Mercurial > repos > eschen42 > mqppep_anova
view MaxQuantProcessingScript.R @ 0:c1403d18c189 draft
"planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/mqppep commit bb6c941be50db4c0719efdeaa904d7cb7aa1d182"
author | eschen42 |
---|---|
date | Mon, 07 Mar 2022 19:05:01 +0000 |
parents | |
children | d4d531006735 |
line wrap: on
line source
#!/usr/bin/env Rscript # This is the implementation for the # "MaxQuant Phosphopeptide Localization Probability Cutoff" # Galaxy tool (mqppep_lclztn_filter) # It is adapted from the MaxQuant Processing Script written by Larry Cheng. # libraries library(optparse) library(data.table) library(stringr) library(ggplot2) #library(PTXQC) #require(PTXQC) #require(methods) # title: "MaxQuant Processing Script" # author: "Larry Cheng" # date: "February 19, 2018" # # # MaxQuant Processing Script # Takes MaxQuant Phospho (STY)sites.txt file as input and performs the following (in order): # 1) Runs the Proteomics Quality Control software # 2) Remove contaminant and reverse sequence rows # 3) Filters rows based on localization probability # 4) Extract the quantitative data # 5) Sequences phosphopeptides # 6) Merges multiply phosphorylated peptides # 7) Filters out phosphopeptides based on enrichment # The output file contains the phosphopeptide (first column) and the quantitative values for each sample # # ## Revision History # Rev. 2022-02-10 :wrap for inclusion in Galaxy # Rev. 2018-02-19 :break up analysis script into "MaxQuant Processing Script" and "Phosphopeptide Processing Script" # Rev. 2017-12-12 :added PTXQC # added additional plots and table outputs for quality control # allowed for more than 2 samples to be grouped together (up to 26 (eg, 1A, 1B, 1C, etc))regexSampleNames <- # "\\.(\\d+)[A-Z]$" # converted from .r to .rmd file to knit report for quality control # Rev. 2016-09-11 :automated the FDR cutoffs; removed the option to data impute multiple times # Rev. 2016-09-09 :added filter to eliminate contaminant and reverse sequence rows # Rev. 2016-09-01 :moved the collapse step from after ANOVA filter to prior to preANOVA file output # Rev. 2016-08-22 :changed regexpression to regexSampleNames <- "\\.(\\d+)[AB]$" so that it looks at the end of string # Rev. 2016-08-05 :Removed vestigial line (ppeptides <- ....) # Rev. 2016-07-03 :Removed row names from the write.table() output for ANOVA and PreANOVA # Rev. 2016-06-25 :Set default Localization Probability cutoff to 0.75 # Rev. 2016-06-23 :fixed a bug in filtering for pY enrichment by resetting the row numbers afterwards # Rev. 2016-06-21 :test18 + standardized the regexpression in protocol ### FUNCTION DECLARATIONS begin ---------------------------------------------- # Read first line of file at filePath # adapted from: https://stackoverflow.com/a/35761217/15509512 readFirstLine <- function(filepath) { con = file(filepath, "r") line = readLines(con, n = 1) close(con) return(line) } # Move columns to the end of dataframe # - data: the dataframe # - move: a vector of column names, each of which is an element of names(data) movetolast <- function(data, move) { data[c(setdiff(names(data), move), move)] } # Generate phosphopeptide and build list when applied phosphopeptide_func <- function(df) { #generate peptide sequence and list of phosphopositions phosphoprobsequence <- strsplit(as.character(df["Phospho (STY) Score diffs"]), "")[[1]] output <- vector() phosphopeptide <- "" counter <- 0 #keep track of position in peptide phosphopositions <- vector() #keep track of phosphorylation positions in peptide score_diff <- "" for (chara in phosphoprobsequence){ #build peptide sequence if (!