Mercurial > repos > ethevenot > batchcorrection
diff Normalisation_QCpool.r @ 3:2e3a23dd6c24 draft default tip
Uploaded
| author | melpetera |
|---|---|
| date | Thu, 28 Feb 2019 05:12:34 -0500 |
| parents | 57edfd3943ab |
| children |
line wrap: on
line diff
--- a/Normalisation_QCpool.r Mon May 01 08:06:08 2017 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,437 +0,0 @@ -# Author: jfmartin -# Modified by : mpetera -############################################################################### -# Correction of analytical effects inter and intra batch on intensities using quality control pooled samples (QC-pools) -# according to the algorithm mentioned by Van der Kloet (J Prot Res 2009). -# Parameters : a dataframe of Ions intensities and an other of samples? metadata which must contains at least the three following columns : -# "batch" to identify the batches of analyses ; need at least 3 QC-pools for linear adjustment and 8 for lo(w)ess adjustment -# "injectionOrder" integer defining the injection order of all samples : QC-pools and analysed samples -# "sampleType" indicates if defining a sample with "sample" or a QC-pool with "pool" -# NO MISSING DATA are allowed -# Version 0.91 insertion of ok_norm function to assess correction feasibility -# Version 0.92 insertion of slope test in ok_norm -# Version 0.93 name of log file define as a parameter of the correction function -# Version 0.94 Within a batch, test if all QCpools or samples values = 0. Definition of an error code in ok_norm function (see function for details) -# Version 0.99 include non linear lowess correction. -# Version 1.00 the corrected result matrix is return transposed in Galaxy -# Version 1.01 standard deviation=0 instead of sum of value=0 is used to assess constant data in ok_norm function. Negative values in corrected matrix are converted to 0. -# Version 1.02 plotsituation create a result file with the error code of non execution of correction set by function ok_norm -# Version 1.03 fix bug in plot with "reg" option. suppression of ok_norm=4 condition if ok_norm function -# Version 2.00 Addition of loess function, correction indicator, plots ; modification of returned objects' format, some plots' displays and ok_norm ifelse format -# Version 2.01 Correction for pools negative values earlier in norm_QCpool -# Version 2.10 Script refreshing ; vocabulary adjustment ; span in parameters for lo(w)ess regression ; conditionning for third line ACP display ; order in loess display -# Version 2.11 ok1 and ok2 permutation (ok_norm) ; conditional display of regression (plotsituation) ; grouping of linked lignes + conditioning (normX) ; conditioning for CVplot -# Version 2.20 acplight function added from previous toolBox.R [# Version 1.01 "NA"-coding possibility added in acplight function] -# Version 2.30 addition of suppressWarnings() for known and controlled warnings ; suppression of one useless "cat" message ; change in Rdata names ; 'batch(es)' in cat -# Version 2.90 change in handling of generated negative and Inf values -# Version 2.91 Plot improvement - -ok_norm=function(qcp,qci,spl,spi,method) { - # Function used for one ion within one batch to determine whether or not batch correction is possible - # ok_norm values : - # 0 : no preliminary-condition problem - # 1 : standard deviation of QC-pools or samples = 0 - # 2 : insufficient number of QC-pools within a batch (n=3 for linear, n=8 for lowess or loess) - # 3 : significant difference between QC-pools' and samples' means - # 4 : denominator =0 when on 1 pool per