | |
91 </param> | |
92 </inputs> | |
93 <outputs> | |
94 <data format="tabular" name="outtab" label="${title}.xls"/> | |
95 <data format="html" name="html_file" label="${title}.html"/> | |
96 </outputs> | |
97 <stdio> | |
98 <exit_code range="4" level="fatal" description="Number of subject ids must match total number of samples in the input matrix" /> | |
99 </stdio> | |
100 <tests> | |
101 <test> | |
102 <param name='input1' value='test_bams2mx.xls' ftype='tabular' /> | |
103 <param name='treatment_name' value='case' /> | |
104 <param name='title' value='edgeRtest' /> | |
105 <param name='useNDF' value='' /> | |
106 <param name='doedgeR' value='T' /> | |
107 <param name='doVoom' value='T' /> | |
108 <param name='doDESeq2' value='T' /> | |
109 <param name='fdrtype' value='fdr' /> | |
110 <param name='edgeR_priordf' value="8" /> | |
111 <param name='fdrthresh' value="0.05" /> | |
112 <param name='control_name' value='control' /> | |
113 <param name='subjectids' value='' /> | |
114 <param name='Treat_cols' value='3,4,5,9' /> | |
115 <param name='Control_cols' value='2,6,7,8' /> | |
116 <output name='outtab' file='edgeRtest1out.xls' compare='diff' /> | |
117 <output name='html_file' file='edgeRtest1out.html' compare='diff' lines_diff='20' /> | |
118 </test> | |
119 </tests> | |
120 | |
121 <configfiles> | |
122 <configfile name="runme"> | |
123 <![CDATA[ | |
124 # | |
125 # edgeR.Rscript | |
126 # updated npv 2011 for R 2.14.0 and edgeR 2.4.0 by ross | |
127 # Performs DGE on a count table containing n replicates of two conditions | |
128 # | |
129 # Parameters | |
130 # | |
131 # 1 - Output Dir | |
132 | |
133 # Original edgeR code by: S.Lunke and A.Kaspi | |
134 reallybig = log10(.Machine\$double.xmax) | |
135 reallysmall = log10(.Machine\$double.xmin) | |
136 library('stringr') | |
137 library('gplots') | |
138 library('edgeR') | |
139 hmap2 = function(cmat,nsamp=100,outpdfname='heatmap2.pdf', TName='Treatment',group=NA,myTitle='title goes here') | |
140 { | |
141 # Perform clustering for significant pvalues after controlling FWER | |
142 samples = colnames(cmat) | |
143 gu = unique(group) | |
144 if (length(gu) == 2) { | |
145 col.map = function(g) {if (g==gu[1]) "#FF0000" else "#0000FF"} | |
146 pcols = unlist(lapply(group,col.map)) | |
147 } else { | |
148 colours = rainbow(length(gu),start=0,end=4/6) | |
149 pcols = colours[match(group,gu)] } | |
150 gn = rownames(cmat) | |
151 dm = cmat[(! is.na(gn)),] | |
152 # remove unlabelled hm rows | |
153 nprobes = nrow(dm) | |
154 # sub = paste('Showing',nprobes,'contigs ranked for evidence of differential abundance') | |
155 if (nprobes > nsamp) { | |
156 dm =dm[1:nsamp,] | |
157 #sub = paste('Showing',nsamp,'contigs ranked for evidence for differential abundance out of',nprobes,'total') | |
158 } | |
159 newcolnames = substr(colnames(dm),1,20) | |
160 colnames(dm) = newcolnames | |
161 pdf(outpdfname) | |
162 heatmap.2(dm,main=myTitle,ColSideColors=pcols,col=topo.colors(100),dendrogram="col",key=T,density.info='none', | |
163 Rowv=F,scale='row',trace='none',margins=c(8,8),cexRow=0.4,cexCol=0.5) | |
164 dev.off() | |
165 } | |
166 | |
167 hmap = function(cmat,nmeans=4,outpdfname="heatMap.pdf",nsamp=250,TName='Treatment',group=NA,myTitle="Title goes here") | |
168 { | |
169 # for 2 groups only was | |
170 #col.map = function(g) {if (g==TName) "#FF0000" else "#0000FF"} | |
171 #pcols = unlist(lapply(group,col.map)) | |
172 gu = unique(group) | |
173 colours = rainbow(length(gu),start=0.3,end=0.6) | |
174 pcols = colours[match(group,gu)] | |
175 nrows = nrow(cmat) | |
176 mtitle = paste(myTitle,'Heatmap: n contigs =',nrows) | |
177 if (nrows > nsamp) { | |
178 cmat = cmat[c(1:nsamp),] | |
179 mtitle = paste('Heatmap: Top ',nsamp,' DE contigs (of ',nrows,')',sep='') | |
180 } | |
181 newcolnames = substr(colnames(cmat),1,20) | |
182 colnames(cmat) = newcolnames | |
183 pdf(outpdfname) | |
184 heatmap(cmat,scale='row',main=mtitle,cexRow=0.3,cexCol=0.4,Rowv=NA,ColSideColors=pcols) | |
185 dev.off() | |
186 } | |
187 | |
188 qqPlot = function(descr='qqplot',pvector, outpdf='qqplot.pdf',...) | |
189 # stolen from https://gist.github.com/703512 | |
190 { | |
191 o = -log10(sort(pvector,decreasing=F)) | |
192 e = -log10( 1:length(o)/length(o) ) | |
193 o[o==-Inf] = reallysmall | |
194 o[o==Inf] = reallybig | |
195 maint = descr | |
196 pdf(outpdf) | |
197 plot(e,o,pch=19,cex=1, main=maint, ..., | |