(chara == " " | chara == "(" | chara == ")" | chara =="." | chara =="-" | chara == "0" | chara == "1" | chara == "2" | chara == "3" | chara =="4" | chara == "5" | chara == "6" | chara == "7" | chara =="8" | chara =="9")) { phosphopeptide <- paste(phosphopeptide,chara,sep="") counter <- counter + 1 } #generate score_diff if (chara == "-" | chara =="." | chara == "0" | chara == "1" | chara == "2" | chara == "3" | chara =="4" | chara == "5" | chara == "6" | chara == "7" | chara =="8" | chara =="9"){ score_diff <- paste(score_diff,chara,sep="") } #evaluate score_diff if (chara == ")" ){ score_diff <- as.numeric(score_diff) #only consider a phosphoresidue if score_diff > 0 if (score_diff > 0) { phosphopositions <- append(phosphopositions, counter) } score_diff <- "" } } #generate phosphopeptide sequence (ie, peptide sequence with "p"'s) counter <- 1 phosphoposition_correction1 <- -1 #used to correct phosphosposition as "p"'s are inserted into the phosphopeptide string phosphoposition_correction2 <- 0 #used to correct phosphosposition as "p"'s are inserted into the phosphopeptide string while (counter <= length(phosphopositions) ) { phosphopeptide <- paste(substr(phosphopeptide,0,phosphopositions[counter]+phosphoposition_correction1),"p",substr(phosphopeptide,phosphopositions[counter]+phosphoposition_correction2,nchar(phosphopeptide)),sep="") counter <- counter + 1 phosphoposition_correction1 <- phosphoposition_correction1 + 1 phosphoposition_correction2 <- phosphoposition_correction2 + 1 } #building phosphopeptide list output <- append(output,phosphopeptide) return(output) } ### FUNCTION DECLARATIONS end ------------------------------------------------ ### EXTRACT ARGUMENTS begin -------------------------------------------------- # parse options option_list <- list( make_option( c("-i", "--input"), action = "store", type = "character", help = "A MaxQuant Phospho (STY)Sites.txt" ) , make_option( c("-o", "--output"), action = "store", type = "character", help = "path to output file" ) , make_option( c("-E", "--enrichGraph"), action = "store", type = "character", help = "path to enrichment graph PDF" ) , make_option( c("-F", "--enrichGraph_svg"), action = "store", type = "character", help = "path to enrichment graph SVG" ) , make_option( c("-L", "--locProbCutoffGraph"), action = "store", type = "character", help = "path to location-proability cutoff graph PDF" ) , make_option( c("-M", "--locProbCutoffGraph_svg"), action = "store", type = "character", help = "path to location-proability cutoff graph SVG" ) , make_option( c("-e", "--enriched"), action = "store", type = "character", help = "pY or pST enriched samples (ie, 'Y' or 'ST')" ) # default = "^Number of Phospho [(]STY[)]$", , make_option( c("-p", "--phosphoCol"), action = "store", type = "character", help = "PERL-compatible regular expression matching header of column having number of 'Phospho (STY)'" ) # default = "^Intensity[^_]", , make_option( c("-s", "--startCol"), action = "store", type = "character", help = "PERL-compatible regular expression matching column header having first sample intensity" ) # default = 1, , make_option( c("-I", "--intervalCol"), action = "store", type = "integer", help = "Column interval between the Intensities of samples (eg, 1 if subsequent column; 2 if every other column" ) # default = 0.75, , make_option( c("-l", "--localProbCutoff"), action = "store", type = "double", help = "Localization