batch <> 0 - # 5 : (linear regression only) the slopes ratio ?QC-pools/samples? is lower than -0.2 - - ok=0 - if (method=="linear") {minQC=3} else {minQC=8} - if (length(qcp)<minQC) { ok=2 - } else { - if (sd(qcp)==0 | sd(spl)==0) { ok=1 - } else { - cvp= sd(qcp)/mean(qcp); cvs=sd(spl)/mean(spl) - rttest=t.test(qcp,y=spl) - reslsfit=lsfit(qci, qcp) - reslsfitSample=lsfit(spl, spi) - ordori=reslsfit$coefficients[1] - penteB=reslsfit$coefficients[2] - penteS=reslsfitSample$coefficients[2] - # Significant difference between samples and pools - if (rttest$p.value < 0.01) { ok=3 - } else { - # to avoid denominator =0 when on 1 pool per batch <> 0 - if (method=="linear" & length(which(((penteB*qci)+ordori)==0))>0 ){ ok=6 - } else { - # different sloop between samples and pools - if (method=="linear" & penteB/penteS < -0.20) { ok=5 } - }}}} - ok_norm=ok -} - -plotsituation <- function (x, nbid,outfic="plot_regression.pdf", outres="PreNormSummary.txt",fact="batch",span="none") { - # Check for all ions in every batch if linear or lo(w)ess correction is possible. - # Use ok_norm function and create a file (PreNormSummary.txt) with the error code. - # Also create a pdf file with plots of linear and lo(w)ess regression lines. - # x: dataframe with ions in columns and samples in rows ; x is the result of concatenation of sample metadata file and ions file - # nbid: number of samples description columns (id and factors) with at least : "batch","injectionOrder","sampleType" - # outfic: name of regression plots pdf file - # fact: factor to be used as categorical variable for plots and PCA. - indfact =which(dimnames(x)[[2]]==fact) - indtypsamp =which(dimnames(x)[[2]]=="sampleType") - indbatch =which(dimnames(x)[[2]]=="batch") - indinject =which(dimnames(x)[[2]]=="injectionOrder") - lastIon=dim(x)[2] - nbi=lastIon-nbid # Number of ions = total number of columns - number of identifying columns - nbb=length(levels(x$batch)) # Number of batch = number of levels of "batch" comlumn (factor) - nbs=length(x$sampleType[x$sampleType=="sample"])# Number of samples = number of rows with "sample" value in sampleType - pdf(outfic,width=27,height=7*ceiling((nbb+2)/3)) - cat(nbi," ions ",nbb," batch(es) \n") - cv=data.frame(matrix(0,nrow=nbi,ncol=2))# initialisation de la dataset qui contiendra les CV - pre_bilan=matrix(0,nrow=nbi,ncol=3*nbb) # dataset of ok_norm function results - for (p in 1:nbi) {# for each ion - par (mfrow=c(ceiling((nbb+2)/3),3),ask=F,cex=1.2) - labion=dimnames(x)[[2]][p+nbid] - indpool=which(x$sampleType=="pool") # QCpools subscripts in x - pools1=x[indpool,p+nbid]; cv[p,1]=sd(pools1)/mean(pools1)# CV before correction - for (b in 1:nbb) {# for each batch... - xb=data.frame(x[(x$batch==levels(x$batch)[b]),c(indtypsamp,indinject,p+nbid)]) - indpb = which(xb$sampleType=="pool")# QCpools subscripts in the current batch - indsp = which(xb$sampleType=="sample")# samples subscripts in the current batch - indbt = which(xb$sampleType=="sample" | xb$sampleType=="pool")# indices de tous les samples d'un batch pools+samples - normLinearTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="linear") - normLoessTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="loess") - normLowessTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="lowess") - #cat(dimnames(x)[[2]][p+nbid]," batch ",b," loess ",normLoessTest," linear ",normLinearTest,"\n") - pre_bilan[ p,3*b-2]=normLinearTest - pre_bilan[ p,3*b-1]=normLoessTest - pre_bilan[ p,3*b]=normLowessTest - if(length(indpb)>1){ - if(span=="none"){span1<-1 ; span2<-2*length(indpool)/nbs}else{span1<-span ; span2<-span} - resloess=loess(xb[indpb,3]~xb[indpb,2],span=span1,degree=2,family="gaussian",iterations=4,surface="direct") - resloessSample=loess(xb[indsp,3]~xb[indsp,2],span=2*length(indpool)/nbs,degree=2,family="gaussian",iterations=4,surface="direct") - reslowess=lowess(xb[indpb,2],xb[indpb,3],f=span2) - reslowessSample=lowess(xb[indsp,2],xb[indsp,3]) - liminf=min(xb[indbt,3]);limsup=max(xb[indbt,3]) - plot(xb[indsp,2],xb[indsp,3],pch=16, main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup)) - points(xb[indpb,2], xb[indpb,3],pch=5) - points(cbind(resloess$x,resloess$fitted)[order(resloess$x),],type="l",col="green3") - points(cbind(resloessSample$x,resloessSample$fitted)[order(resloessSample$x),],type="l",col="green3",lty=2) - points(reslowess,type="l",col="red"); points(reslowessSample,type="l",col="red",lty=2) - abline(lsfit(xb[indpb,2],xb[indpb,3]),col="blue") - abline(lsfit(xb[indsp,2],xb[indsp,3]),lty=2,col="blue") - legend("topleft",c("pools","samples"),lty=c(1,2),bty="n") - legend("topright",c("linear","lowess","loess"),lty=1,col=c("blue","red","green3"),bty="n") - } - } -# series de plot avant et apres correction -minval=min(x[p+nbid]);maxval=max(x[p+nbid]) -plot( x$injectionOrder, x[,p+nbid],col=x$batch,ylim=c(minval,maxval),ylab=labion, - main=paste0("before correction (CV for pools = ",round(cv[p,1],2),")")) -suppressWarnings(plot.design( x[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect before correction")) - } -dev.off() -pre_bilan=data.frame(pre_bilan) -labion=dimnames(x)[[2]][nbid+1:nbi] -for (i in 1:nbb) { - dimnames(pre_bilan)[[2]][3*i-2]=paste("batch",i,"linear") - dimnames(pre_bilan)[[2]][3*i-1]=paste("batch",i,"loess") - dimnames(pre_bilan)[[2]][3*i]=paste("batch",i,"lowess") -} -bilan=data.frame(labion,pre_bilan) -write.table(bilan,file=outres,sep="\t",row.names=F,quote=F) -} - - -normlowess=function (xb,detail="no",vref=1,b,span=NULL) { - # Correction function applied to 1 ion in 1 batch. Use a lowess regression computed on QC-pools in order to correct samples intensity values - # xb : dataframe for 1 ion in columns and samples in rows. - # vref : reference value (average of ion) - # b : batch subscript - # nbid: number of samples description columns (id and factors) with at least : "batch","injectionOrder","sampleType" - indpb = which(xb$sampleType=="pool") # pools subscripts of current batch - indsp = which(xb$sampleType=="sample") # samples of current batch subscripts - indbt = which(xb$sampleType=="sample" | xb$sampleType=="pool");# batch subscripts of all samples and QC-pools - labion=dimnames(xb)[[2]][3] - newval=xb[[3]] # initialisation of corrected values = intial values - ind <- 0 # initialisation of correction indicator - normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="lowess") - #cat("batch:",b," dim xb=",dim(xb)," ok=",normTodo,"\n") - if (normTodo==0) { - if(length(span)==0){span2<-2*length(indpb)/length(indsp)}else{span2<-span} - reslowess=lowess(xb[indpb,2],xb[indpb,3],f=span2) # lowess regression with QC-pools - px=xb[indsp,2]; # vector of injectionOrder values only for samples - for(j in 1:length(indbt)) { - if (xb$sampleType[j]=="pool") { - if (reslowess$y[which(indpb==j)]==0) reslowess$y[which(indpb==j)] <- 1 - newval[j]=(vref*xb[j,3]) / (reslowess$y[which(indpb==j)])} - else { # for samples, the correction value cor correspond to the nearest QCpools - cor= reslowess$y[which(abs(reslowess$x-px[which(indsp==j)])==min(abs(reslowess$x - px[which(indsp==j)])))] - if (length(cor)>1) {cor=cor[1]} - if (cor <= 0) {cor=vref} # no modification of initial value - newval[j]=(vref*xb[j,3]) / cor - } - } - if (detail=="reg") { - liminf=min(xb[indbt,3]);limsup=max(xb[indbt,3]) - plot(xb[indsp,2],xb[indsp,3],pch=16,main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup)) - points(xb[indpb,2], xb[indpb,3],pch=5) - points(reslowess,type="l",col="red") - } - ind <- 1 - } else {# if ok_norm <> 0 , we perform a correction based on batch samples average - moySample=mean(xb[indsp,3]);if (moySample==0) moySample=1 - newval[indsp] = (vref*xb[indsp,3])/moySample - if(length(indpb)>0){ - moypool=mean(xb[indpb,3]) ; if (moypool==0) moypool=1 - newval[indpb] = (vref*xb[indpb,3])/moypool - } - } - newval <- list(norm.ion=newval,norm.ind=ind) - return(newval) -} - -normlinear <- function (xb,detail="no",vref=1,b,valneg=0) { - # Correction function applied to 1 ion in 1 batch. - # Use a linear regression computed on QC-pools in order to correct samples intensity values - # xb: dataframe with ions in columns and samples in rows; x is a result of concatenation of sample metadata file and ion file - # nbid: number of sample description columns (id and factors) with at least "batch", "injectionOrder" and "sampleType" - # b: which batch it is - # valneg: to determine what to do with generated negative and Inf values - indpb = which(xb$sampleType=="pool")# pools subscripts of current batch - indsp = which(xb$sampleType=="sample")# samples of current batch subscripts - indbt = which(xb$sampleType=="sample" | xb$sampleType=="pool") # QCpools and samples of current batch subscripts - labion=dimnames(xb)[[2]][3] - newval=xb[[3]] # initialisation of corrected values = intial values - ind <- 0 # initialisation of correction indicator - normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="linear") - if (normTodo==0) { - ind <- 1 - reslsfit=lsfit(xb[indpb,2],xb[indpb,3]) # linear regression for QCpools - reslsfitSample=lsfit(xb[indsp,2],xb[indsp,3]) # linear regression for samples - ordori=reslsfit$coefficients[1] - pente=reslsfit$coefficients[2] - if (detail=="reg") { - liminf=min(xb[indbt,3]);limsup=max(xb[indbt,3]) - plot(xb[indsp,2],xb[indsp,3],pch=16, - main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup)) - points(xb[indpb,2], xb[indpb,3],pch=5) - abline(reslsfit) - abline(reslsfitSample,lty=2) - } - # correction with rescaling of ion global intensity (vref) - newval = (vref*xb[indbt,3]) / (pente * (xb[indbt,2]) + ordori) - newval[which((pente * (xb[indbt,2]) + ordori)<1)] <- -1 # to handle cases where 0<denominator<1 - # handling if any negative values (or null denominators) - if(length(which((newval==Inf)|(newval<0)))!=0){ - toajust <- which((newval==Inf)|(newval<0)) - if(valneg=="NA"){ - newval[toajust] <- NA - } else { - newval[toajust] <- vref * (xb[indbt,3][toajust]) / mean(xb[indbt,3]) - ### Other possibility - ## if(pente>0){ # slope orientation - ## newval[toajust]<-(vref*(xb[indbt,3][toajust]))/(pente*ceiling(-ordori/pente+1.00001)+ordori) - ## }else{ - ## newval[toajust]<-(vref*(xb[indbt,3][toajust]))/(pente*floor(-ordori/pente-1.00001)+ordori) - ## } - } - } - } else {# if ok_norm!