198 xlab=expression(Expected~~-log[10](italic(p))), | |
199 ylab=expression(Observed~~-log[10](italic(p))), | |
200 xlim=c(0,max(e)), ylim=c(0,max(o))) | |
201 lines(e,e,col="red") | |
202 grid(col = "lightgray", lty = "dotted") | |
203 dev.off() | |
204 } | |
205 | |
206 smearPlot = function(DGEList,deTags, outSmear, outMain) | |
207 { | |
208 pdf(outSmear) | |
209 plotSmear(DGEList,de.tags=deTags,main=outMain) | |
210 grid(col="lightgray", lty="dotted") | |
211 dev.off() | |
212 } | |
213 | |
214 boxPlot = function(rawrs,cleanrs,maint,myTitle,pdfname) | |
215 { # | |
216 nc = ncol(rawrs) | |
217 for (i in c(1:nc)) {rawrs[(rawrs[,i] < 0),i] = NA} | |
218 fullnames = colnames(rawrs) | |
219 newcolnames = substr(colnames(rawrs),1,20) | |
220 colnames(rawrs) = newcolnames | |
221 newcolnames = substr(colnames(cleanrs),1,20) | |
222 colnames(cleanrs) = newcolnames | |
223 defpar = par(no.readonly=T) | |
224 print.noquote('raw contig counts by sample:') | |
225 print.noquote(summary(rawrs)) | |
226 print.noquote('normalised contig counts by sample:') | |
227 print.noquote(summary(cleanrs)) | |
228 pdf(pdfname) | |
229 par(mfrow=c(1,2)) | |
230 boxplot(rawrs,varwidth=T,notch=T,ylab='log contig count',col="maroon",las=3,cex.axis=0.35,main=paste('Raw:',maint)) | |
231 grid(col="lightgray",lty="dotted") | |
232 boxplot(cleanrs,varwidth=T,notch=T,ylab='log contig count',col="maroon",las=3,cex.axis=0.35,main=paste('After ',maint)) | |
233 grid(col="lightgray",lty="dotted") | |
234 dev.off() | |
235 pdfname = "sample_counts_histogram.pdf" | |
236 nc = ncol(rawrs) | |
237 print.noquote(paste('Using ncol rawrs=',nc)) | |
238 ncroot = round(sqrt(nc)) | |
239 if (ncroot*ncroot < nc) { ncroot = ncroot + 1 } | |
240 m = c() | |
241 for (i in c(1:nc)) { | |
242 rhist = hist(rawrs[,i],breaks=100,plot=F) | |
243 m = append(m,max(rhist\$counts)) | |
244 } | |
245 ymax = max(m) | |
246 pdf(pdfname) | |
247 par(mfrow=c(ncroot,ncroot)) | |
248 for (i in c(1:nc)) { | |
249 hist(rawrs[,i], main=paste("Contig logcount",i), xlab='log raw count', col="maroon", | |
250 breaks=100,sub=fullnames[i],cex=0.8,ylim=c(0,ymax)) | |
251 } | |
252 dev.off() | |
253 par(defpar) | |
254 | |
255 } | |
256 | |
257 cumPlot = function(rawrs,cleanrs,maint,myTitle) | |
258 { # updated to use ecdf | |
259 pdfname = "Filtering_rowsum_bar_charts.pdf" | |
260 defpar = par(no.readonly=T) | |
261 lrs = log(rawrs,10) | |
262 lim = max(lrs) | |
263 pdf(pdfname) | |
264 par(mfrow=c(2,1)) | |
265 hist(lrs,breaks=100,main=paste('Before:',maint),xlab="# Reads (log)", | |
266 ylab="Count",col="maroon",sub=myTitle, xlim=c(0,lim),las=1) | |
267 grid(col="lightgray", lty="dotted") | |
268 lrs = log(cleanrs,10) | |
269 hist(lrs,breaks=100,main=paste('After:',maint),xlab="# Reads (log)", | |
270 ylab="Count",col="maroon",sub=myTitle,xlim=c(0,lim),las=1) | |
271 grid(col="lightgray", lty="dotted") | |
272 dev.off() | |
273 par(defpar) | |
274 } | |
275 | |
276 cumPlot1 = function(rawrs,cleanrs,maint,myTitle) | |
277 { # updated to use ecdf | |
278 pdfname = paste(gsub(" ","", myTitle , fixed=TRUE),"RowsumCum.pdf",sep='_') | |
279 pdf(pdfname) | |
280 par(mfrow=c(2,1)) | |
281 lastx = max(rawrs) | |
282 rawe = knots(ecdf(rawrs)) | |
283 cleane = knots(ecdf(cleanrs)) | |
284 cy = 1:length(cleane)/length(cleane) | |
285 ry = 1:length(rawe)/length(rawe) | |
286 plot(rawe,ry,type='l',main=paste('Before',maint),xlab="Log Contig Total Reads", | |
287 ylab="Cumulative proportion",col="maroon",log='x',xlim=c(1,lastx),sub=myTitle) | |
288 grid(col="blue") | |
289 plot(cleane,cy,type='l',main=paste('After',maint),xlab="Log Contig Total Reads", | |
290 ylab="Cumulative proportion",col="maroon",log='x',xlim=c(1,lastx),sub=myTitle) | |
291 grid(col="blue") | |
292 dev.off() | |
293 } | |
294 | |
295 | |
296 | |
297 doGSEA = function(y=NULL,design=NULL,histgmt="", | |
298 bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt", | |
299 ntest=0, myTitle="myTitle", outfname="GSEA.xls", minnin=5, maxnin=2000,fdrthresh=0.05,fdrtype="BH") | |
300 { | |
301 sink('Camera.log') | |
302 genesets = c() | |
303 if (bigmt > "") | |
304 { | |
305 bigenesets = readLines(bigmt) | |
306 genesets = bigenesets | |
307 } | |
308 if (histgmt > "") | |
309 { | |
310 hgenesets = readLines(histgmt) | |
311 if (bigmt > "") { | |
312 genesets = rbind(genesets,hgenesets) | |
313 } else { | |
314 genesets = hgenesets | |