Probability Cutoff" ) # default = "sum", , make_option( c("-f", "--collapse_func"), action = "store", type = "character", help = "merge identical phosphopeptides by ('sum' or 'average') the intensities" ) # default = "filteredData.txt", , make_option( c("-r", "--filtered_data"), action = "store", type = "character", help = "filteredData.txt" ) # default = "quantData.txt", , make_option( c("-q", "--quant_data"), action = "store", type = "character", help = "quantData.txt" ) ) args <- parse_args(OptionParser(option_list=option_list)) # Check parameter values ### EXTRACT ARGUMENTS end ---------------------------------------------------- ### EXTRACT PARAMETERS from arguments begin ---------------------------------- if (! file.exists(args$input)) { stop((paste("File", args$input, "does not exist"))) } phosphoColPattern <- "^Number of Phospho [(][STY][STY]*[)]$" startColPattern <- "^Intensity[^_]" phosphoColPattern <- readFirstLine(args$phosphoCol) startColPattern <- readFirstLine(args$startCol) sink(getConnection(2)) #ACE print(paste("phosphoColPattern", phosphoColPattern)) #ACE print(paste("startColPattern", startColPattern)) inputFilename <- args$input filteredFilename <- args$filtered_data quantFilename <- args$quant_data intervalCol <- as.integer(args$intervalCol) firstLine <- readFirstLine(inputFilename) columnHeaders <- unlist(strsplit(x=firstLine, split=c('\t'), fixed=TRUE)) sink(getConnection(2)) #ACE print("columnHeaders") #ACE print(columnHeaders) sink() intensityHeaderCols <- grep(pattern=startColPattern, x=columnHeaders, perl=TRUE) if ( length(intensityHeaderCols) == 0) { err_msg <- paste("Found no intensity columns matching pattern:", startColPattern) # Divert output to stderr sink(getConnection(2)) print(err_msg) sink() stop(err_msg) } phosphoCol <- grep(pattern=phosphoColPattern, x=columnHeaders, perl=TRUE)[1] if (is.na(phosphoCol)) { err_msg <- paste("Found no 'number of phospho sites' columns matching pattern:", phosphoColPattern) # Divert output to stderr sink(getConnection(2)) print(err_msg) sink() stop(err_msg) } i_count <- 0 this_column <- 1 last_value <- intensityHeaderCols[1] intensityCols <- c(last_value) while ( length(intensityHeaderCols) >= intervalCol * i_count ) { i_count <- 1 + i_count this_column <- intervalCol + this_column if ( last_value + intervalCol != intensityHeaderCols[this_column] ) break last_value <- intensityHeaderCols[this_column] if (length(intensityHeaderCols) < intervalCol * i_count) break intensityCols <- c(intensityCols, intensityHeaderCols[this_column]) } startCol <- intensityCols[1] numSamples <- i_count outputfilename <- args$output enrichGraphFilename <- args$enrichGraph locProbCutoffGraphFilename <- args$locProbCutoffGraph enrichGraphFilename_svg <- args$enrichGraph_svg locProbCutoffGraphFilename_svg <- args$locProbCutoffGraph_svg localProbCutoff <- args$localProbCutoff enriched <- args$enriched collapse_FUN <- args$collapse_func ### EXTRACT PARAMETERS from arguments end ------------------------------------ # Proteomics Quality Control for MaxQuant Results # (Bielow C et al. J Proteome Res. 2016 PMID: 26653327) # is run by the Galaxy MaxQuant wrapper and need not be invoked here. # Read data, filtering out contaminants, reverse sequences, and localization probability # --- fullData <- read.table(file = inputFilename, sep ="\t", header=T, quote="") #Filter out contaminant rows and reverse rows filteredData <- subset(fullData,!grepl("CON__", Proteins)) filteredData <- subset(filteredData,!grepl("_MYCOPLASMA", Proteins)) filteredData <- subset(filteredData,!grepl("CONTAMINANT_", Proteins)) filteredData <- subset(filteredData,!grepl("REV__", Protein)) #since REV__ rows are blank in the first column (Proteins) write.table(filteredData, file = filteredFilename, sep = "\t", quote=FALSE, col.names=TRUE, row.names=FALSE) # ... # Filter out data with localization probability below localProbCutoff # --- #Data filtered by localization probability locProbFilteredData <- filteredData[filteredData$Localization.prob>=localProbCutoff,] # ... # Localization probability -- visualize locprob cutoff # --- locProbGraphData <- data.frame( group = c(paste(">",toString(localProbCutoff),sep=""), paste("<",toString(localProbCutoff),sep="")), value = c(nrow(locProbFilteredData)/nrow(filteredData)*100, (nrow(filteredData)-nrow(locProbFilteredData))/nrow(filteredData)*100) ) gigi <- ggplot(locProbGraphData, aes(x = "", y = value, fill = group)) + geom_bar(width = 0.5, stat = "identity", color = "black") + labs( x = NULL , y = "percent" , title = "Phosphopeptides partitioned by localization-probability cutoff" ) + scale_fill_discrete(name = "phosphopeptide\nlocalization-\nprobability") + theme_minimal() + theme( legend.position = "right" , legend.title=element_text() , plot.title = element_text(hjust = 0.5) , plot.subtitle = element_text(hjust = 0.5) , plot.title.position = "plot" ) pdf(locProbCutoffGraphFilename) print(gigi) dev.off() svg(locProbCutoffGraphFilename_svg) print(gigi) dev.off() # ... # Extract quantitative values from filtered data # --- quantData <- locProbFilteredData[,seq(from=startCol, by=intervalCol, length.out=numSamples)] # ... # Generate Phosphopeptide Sequence # for latest version of MaxQuant (Version 1.5.3.30) # --- dataTable <- data.frame(locProbFilteredData[,1:8],locProbFilteredData[,phosphoCol],locProbFilteredData[,phosphoCol+1],locProbFilteredData[,phosphoCol+2],locProbFilteredData[,phosphoCol+3],locProbFilteredData[,phosphoCol+4],locProbFilteredData[,phosphoCol+5],locProbFilteredData[,phosphoCol+6],locProbFilteredData[,phosphoCol+7],quantData) colnames(dataTable) <- c("Proteins","Positions within proteins", "Leading proteins", "Protein", "Protein names", "Gene names", "Fasta headers", "Localization prob", "Number of Phospho (STY)", "Amino Acid", "Sequence window","Modification window", "Peptide window coverage", "Phospho (STY) Probabilities", "Phospho (STY) Score diffs", "Position in peptide", colnames(quantData)) # 'phosphopeptide_func' generates a phosphopeptide sequence for each row of data. # for the 'apply' function: MARGIN 1 == rows, 2 == columns, c(1,2) = both dataTable$Phosphopeptide <- apply(X=dataTable, MARGIN=1, FUN=phosphopeptide_func) # Move the quant data columns to the right end of the data.frame dataTable <- movetolast(dataTable,c(colnames(quantData))) # ... # Write quantitative values for debugging purposes # --- quantWrite <- cbind( dataTable[,"Sequence window"], quantData ) colnames(quantWrite)[1] <- "Sequence.Window" write.table(quantWrite, file = quantFilename, sep = "\t", quote=FALSE, col.names=TRUE, row.names=FALSE) # ... # Make new data frame containing only Phosphopeptides to be mapped to quant data (merge_df) # --- dataTable <- setDT(dataTable, keep.rownames=TRUE) #row name will be used to map merge_df <- data.frame(as.integer(dataTable$rn), dataTable$Phosphopeptide) #row index to merge data frames colnames(merge_df) <- c("rn", "Phosphopeptide") # ... # Add Phosphopeptide column to quant columns for quality control checking # --- quantData_qc <- as.data.frame(quantData) setDT(quantData_qc, keep.rownames=TRUE) #will use to match rowname to data quantData_qc$rn <- as.integer(quantData_qc$rn) quantData_qc <- merge(merge_df,quantData_qc, by="rn") quantData_qc$rn <- NULL #remove rn column # ... # Collapse multiphosphorylated peptides # --- quantData_qc_collapsed <- data.table(quantData_qc, key = "Phosphopeptide") quantData_qc_collapsed <- aggregate(. ~ Phosphopeptide,quantData_qc, FUN= collapse_FUN) # ... # Compute (as string) % of phosphopeptides that are multiphosphorylated (for use in next step) # --- pct_multiphos <- (nrow(quantData_qc) - nrow(quantData_qc_collapsed)) / (2 * nrow(quantData_qc)) pct_multiphos <- sprintf("%0.1f%s", 100 * pct_multiphos, "%") # ... # Compute and visualize breakdown of pY, pS, and pT before enrichment filter # --- pY_data <- quantData_qc_collapsed[str_detect(quantData_qc_collapsed$Phosphopeptide, "pY"),] pS_data <- quantData_qc_collapsed[str_detect(quantData_qc_collapsed$Phosphopeptide, "pS"),] pT_data <- quantData_qc_collapsed[str_detect(quantData_qc_collapsed$Phosphopeptide, "pT"),] pY_num <- nrow(pY_data) pS_num <- nrow(pS_data) pT_num <- nrow(pT_data) # Visualize enrichment enrichGraphData <- data.frame( group = c("pY", "pS", "pT"), value = c(pY_num, pS_num, pT_num) ) enrichGraphData <- enrichGraphData[enrichGraphData$value > 0,] # Plot pie chart with legend # start: https://stackoverflow.com/a/62522478/15509512 # refine: https://www.statology.org/ggplot-pie-chart/ # colors: https://colorbrewer2.org/#type=diverging&scheme=BrBG&n=8 slices <- enrichGraphData$value phosphoresidue <- enrichGraphData$group pct <- round(100 * slices / sum(slices)) lbls <- paste(enrichGraphData$group,"\n",pct, "%\n(", slices, ")", sep="") slc_ctr <- c() run_tot <- 0 for (p in pct) { slc_ctr <- c(slc_ctr, run_tot + p/2.0) run_tot <- run_tot + p } lbl_y <- 100 - slc_ctr df <- data.frame(slices, pct, lbls, phosphoresidue = factor(phosphoresidue, levels = phosphoresidue)) gigi <- ggplot( df , aes(x = 1, y = pct, fill = phosphoresidue)) + geom_col(position = "stack", orientation = "x") + geom_text(aes(x = 1, y = lbl_y, label = lbls), col = "black") + coord_polar(theta = "y", direction = -1) + labs( x = NULL , y = NULL , title = "Percentages (and counts) of phosphosites, by type of residue" , caption = sprintf("Roughly %s of peptides have multiple phosphosites.", pct_multiphos) ) + labs(x = NULL, y = NULL, fill = NULL) + theme_classic() + theme( legend.position="right" , axis.line = element_blank() , axis.text = element_blank() , axis.ticks = element_blank() , plot.title = element_text(hjust = 0.5) , plot.subtitle = element_text(hjust = 0.5) , plot.caption = element_text(hjust = 0.5) , plot.title.position = "plot" ) + scale_fill_manual(breaks = phosphoresidue, values=c("#c7eae5", "#f6e8c3", "#dfc27d")) pdf(enrichGraphFilename) print(gigi) dev.off() svg(enrichGraphFilename_svg) print(gigi) dev.off() # ... # Filter phosphopeptides by enrichment # -- if (enriched == "Y"){ quantData_qc_enrichment <- quantData_qc_collapsed[str_detect(quantData_qc_collapsed$Phosphopeptide, "pY"),] } else if ( enriched == "ST" ) { quantData_qc_enrichment <- quantData_qc_collapsed[str_detect(quantData_qc_collapsed$Phosphopeptide, "pS") | str_detect(quantData_qc_collapsed$Phosphopeptide, "pT"),] } else { print("Error in enriched variable. Set to either 'Y' or 'ST'") } # ... # Write phosphopeptides filtered by enrichment # -- write.table(quantData_qc_enrichment, file=outputfilename, sep="\t", quote = FALSE, row.names = FALSE) # ...