=0 , we perform a correction based on batch samples average. - moySample=mean(xb[indsp,3]); if (moySample==0) moySample=1 - newval[indsp] = (vref*xb[indsp,3])/moySample - if(length(indpb)>0){ - moypool=mean(xb[indpb,3]) ; if (moypool==0) moypool=1 - newval[indpb] = (vref*xb[indpb,3])/moypool - } - } - newval <- list(norm.ion=newval,norm.ind=ind) - return(newval) -} - - -normloess <- function (xb,detail="no",vref=1,b,span=NULL) { - # Correction function applied to 1 ion in 1 batch. - # Use a loess regression computed on QC-pools in order to correct samples intensity values. - # xb : dataframe for 1 ion in columns and samples in rows. - # detail : level of detail in the outlog file. - # vref : reference value (average of ion) - # b : batch subscript - indpb = which(xb$sampleType=="pool") # pools subscripts of current batch - indsp = which(xb$sampleType=="sample") # samples of current batch subscripts - indbt = which(xb$sampleType=="sample" | xb$sampleType=="pool");# batch subscripts of all samples and QCpools - labion=dimnames(xb)[[2]][3] - newval=xb[[3]] # initialisation of corrected values = intial values - ind <- 0 # initialisation of correction indicator - normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="loess") - #cat("batch:",b," dim xb=",dim(xb)," ok=",normTodo,"\n") - if (normTodo==0) { - if(length(span)==0){span1<-1}else{span1<-span} - resloess=loess(xb[indpb,3]~xb[indpb,2],span=span1,degree=2,family="gaussian",iterations=4,surface="direct") # loess regression with QCpools - cor=predict(resloess,newdata=xb[,2]) - cor[cor<=1] <- 1 - newval=(vref*xb[,3]) / cor - if(length(which(newval>3*(quantile(newval)[4])))>0){ # in this case no modification of initial value - newval <- xb[,3]} else {ind <- 1} # confirmation of correction - if ((detail=="reg")&(ind==1)) { # plot - liminf=min(xb[indbt,3]);limsup=max(xb[indbt,3]) - plot(xb[indsp,2],xb[indsp,3],pch=16,main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup)) - points(xb[indpb,2], xb[indpb,3],pch=5) - points(cbind(resloess$x,resloess$fitted)[order(resloess$x),],type="l",col="red") - } - } - if (ind==0) {# if ok_norm != 0 or if correction creates outliers, we perform a correction based on batch samples average - moySample=mean(xb[indsp,3]);if (moySample==0) moySample=1 - newval[indsp] = (vref*xb[indsp,3])/moySample - if(length(indpb)>0){ - moypool=mean(xb[indpb,3]) ; if (moypool==0) moypool=1 - newval[indpb] = (vref*xb[indpb,3])/moypool - } - } - newval <- list(norm.ion=newval,norm.ind=ind) - return(newval) -} - - - -norm_QCpool <- function (x, nbid, outlog, fact, metaion, detail="no", NormMoyPool=F, NormInt=F, method="linear",span="none",valNull="0") -{ - ### Correction applying linear or lo(w)ess correction function on all ions for every batch of a dataframe. - # x: dataframe with ions in column and samples' metadata - # nbid: number of sample description columns (id and factors) with at least "batch", "injectionOrder", "sampleType" - # outlog: name of regression plots and PCA pdf file - # fact: factor to be used as categorical variable for plots - # metaion: dataframe of ions' metadata - # detail: level of detail in the outlog file. detail="no" ACP + boxplot of CV before and after correction. - # detail="plot" with plot for all batch before and after correction. - # detail="reg" with added plots with regression lines for all batches. - # NormMoyPool: not used - # NormInt: not used - # method: regression method to be used to correct : "linear" or "lowess" or "loess" - # valNull: to determine what to do with negatively estimated intensities - indfact =which(dimnames(x)[[2]]==fact) - indtypsamp=which(dimnames(x)[[2]]=="sampleType") - indbatch =which(dimnames(x)[[2]]=="batch") - indinject =which(dimnames(x)[[2]]=="injectionOrder") - lastIon=dim(x)[2] - valref=apply(as.matrix(x[,(nbid+1):(lastIon)]),2,mean) # reference value for each ion used to still have the same rought size of values - nbi=lastIon-nbid # number of