315 } # use only history if no bi | |
316 } | |
317 print.noquote(paste("@@@read",length(genesets), 'genesets from',histgmt,bigmt)) | |
318 genesets = strsplit(genesets,'\t') # tabular. genesetid\tURLorwhatever\tgene_1\t..\tgene_n | |
319 outf = outfname | |
320 head=paste(myTitle,'edgeR GSEA') | |
321 write(head,file=outfname,append=F) | |
322 ntest=length(genesets) | |
323 urownames = toupper(rownames(y)) | |
324 upcam = c() | |
325 downcam = c() | |
326 for (i in 1:ntest) { | |
327 gs = unlist(genesets[i]) | |
328 g = gs[1] # geneset_id | |
329 u = gs[2] | |
330 if (u > "") { u = paste("<a href=\'",u,"\'>",u,"</a>",sep="") } | |
331 glist = gs[3:length(gs)] # member gene symbols | |
332 glist = toupper(glist) | |
333 inglist = urownames %in% glist | |
334 nin = sum(inglist) | |
335 if ((nin > minnin) && (nin < maxnin)) { | |
336 ### print(paste('@@found',sum(inglist),'genes in glist')) | |
337 camres = camera(y=y,index=inglist,design=design) | |
338 if (! is.null(camres)) { | |
339 rownames(camres) = g # gene set name | |
340 camres = cbind(GeneSet=g,URL=u,camres) | |
341 if (camres\$Direction == "Up") | |
342 { | |
343 upcam = rbind(upcam,camres) } else { | |
344 downcam = rbind(downcam,camres) | |
345 } | |
346 } | |
347 } | |
348 } | |
349 uscam = upcam[order(upcam\$PValue),] | |
350 unadjp = uscam\$PValue | |
351 uscam\$adjPValue = p.adjust(unadjp,method=fdrtype) | |
352 nup = max(10,sum((uscam\$adjPValue < fdrthresh))) | |
353 dscam = downcam[order(downcam\$PValue),] | |
354 unadjp = dscam\$PValue | |
355 dscam\$adjPValue = p.adjust(unadjp,method=fdrtype) | |
356 ndown = max(10,sum((dscam\$adjPValue < fdrthresh))) | |
357 write.table(uscam,file=paste('camera_up',outfname,sep='_'),quote=F,sep='\t',row.names=F) | |
358 write.table(dscam,file=paste('camera_down',outfname,sep='_'),quote=F,sep='\t',row.names=F) | |
359 print.noquote(paste('@@@@@ Camera up top',nup,'gene sets:')) | |
360 write.table(head(uscam,nup),file="",quote=F,sep='\t',row.names=F) | |
361 print.noquote(paste('@@@@@ Camera down top',ndown,'gene sets:')) | |
362 write.table(head(dscam,ndown),file="",quote=F,sep='\t',row.names=F) | |
363 sink() | |
364 } | |
365 | |
366 | |
367 | |
368 edgeIt = function (Count_Matrix,group,outputfilename,fdrtype='fdr',priordf=5, | |
369 fdrthresh=0.05,outputdir='.', myTitle='Differential Counts',libSize=c(),useNDF=F, | |
370 filterquantile=0.2, subjects=c(),mydesign=NULL, | |
371 doDESeq2=T,doVoom=T,doCamera=T,doedgeR=T,org='hg19', | |
372 histgmt="", bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt", | |
373 doCook=F,DESeq_fitType="parameteric") | |
374 { | |
375 # Error handling | |
376 if (length(unique(group))!=2){ | |
377 print("Number of conditions identified in experiment does not equal 2") | |
378 q() | |
379 } | |
380 require(edgeR) | |
381 options(width = 512) | |
382 mt = paste(unlist(strsplit(myTitle,'_')),collapse=" ") | |
383 allN = nrow(Count_Matrix) | |
384 nscut = round(ncol(Count_Matrix)/2) | |
385 colTotmillionreads = colSums(Count_Matrix)/1e6 | |
386 counts.dataframe = as.data.frame(c()) | |
387 rawrs = rowSums(Count_Matrix) | |
388 nonzerod = Count_Matrix[(rawrs > 0),] # remove all zero count genes | |
389 nzN = nrow(nonzerod) | |
390 nzrs = rowSums(nonzerod) | |
391 zN = allN - nzN | |
392 print('# Quantiles for non-zero row counts:',quote=F) | |
393 print(quantile(nzrs,probs=seq(0,1,0.1)),quote=F) | |
394 if (useNDF == "T") | |
395 { | |
396 gt1rpin3 = rowSums(Count_Matrix/expandAsMatrix(colTotmillionreads,dim(Count_Matrix)) >= 1) >= nscut | |
397 lo = colSums(Count_Matrix[!gt1rpin3,]) | |
398 workCM = Count_Matrix[gt1rpin3,] | |
399 cleanrs = rowSums(workCM) | |
400 cleanN = length(cleanrs) | |
401 meth = paste( "After removing",length(lo),"contigs with fewer than ",nscut," sample read counts >= 1 per million, there are",sep="") | |
402 print(paste("Read",allN,"contigs. Removed",zN,"contigs with no reads.",meth,cleanN,"contigs"),quote=F) | |
403 maint = paste('Filter >=1/million reads in >=',nscut,'samples') | |
404 } else { | |
405 useme = (nzrs > quantile(nzrs,filterquantile)) | |
406 workCM = nonzerod[useme,] | |
407 lo = colSums(nonzerod[!useme,]) | |
408 cleanrs = rowSums(workCM) | |
409 cleanN = length(cleanrs) | |
410 meth = paste("After filtering at count quantile =",filterquantile,", there are",sep="") | |
411 print(paste('Read',allN,"contigs. Removed",zN,"with no reads.",meth,cleanN,"contigs"),quote=F) | |
412 maint = paste('Filter below',filterquantile,'quantile') | |
413 } | |
414 cumPlot(rawrs=rawrs,cleanrs=cleanrs,maint=maint,myTitle=myTitle) | |
415 allgenes = rownames(workCM) | |
416 reg = "^chr([0-9]+):([0-9]+)-([0-9]+)" | |
417 genecards="<a href=\'http://www.genecards.org/index.php?path=/Search/keyword/" | |
418 ucsc = paste("<a href=\'http://genome.ucsc.edu/cgi-bin/hgTracks?db=",org,sep='') | |
419 testreg = str_match(allgenes,reg) | |
420 if (sum(!is.na(testreg[,1]))/length(testreg[,1]) > 0.8) # is ucsc style string | |
421 { | |
422 print("@@ using ucsc substitution for urls") | |
423 contigurls = paste0(ucsc,"&position=chr",testreg[,2],":",testreg[,3],"-",testreg[,4],"\'>",allgenes,"</a>") | |
424 } else { | |
425 print("@@ using genecards substitution for urls") | |
426 contigurls = paste0(genecards,allgenes,"\'>",allgenes,"</a>") | |
427 } | |
428 print.noquote("# urls") | |
429 print.noquote(head(contigurls)) | |
430 print(paste("# Total low count contigs per sample = ",paste(lo,collapse=',')),quote=F) | |
431 cmrowsums = rowSums(workCM) | |
432 TName=unique(group)[1] | |
433 CName=unique(group)[2] | |
434 if (is.null(mydesign)) { | |
435 if (length(subjects) == 0) | |
436 { | |
437 mydesign = model.matrix(~group) | |
438 } | |
439 else { | |
440 subjf = factor(subjects) | |
441 mydesign = model.matrix(~subjf+group) # we block on subject so make group last to simplify finding it | |
442 } | |
443 } | |
444 print.noquote(paste('Using samples:',paste(colnames(workCM),collapse=','))) | |
445 print.noquote('Using design matrix:') | |
446 print.noquote(mydesign) | |
447 if (doedgeR) { | |
448 sink('edgeR.log') | |
449 #### Setup DGEList object | |
450 DGEList = DGEList(counts=workCM, group = group) | |
451 DGEList = calcNormFactors(DGEList) | |
452 | |
453 DGEList = estimateGLMCommonDisp(DGEList,mydesign) | |
454 comdisp = DGEList\$common.dispersion | |
455 DGEList = estimateGLMTrendedDisp(DGEList,mydesign) | |
456 if (edgeR_priordf > 0) { | |
457 print.noquote(paste("prior.df =",edgeR_priordf)) | |
458 DGEList = estimateGLMTagwiseDisp(DGEList,mydesign,prior.df = edgeR_priordf) | |
459 } else { | |
460 DGEList = estimateGLMTagwiseDisp(DGEList,mydesign) | |
461 } | |
462 DGLM = glmFit(DGEList,design=mydesign) | |
463 DE = glmLRT(DGLM,coef=ncol(DGLM\$design)) # always last one - subject is first if needed | |
464 efflib = DGEList\$samples\$lib.size*DGEList\$samples\$norm.factors | |
465 normData = (1e+06*DGEList\$counts/efflib) | |
466 uoutput = cbind( | |
467 Name=as.character(rownames(DGEList\$counts)), | |
468 DE\$table, | |
469 adj.p.value=p.adjust(DE\$table\$PValue, method=fdrtype), | |
470 Dispersion=DGEList\$tagwise.dispersion,totreads=cmrowsums,normData, | |
471 DGEList\$counts | |
472 ) | |
473 soutput = uoutput[order(DE\$table\$PValue),] # sorted into p value order - for quick toptable | |
474 goodness = gof(DGLM, pcutoff=fdrthresh) | |
475 if (sum(goodness\$outlier) > 0) { | |
476 print.noquote('GLM outliers:') | |
477 print(paste(rownames(DGLM)[(goodness\$outlier)],collapse=','),quote=F) | |
478 } else { | |
479 print('No GLM fit outlier genes found\n') | |
480 } | |
481 z = limma::zscoreGamma(goodness\$gof.statistic, shape=goodness\$df/2, scale=2) | |
482 pdf("edgeR_GoodnessofFit.pdf") | |
483 qq = qqnorm(z, panel.first=grid(), main="tagwise dispersion") | |
484 abline(0,1,lwd=3) | |
485 points(qq\$x[goodness\$outlier],qq\$y[goodness\$outlier], pch=16, col="maroon") | |
486 dev.off() | |
487 estpriorn = getPriorN(DGEList) | |
488 print(paste("Common Dispersion =",comdisp,"CV = ",sqrt(comdisp),"getPriorN = ",estpriorn),quote=F) | |
489 efflib = DGEList\$samples\$lib.size*DGEList\$samples\$norm.factors | |
490 normData = (1e+06*DGEList\$counts/efflib) | |
491 uniqueg = unique(group) | |
492 #### Plot MDS | |
493 sample_colors = match(group,levels(group)) | |
494 sampleTypes = levels(factor(group)) | |
495 print.noquote(sampleTypes) | |
496 pdf("edgeR_MDSplot.pdf") | |
497 plotMDS.DGEList(DGEList,main=paste("edgeR MDS for",myTitle),cex=0.5,col=sample_colors,pch=sample_colors) | |
498 legend(x="topleft", legend = sampleTypes,col=c(1:length(sampleTypes)), pch=19) | |
499 grid(col="blue") | |
500 dev.off() | |
501 colnames(normData) = paste( colnames(normData),'N',sep="_") | |
502 print(paste('Raw sample read totals',paste(colSums(nonzerod,na.rm=T),collapse=','))) | |
503 nzd = data.frame(log(nonzerod + 1e-2,10)) | |