ions - nbb=length(levels(x$batch)) # Number of batch(es) = number of levels of factor "batch" (can be =1) - nbs=length(x$sampleType[x$sampleType=="sample"])# Number of samples - nbp=length(x$sampleType[x$sampleType=="pool"])# Number of QCpools - Xn=data.frame(x[,c(1:nbid)],matrix(0,nrow=nbp+nbs,ncol=nbi))# initialisation of the corrected dataframe (=initial dataframe) - dimnames(Xn)=dimnames(x) - cv=data.frame(matrix(0,nrow=nbi,ncol=2))# initialisation of dataframe containing CV before and after correction - dimnames(cv)[[2]]=c("avant","apres") - if (detail!="reg" && detail!="plot" && detail!="no") {detail="no"} - pdf(outlog,width=27,height=20) - cat(nbi," ions ",nbb," batch(es) \n") - if (detail=="plot") {if(nbb<6){par(mfrow=c(3,3),ask=F,cex=1.5)}else{par(mfrow=c(4,4),ask=F,cex=1.5)}} - res.ind <- matrix(NA,ncol=nbb,nrow=nbi,dimnames=list(dimnames(x)[[2]][-c(1:nbid)],paste("norm.b",1:nbb,sep=""))) - for (p in 1:nbi) {# for each ion - labion=dimnames(x)[[2]][p+nbid] - if (detail == "reg") {if(nbb<6){par(mfrow=c(3,3),ask=F,cex=1.5)}else{par(mfrow=c(4,4),ask=F,cex=1.5)}} - indpool=which(x$sampleType=="pool")# QCpools subscripts in all batches - pools1=x[indpool,p+nbid]; cv[p,1]=sd(pools1)/mean(pools1)# CV before correction - for (b in 1:nbb) {# for every batch - indpb = which(x$batch==levels(x$batch)[b] & x$sampleType=="pool")# QCpools subscripts of the current batch - indsp = which(x$batch==levels(x$batch)[b] & x$sampleType=="sample")# samples subscripts of the current batch - indbt = which(x$batch==levels(x$batch)[b] & (x$sampleType=="pool" | x$sampleType=="sample")) # subscripts of all samples - # cat(dimnames(x)[[2]][p+nbid]," indsp:",length(indsp)," indpb=",length(indpb)," indbt=",length(indbt)," ") - sub=data.frame(x[(x$batch==levels(x$batch)[b]),c(indtypsamp,indinject,p+nbid)]) - if (method=="linear") { res.norm = normlinear(sub,detail,valref[p],b,valNull) - } else { if (method=="loess"){ res.norm <- normloess(sub,detail,valref[p],b,span) - } else { if (method=="lowess"){ res.norm <- normlowess(sub,detail,valref[p],b,span) - } else {stop("\n--\nNo valid 'method' argument supplied.\nMust be 'linear','loess' or 'lowess'.\n--\n")} - }} - Xn[indbt,p+nbid] = res.norm[[1]] - res.ind[p,b] <- res.norm[[2]] - # CV batch test : if after normaliszation, CV before < CV after initial values are kept -# moypoolRaw=mean(x[indpb,p+nbid]) ; if (moypoolRaw==0) moypoolRaw=1 -# moySampleRaw=mean(x[indsp,p+nbid]); if (moySampleRaw==0) moySampleRaw=1 -# moypool=mean(Xn[indpb,p+nbid]) ; if (moypool==0) moypool=1 -# #moySample=mean(Xn[indsp,p+nbid]); if (moySample==0) moySample=1 -# if (sd( Xn[indpb,p+nbid])/moypool>sd(x[indpb,p+nbid])/moypoolRaw) { -# Xn[indpb,p+nbid] = (valref[p]*x[indpb,p+nbid])/moypoolRaw -# Xn[indsp,p+nbid] = (valref[p]*x[indsp,p+nbid])/moySampleRaw -# } - } - Xn[indpool,p+nbid][Xn[indpool,p+nbid]<0] <- 0 - pools2=Xn[indpool,p+nbid]; cv[p,2]=sd(pools2,na.rm=TRUE)/mean(pools2,na.rm=TRUE)# CV apres correction - if (detail=="reg" || detail=="plot" ) { - # plot before and after correction - minval=min(cbind(x[p+nbid],Xn[p+nbid]),na.rm=TRUE);maxval=max(cbind(x[p+nbid],Xn[p+nbid]),na.rm=TRUE) - plot( x$injectionOrder, x[,p+nbid],col=x$batch,ylab=labion,ylim=c(minval,maxval), - main=paste0("before correction (CV for pools = ",round(cv[p,1],2),")")) - points(x$injectionOrder[indpool],x[indpool,p+nbid],col="maroon",pch=".",cex=2) - plot(Xn$injectionOrder,Xn[,p+nbid],col=x$batch,ylab="",ylim=c(minval,maxval), - main=paste0("after correction (CV for pools = ",round(cv[p,2],2),")")) - points(Xn$injectionOrder[indpool],Xn[indpool,p+nbid],col="maroon",pch=".",cex=2) - suppressWarnings(plot.design( x[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect before correction")) - suppressWarnings(plot.design(Xn[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect after correction")) - } - } - ### Replacement of post correction negative values by chosen value - Xnn=Xn - for (i in c((nbid+1):dim(Xn)[2])) { - cneg=which(Xn[[i]]<0) - Xnn[[i]]=replace(Xn[[i]],cneg,as.numeric(valNull)) - } - Xn=Xnn - - if (detail=="reg" || detail=="plot" || detail=="no") { - if (nbi > 3) { - par(mfrow=c(3,4),ask=F,cex=1.2) # PCA Plot before/after, normed only and ions plot - acplight(x[,c(indtypsamp,indbatch,indtypsamp,indfact,(nbid+1):lastIon)],"uv",TRUE) - norm.ion <- which(colnames(Xn)%in%(rownames(res.ind)[which(rowSums(res.ind)>=1)])) - acplight(Xn[,c(indtypsamp,indbatch,indtypsamp,indfact,(nbid+1):lastIon)],"uv",TRUE,norm.ion) - if(length(norm.ion)>0){acplight(Xn[,c(indtypsamp,indbatch,indtypsamp,indfact,norm.ion)],"uv",TRUE)} - par(mfrow=c(1,2),ask=F,cex=1.2) # Before/after boxplot - cvplot=cv[!is.na(cv[[1]])&!is.na(cv[[2]]),] - if(nrow(cvplot)>0){ - boxplot(cvplot[[1]],ylim=c(min(cvplot),max(cvplot)),main="CV before correction") - boxplot(cvplot[[2]],ylim=c(min(cvplot),max(cvplot)),main="CV after correction") - } - dev.off() - } - } - if (nbi<=3) {dev.off()} - # transposed matrix is return (format of the initial matrix with ions in rows) - Xr=Xn[,-c(1:nbid)]; dimnames(Xr)[[1]]=Xn[[1]] - Xr=t(Xr) ; Xr <- data.frame(ions=rownames(Xr),Xr) - - res.norm[[1]] <- Xr ; res.norm[[2]] <- data.frame(metaion,res.ind) ; res.norm[[3]] <- x[,c(1:nbid)] - names(res.norm) <- c("dataMatrix","variableMetadata","sampleMetadata") - return(res.norm) -} - - - - - -acplight <- function(ids, scaling="uv", indiv=FALSE,indcol=NULL) { - suppressPackageStartupMessages(library(ade4)) - suppressPackageStartupMessages(library(pcaMethods)) - # Make a PCA and plot scores and loadings. - # First column must contain samples' identifiers. - # Columns 2 to 4 contain factors to colour the plots. - for (i in 1:3) { - idss=ids[which(ids[,i+1]!="NA"),] - idss=data.frame(idss[idss[,i+1]!="",]) - classe=as.factor(idss[[i+1]]) - idsample=as.character(idss[[1]]) - colour=1:length(levels(classe)) - ions=as.matrix(idss[,5:dim(idss)[2]]) - # Removing ions containing NA (not compatible with standard PCA) - ions=t(na.omit(t(ions))) - if(i==1){if(ncol(ions)!=(ncol(idss)-4)){cat("Note:",(ncol(idss)-4)-ncol(ions),"ions were ignored for PCA display due to NA in intensities.\n")}} - # Scaling choice: "uv","none","pareto" - object=suppressWarnings(prep(ions, scale=scaling, center=TRUE)) - if(i==1){if(length(which(apply(ions,2,var)==0))>0){cat("Warning: there are",length(which(apply(ions,2,var)==0)),"constant ions.\n")}} - # ALGO: nipals,svdImpute, Bayesian, svd, probalistic=F - result <- pca(object, center=F, method="svd", nPcs=2) - # ADE4 : to plot samples' ellipsoid for each class - s.class(result@scores, classe, cpoint = 1,xax=1,yax=2,col=colour,sub=sprintf("Scores - PCs %sx%s",1,2), possub="bottomright") - #s.label(result@loadings,label = ions, cpoint = 0, clabel=0.4, xax=1,yax=2,sub="Loadings",possub="bottomright") - if(i==1){resulti <- result} - } - if(indiv) { - colour <- rep("darkblue",length(resulti@loadings)) ; if(!is.null(indcol)) {colour[-c(indcol)] <- "red"} - plot(resulti@loadings,col=colour,main="Loadings",xaxt="n",yaxt="n",pch=20, - xlab=bquote(PC1-R^2==.(resulti@R2[1])),ylab=bquote(PC2 - R^2 == .(resulti@R2[2]))) - abline(h=0,v=0)} -} - -