504 boxPlot(rawrs=nzd,cleanrs=log(normData,10),maint='TMM Normalisation',myTitle=myTitle,pdfname="edgeR_raw_norm_counts_box.pdf") | |
505 write.table(soutput,outputfilename, quote=FALSE, sep="\t",row.names=F) | |
506 tt = cbind( | |
507 Name=as.character(rownames(DGEList\$counts)), | |
508 DE\$table, | |
509 adj.p.value=p.adjust(DE\$table\$PValue, method=fdrtype), | |
510 Dispersion=DGEList\$tagwise.dispersion,totreads=cmrowsums | |
511 ) | |
512 print.noquote("# edgeR Top tags\n") | |
513 tt = cbind(tt,URL=contigurls) # add to end so table isn't laid out strangely | |
514 tt = tt[order(DE\$table\$PValue),] | |
515 print.noquote(tt[1:50,]) | |
516 deTags = rownames(uoutput[uoutput\$adj.p.value < fdrthresh,]) | |
517 nsig = length(deTags) | |
518 print(paste('#',nsig,'tags significant at adj p=',fdrthresh),quote=F) | |
519 deColours = ifelse(deTags,'red','black') | |
520 pdf("edgeR_BCV_vs_abundance.pdf") | |
521 plotBCV(DGEList, cex=0.3, main="Biological CV vs abundance") | |
522 dev.off() | |
523 dg = DGEList[order(DE\$table\$PValue),] | |
524 #normData = (1e+06 * dg\$counts/expandAsMatrix(dg\$samples\$lib.size, dim(dg))) | |
525 efflib = dg\$samples\$lib.size*dg\$samples\$norm.factors | |
526 normData = (1e+06*dg\$counts/efflib) | |
527 outpdfname="edgeR_heatmap.pdf" | |
528 hmap2(normData,nsamp=100,TName=TName,group=group,outpdfname=outpdfname,myTitle=myTitle) | |
529 outSmear = "edgeR_smearplot.pdf" | |
530 outMain = paste("Smear Plot for ",TName,' Vs ',CName,' (FDR@',fdrthresh,' N = ',nsig,')',sep='') | |
531 smearPlot(DGEList=DGEList,deTags=deTags, outSmear=outSmear, outMain = outMain) | |
532 qqPlot(descr=paste(myTitle,'edgeR QQ plot'),pvector=DE\$table\$PValue,outpdf='edgeR_qqplot.pdf') | |
533 norm.factor = DGEList\$samples\$norm.factors | |
534 topresults.edgeR = soutput[which(soutput\$adj.p.value < fdrthresh), ] | |
535 edgeRcountsindex = which(allgenes %in% rownames(topresults.edgeR)) | |
536 edgeRcounts = rep(0, length(allgenes)) | |
537 edgeRcounts[edgeRcountsindex] = 1 # Create venn diagram of hits | |
538 sink() | |
539 } ### doedgeR | |
540 if (doDESeq2 == T) | |
541 { | |
542 sink("DESeq2.log") | |
543 # DESeq2 | |
544 require('DESeq2') | |
545 library('RColorBrewer') | |
546 pdata = data.frame(Name=colnames(workCM),Rx=group,row.names=colnames(workCM)) | |
547 deSEQds = DESeqDataSetFromMatrix(countData = workCM, colData = pdata, design = formula(~ Rx)) | |
548 #DESeq2 = DESeq(deSEQds,fitType='local',pAdjustMethod=fdrtype) | |
549 #rDESeq = results(DESeq2) | |
550 #newCountDataSet(workCM, group) | |
551 deSeqDatsizefac = estimateSizeFactors(deSEQds) | |
552 deSeqDatdisp = estimateDispersions(deSeqDatsizefac,fitType=DESeq_fitType) | |
553 resDESeq = nbinomWaldTest(deSeqDatdisp, pAdjustMethod=fdrtype) | |
554 rDESeq = as.data.frame(results(resDESeq)) | |
555 rDESeq = cbind(Contig=rownames(workCM),rDESeq,NReads=cmrowsums,URL=contigurls) | |
556 srDESeq = rDESeq[order(rDESeq\$pvalue),] | |
557 qqPlot(descr=paste(myTitle,'DESeq2 qqplot'),pvector=rDESeq\$pvalue,outpdf='DESeq2_qqplot.pdf') | |
558 cat("# DESeq top 50\n") | |
559 print.noquote(srDESeq[1:50,]) | |
560 write.table(srDESeq,paste(mt,'DESeq2_TopTable.xls',sep='_'), quote=FALSE, sep="\t",row.names=F) | |
561 topresults.DESeq = rDESeq[which(rDESeq\$padj < fdrthresh), ] | |
562 DESeqcountsindex = which(allgenes %in% rownames(topresults.DESeq)) | |
563 DESeqcounts = rep(0, length(allgenes)) | |
564 DESeqcounts[DESeqcountsindex] = 1 | |
565 pdf("DESeq2_dispersion_estimates.pdf") | |
566 plotDispEsts(resDESeq) | |
567 dev.off() | |
568 ysmall = abs(min(rDESeq\$log2FoldChange)) | |
569 ybig = abs(max(rDESeq\$log2FoldChange)) | |
570 ylimit = min(4,ysmall,ybig) | |
571 pdf("DESeq2_MA_plot.pdf") | |
572 plotMA(resDESeq,main=paste(myTitle,"DESeq2 MA plot"),ylim=c(-ylimit,ylimit)) | |
573 dev.off() | |
574 rlogres = rlogTransformation(resDESeq) | |
575 sampledists = dist( t( assay(rlogres) ) ) | |
576 sdmat = as.matrix(sampledists) | |
577 pdf("DESeq2_sample_distance_plot.pdf") | |
578 heatmap.2(sdmat,trace="none",main=paste(myTitle,"DESeq2 sample distances"), | |
579 col = colorRampPalette( rev(brewer.pal(9, "RdBu")) )(255)) | |
580 dev.off() | |
581 sink() | |
582 result = try( (ppca = plotPCA( varianceStabilizingTransformation(deSeqDatdisp,blind=T), intgroup=c("Rx","Name")) ) ) | |
583 if ("try-error" %in% class(result)) { | |
584 print.noquote('DESeq2 plotPCA failed.') | |
585 } else { | |
586 pdf("DESeq2_PCA_plot.pdf") | |
587 #### wtf - print? Seems needed to get this to work | |
588 print(ppca) | |
589 dev.off() | |
590 } | |
591 } | |
592 | |
593 if (doVoom == T) { | |
594 sink('VOOM.log') | |
595 pdf("VOOM_mean_variance_plot.pdf") | |
596 dat.voomed = voom(DGEList, mydesign, plot = TRUE, lib.size = colSums(workCM) * norm.factor) | |
597 dev.off() | |
598 # Use limma to fit data | |
599 fit = lmFit(dat.voomed, mydesign) | |
600 fit = eBayes(fit) | |
601 rvoom = topTable(fit, coef = length(colnames(mydesign)), adj = fdrtype, n = Inf, sort="none") | |
602 qqPlot(descr=paste(myTitle,'VOOM-limma QQ plot'),pvector=rvoom\$P.Value,outpdf='VOOM_qqplot.pdf') | |
603 rownames(rvoom) = rownames(workCM) | |
604 rvoom = cbind(rvoom,NReads=cmrowsums,URL=contigurls) | |
605 srvoom = rvoom[order(rvoom\$P.Value),] | |
606 write.table(srvoom,paste(mt,'VOOM_topTable.xls',sep='_'), quote=FALSE, sep="\t",row.names=F) | |
607 # Use an FDR cutoff to find interesting samples for edgeR, DESeq and voom/limma | |
608 topresults.voom = srvoom[which(rvoom\$adj.P.Val < fdrthresh), ] | |
609 voomcountsindex = which(allgenes %in% topresults.voom\$ID) | |
610 voomcounts = rep(0, length(allgenes)) | |
611 voomcounts[voomcountsindex] = 1 | |
612 cat("# VOOM top 50\n") | |
613 print(srvoom[1:50,]) | |
614 sink() | |
615 } | |
616 | |
617 if (doCamera) { | |
618 doGSEA(y=DGEList,design=mydesign,histgmt=histgmt,bigmt=bigmt,ntest=20,myTitle=myTitle, | |
619 outfname=paste(mt,"GSEA.xls",sep="_"),fdrthresh=fdrthresh,fdrtype=fdrtype) | |
620 } | |
621 | |
622 if ((doDESeq2==T) || (doVoom==T) || (doedgeR==T)) { | |
623 if ((doVoom==T) && (doDESeq2==T) && (doedgeR==T)) { | |
624 vennmain = paste(mt,'Voom,edgeR and DESeq2 overlap at FDR=',fdrthresh) | |
625 counts.dataframe = data.frame(edgeR = edgeRcounts, DESeq2 = DESeqcounts, | |
626 VOOM_limma = voomcounts, row.names = allgenes) | |
627 } else if ((doDESeq2==T) && (doedgeR==T)) { | |
628 vennmain = paste(mt,'DESeq2 and edgeR overlap at FDR=',fdrthresh) | |
629 counts.dataframe = data.frame(edgeR = edgeRcounts, DESeq2 = DESeqcounts, row.names = allgenes) | |
630 } else if ((doVoom==T) && (doedgeR==T)) { | |
631 vennmain = paste(mt,'Voom and edgeR overlap at FDR=',fdrthresh) | |
632 counts.dataframe = data.frame(edgeR = edgeRcounts, VOOM_limma = voomcounts, row.names = allgenes) | |
633 } | |
634 | |
635 if (nrow(counts.dataframe > 1)) { | |
636 counts.venn = vennCounts(counts.dataframe) | |
637 vennf = "Venn_significant_genes_overlap.pdf" | |
638 pdf(vennf) | |
639 vennDiagram(counts.venn,main=vennmain,col="maroon") | |
640 dev.off() | |
641 } | |
642 } #### doDESeq2 or doVoom | |
643 #Return our main table | |
644 uoutput | |
645 | |
646 } | |
647 #### Done | |
648 | |
649 ###sink(stdout(),append=T,type="message") | |
650 builtin_gmt="" | |
651 history_gmt="" | |
652 doDESeq2 = $DESeq2.doDESeq2 # make these T or F | |
653 doVoom = $doVoom | |
654 doCamera = F | |
655 doedgeR = $edgeR.doedgeR | |
656 edgeR_priordf = 0 | |
657 | |
658 #if $DESeq2.doDESeq2 == "T" | |
659 DESeq_fitType = "$DESeq2.DESeq_fitType" | |
660 #end if | |
661 #if $edgeR.doedgeR == "T" | |
662 edgeR_priordf = $edgeR.edgeR_priordf | |
663 #end if | |
664 | |
665 | |
666 Out_Dir = "$html_file.files_path" | |
667 Input = "$input1" | |
668 TreatmentName = "$treatment_name" | |
669 TreatmentCols = "$Treat_cols" | |
670 ControlName = "$control_name" | |
671 ControlCols= "$Control_cols" | |
672 outputfilename = "$outtab" | |
673 org = "$input1.dbkey" | |
674 if (org == "") { org = "hg19"} | |
675 fdrtype = "$fdrtype" | |
676 fdrthresh = $fdrthresh | |
677 useNDF = "$useNDF" | |
678 fQ = $fQ # non-differential centile cutoff | |
679 myTitle = "$title" | |
680 subjects = c($subjectids) | |
681 nsubj = length(subjects) | |
682 if (nsubj > 0) { | |
683 if (doDESeq2) { | |
684 print('WARNING - cannot yet use DESeq2 for 2 way anova - see the docs') | |
685 doDESeq2 = F | |
686 } | |
687 } | |
688 TCols = as.numeric(strsplit(TreatmentCols,",")[[1]])-1 | |
689 CCols = as.numeric(strsplit(ControlCols,",")[[1]])-1 | |
690 cat('Got TCols=') | |
691 cat(TCols) | |
692 cat('; CCols=') | |
693 cat(CCols) | |
694 cat('\n') | |
695 useCols = c(TCols,CCols) | |
696 if (file.exists(Out_Dir) == F) dir.create(Out_Dir) | |
697 Count_Matrix = read.table(Input,header=T,row.names=1,sep='\t') #Load tab file assume header | |
698 snames = colnames(Count_Matrix) | |
699 nsamples = length(snames) | |
700 if (nsubj > 0 & nsubj != nsamples) { | |
701 options("show.error.messages"=T) | |
702 mess = paste('Fatal error: Supplied subject id list',paste(subjects,collapse=','), | |
703 'has length',nsubj,'but there are',nsamples,'samples',paste(snames,collapse=',')) | |
704 write(mess, stderr()) | |
705 quit(save="no",status=4) | |
706 } | |
707 | |
708 Count_Matrix = Count_Matrix[,useCols] ### reorder columns | |
709 if (length(subjects) != 0) {subjects = subjects[useCols]} | |
710 rn = rownames(Count_Matrix) | |
711 islib = rn %in% c('librarySize','NotInBedRegions') | |
712 LibSizes = Count_Matrix[subset(rn,islib),][1] # take first | |
713 Count_Matrix = Count_Matrix[subset(rn,! islib),] | |
714 group = c(rep(TreatmentName,length(TCols)), rep(ControlName,length(CCols)) ) #Build a group descriptor | |
715 group = factor(group, levels=c(ControlName,TreatmentName)) | |
716 colnames(Count_Matrix) = paste(group,colnames(Count_Matrix),sep="_") #Relable columns | |
717 results = edgeIt(Count_Matrix=Count_Matrix,group=group,outputfilename=outputfilename, | |
718 fdrtype='BH',priordf=edgeR_priordf,fdrthresh=0.05,outputdir='.', | |
719 myTitle=myTitle,useNDF=F,libSize=c(),filterquantile=fQ,subjects=c(), | |
720 doDESeq2=doDESeq2,doVoom=doVoom,doCamera=doCamera,doedgeR=doedgeR,org=org, | |
721 histgmt=history_gmt,bigmt=builtin_gmt,DESeq_fitType=DESeq_fitType) | |
722 sessionInfo() | |
723 ]]> | |
724 </configfile> | |
725 </configfiles> | |
726 <help> | |
727 | |
728 ---- | |
729 | |
730 **What it does** | |
731 | |
732 Allows short read sequence counts from controlled experiments to be analysed for differentially expressed genes. | |
733 Optionally adds a term for subject if not all samples are independent or if some other factor needs to be blocked in the design. | |
734 | |
735 **Input** | |
736 | |
737 Requires a count matrix as a tabular file. These are best made using the companion HTSeq_ based counter Galaxy wrapper | |
738 and your fave gene model to generate inputs. Each row is a genomic feature (gene or exon eg) and each column the | |
739 non-negative integer count of reads from one sample overlapping the feature. | |
740 The matrix must have a header row uniquely identifying the source samples, and unique row names in | |
741 the first column. Typically the row names are gene symbols or probe ids for downstream use in GSEA and other methods. | |
742 | |
743 **Specifying comparisons** | |
744 | |
745 This is basically dumbed down for two factors - case vs control. | |
746 | |
747 More complex interfaces are possible but painful at present. | |
748 Probably need to specify a phenotype file to do this better. | |
749 Work in progress. Send code. | |
750 | |
751 If you have (eg) paired samples and wish to include a term in the GLM to account for some other factor (subject in the case of paired samples), | |
752 put a comma separated list of indicators for every sample (whether modelled or not!) indicating (eg) the subject number or | |
753 A list of integers, one for each subject or an empty string if samples are all independent. | |
754 If not empty, there must be exactly as many integers in the supplied integer list as there are columns (samples) in the count matrix. | |
755 Integers for samples that are not in the analysis *must* be present in the string as filler even if not used. | |
756 | |
757 So if you have 2 pairs out of 6 samples, you need to put in unique integers for the unpaired ones | |
758 eg if you had 6 samples with the first two independent but the second and third pairs each being from independent subjects. you might use | |
759 8,9,1,1,2,2 | |
760 as subject IDs to indicate two paired samples from the same subject in columns 3/4 and 5/6 | |
761 | |
762 **Methods available** | |
763 | |
764 You can run 3 popular Bioconductor packages available for count data. | |
765 | |
766 edgeR - see edgeR_ for details | |
767 | |
768 VOOM/limma - see limma_VOOM_ for details | |
769 | |
770 DESeq2 - see DESeq2_ for details | |
771 | |
772 and optionally camera in edgeR which works better if MSigDB is installed. | |
773 | |
774 **Outputs** | |
775 | |
776 Some helpful plots and analysis results. Note that most of these are produced using R code | |
777 suggested by the excellent documentation and vignettes for the Bioconductor | |
778 packages invoked. The Tool Factory is used to automatically lay these out for you to enjoy. | |
779 | |
780 ***old rant on changes to Bioconductor package variable names between versions*** | |
781 | |
782 The edgeR authors made a small cosmetic change in the name of one important variable (from p.value to PValue) | |
783 breaking this and all other code that assumed the old name for this variable, | |
784 between edgeR2.4.4 and 2.4.6 (the version for R 2.14 as at the time of writing). | |
785 This means that all code using edgeR is sensitive to the version. I think this was a very unwise thing | |
786 to do because it wasted hours of my time to track down and will similarly cost other edgeR users dearly | |
787 when their old scripts break. This tool currently now works with 2.4.6. | |
788 | |
789 **Note on prior.N** | |
790 | |
791 http://seqanswers.com/forums/showthread.php?t=5591 says: | |
792 | |
793 *prior.n* | |
794 | |
795 The value for prior.n determines the amount of smoothing of tagwise dispersions towards the common dispersion. | |
796 You can think of it as like a "weight" for the common value. (It is actually the weight for the common likelihood | |
797 in the weighted likelihood equation). The larger the value for prior.n, the more smoothing, i.e. the closer your | |
798 tagwise dispersion estimates will be to the common dispersion. If you use a prior.n of 1, then that gives the | |
799 common likelihood the weight of one observation. | |
800 | |
801 In answer to your question, it is a good thing to squeeze the tagwise dispersions towards a common value, | |
802 or else you will be using very unreliable estimates of the dispersion. I would not recommend using the value that | |
803 you obtained from estimateSmoothing()---this is far too small and would result in virtually no moderation | |
804 (squeezing) of the tagwise dispersions. How many samples do you have in your experiment? | |
805 What is the experimental design? If you have few samples (less than 6) then I would suggest a prior.n of at least 10. | |
806 If you have more samples, then the tagwise dispersion estimates will be more reliable, | |
807 so you could consider using a smaller prior.n, although I would hesitate to use a prior.n less than 5. | |
808 | |
809 | |
810 From Bioconductor Digest, Vol 118, Issue 5, Gordon writes: | |
811 | |
812 Dear Dorota, | |
813 | |
814 The important settings are prior.df and trend. | |
815 | |
816 prior.n and prior.df are related through prior.df = prior.n * residual.df, | |
817 and your experiment has residual.df = 36 - 12 = 24. So the old setting of | |
818 prior.n=10 is equivalent for your data to prior.df = 240, a very large | |
819 value. Going the other way, the new setting of prior.df=10 is equivalent | |
820 to prior.n=10/24. | |
821 | |
822 To recover old results with the current software you would use | |
823 | |
824 estimateTagwiseDisp(object, prior.df=240, trend="none") | |
825 | |
826 To get the new default from old software you would use | |
827 | |
828 estimateTagwiseDisp(object, prior.n=10/24, trend=TRUE) | |
829 | |
830 Actually the old trend method is equivalent to trend="loess" in the new | |
831 software. You should use plotBCV(object) to see whether a trend is | |
832 required. | |
833 | |
834 Note you could also use | |
835 | |
836 prior.n = getPriorN(object, prior.df=10) | |
837 | |
838 to map between prior.df and prior.n. | |
839 | |
840 ---- | |
841 | |
842 **Attributions** | |
843 | |
844 edgeR - edgeR_ | |
845 | |
846 VOOM/limma - limma_VOOM_ | |
847 | |
848 DESeq2 - DESeq2_ for details | |
849 | |
850 See above for Bioconductor package documentation for packages exposed in Galaxy by this tool and app store package. | |
851 | |
852 Galaxy_ (that's what you are using right now!) for gluing everything together | |
853 | |
854 Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is | |
855 licensed to you under the LGPL_ like other rgenetics artefacts | |
856 | |
857 .. _LGPL: http://www.gnu.org/copyleft/lesser.html | |
858 .. _HTSeq: http://www-huber.embl.de/users/anders/HTSeq/doc/index.html | |
859 .. _edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html | |
860 .. _DESeq2: http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html | |
861 .. _limma_VOOM: http://www.bioconductor.org/packages/release/bioc/html/limma.html | |
862 .. _Galaxy: http://getgalaxy.org | |
863 </help> | |
864 | |
865 </tool> | |
866 | |
867 |