|
0
|
1 =head1 LICENSE
|
|
|
2
|
|
|
3 Copyright [1999-2015] Wellcome Trust Sanger Institute and the EMBL-European Bioinformatics Institute
|
|
|
4 Copyright [2016-2018] EMBL-European Bioinformatics Institute
|
|
|
5
|
|
|
6 Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
7 you may not use this file except in compliance with the License.
|
|
|
8 You may obtain a copy of the License at
|
|
|
9
|
|
|
10 http://www.apache.org/licenses/LICENSE-2.0
|
|
|
11
|
|
|
12 Unless required by applicable law or agreed to in writing, software
|
|
|
13 distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
15 See the License for the specific language governing permissions and
|
|
|
16 limitations under the License.
|
|
|
17
|
|
|
18 =head1 CONTACT
|
|
|
19
|
|
|
20 Ensembl <http://www.ensembl.org/info/about/contact/index.html>
|
|
|
21
|
|
|
22 =cut
|
|
|
23
|
|
|
24 =head1 NAME
|
|
|
25
|
|
|
26 Carol
|
|
|
27
|
|
|
28 =head1 SYNOPSIS
|
|
|
29
|
|
|
30 mv Carol.pm ~/.vep/Plugins
|
|
|
31 ./vep -i variations.vcf --plugin Carol
|
|
|
32
|
|
|
33 =head1 DESCRIPTION
|
|
|
34
|
|
|
35 This is a plugin for the Ensembl Variant Effect Predictor (VEP) that calculates
|
|
|
36 the Combined Annotation scoRing toOL (CAROL) score (1) for a missense mutation
|
|
|
37 based on the pre-calculated SIFT (2) and PolyPhen-2 (3) scores from the Ensembl
|
|
|
38 API (4). It adds one new entry class to the VEP's Extra column, CAROL which is
|
|
|
39 the calculated CAROL score. Note that this module is a perl reimplementation of
|
|
|
40 the original R script, available at:
|
|
|
41
|
|
|
42 http://www.sanger.ac.uk/resources/software/carol/
|
|
|
43
|
|
|
44 I believe that both versions implement the same algorithm, but if there are any
|
|
|
45 discrepancies the R version should be treated as the reference implementation.
|
|
|
46 Bug reports are welcome.
|
|
|
47
|
|
|
48 References:
|
|
|
49
|
|
|
50 (1) Lopes MC, Joyce C, Ritchie GRS, John SL, Cunningham F, Asimit J, Zeggini E.
|
|
|
51 A combined functional annotation score for non-synonymous variants
|
|
|
52 Human Heredity (in press)
|
|
|
53
|
|
|
54 (2) Kumar P, Henikoff S, Ng PC.
|
|
|
55 Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
|
|
|
56 Nature Protocols 4(8):1073-1081 (2009)
|
|
|
57 doi:10.1038/nprot.2009.86
|
|
|
58
|
|
|
59 (3) Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR.
|
|
|
60 A method and server for predicting damaging missense mutations
|
|
|
61 Nature Methods 7(4):248-249 (2010)
|
|
|
62 doi:10.1038/nmeth0410-248
|
|
|
63
|
|
|
64 (4) Flicek P, et al.
|
|
|
65 Ensembl 2012
|
|
|
66 Nucleic Acids Research (2011)
|
|
|
67 doi: 10.1093/nar/gkr991
|
|
|
68
|
|
|
69 =cut
|
|
|
70
|
|
|
71 package Carol;
|
|
|
72
|
|
|
73 use strict;
|
|
|
74 use warnings;
|
|
|
75
|
|
|
76 use Math::CDF qw(pnorm qnorm);
|
|
|
77
|
|
|
78 use base qw(Bio::EnsEMBL::Variation::Utils::BaseVepPlugin);
|
|
|
79
|
|
|
80 my $CAROL_CUTOFF = 0.98;
|
|
|
81
|
|
|
82 sub version {
|
|
|
83 return '2.3';
|
|
|
84 }
|
|
|
85
|
|
|
86 sub feature_types {
|
|
|
87 return ['Transcript'];
|
|
|
88 }
|
|
|
89
|
|
|
90 sub get_header_info {
|
|
|
91 return {
|
|
|
92 CAROL => "Combined Annotation scoRing toOL prediction",
|
|
|
93 };
|
|
|
94 }
|
|
|
95
|
|
|
96 sub run {
|
|
|
97 my ($self, $tva) = @_;
|
|
|
98
|
|
|
99 my $pph_pred = $tva->polyphen_prediction;
|
|
|
100 my $pph_score = $pph_pred ? ($pph_pred eq 'unknown' ? undef: $tva->polyphen_score) : undef;
|
|
|
101 my $sift_score = $tva->sift_score;
|
|
|
102
|
|
|
103 my ($carol_pred, $carol_score) = compute_carol($pph_score, $sift_score);
|
|
|
104
|
|
|
105 my $results = {};
|
|
|
106
|
|
|
107 if (defined $carol_pred) {
|
|
|
108
|
|
|
109 $carol_score = sprintf "%.3f", $carol_score;
|
|
|
110
|
|
|
111 my $result = "$carol_pred($carol_score)";
|
|
|
112
|
|
|
113 if (@{ $self->params } > 0) {
|
|
|
114 $result = $carol_pred if ($self->params->[0] =~ /^p/i);
|
|
|
115 $result = $carol_score if ($self->params->[0] =~ /^s/i);
|
|
|
116 }
|
|
|
117
|
|
|
118 $results = {
|
|
|
119 CAROL => $result,
|
|
|
120 };
|
|
|
121 }
|
|
|
122
|
|
|
123 return $results;
|
|
|
124 }
|
|
|
125
|
|
|
126 sub compute_carol {
|
|
|
127
|
|
|
128 my ($pph_score, $sift_score) = @_;
|
|
|
129
|
|
|
130 my $carol_score;
|
|
|
131
|
|
|
132 if (defined $pph_score) {
|
|
|
133 $pph_score = 0.999 if $pph_score == 1;
|
|
|
134 $pph_score = 0.0001 if $pph_score == 0;
|
|
|
135 }
|
|
|
136
|
|
|
137 if (defined $sift_score) {
|
|
|
138 $sift_score = 1 - $sift_score;
|
|
|
139 $sift_score = 0.999 if $sift_score == 1;
|
|
|
140 $sift_score = 0.0001 if $sift_score == 0;
|
|
|
141 }
|
|
|
142
|
|
|
143 if (defined $pph_score && defined $sift_score) {
|
|
|
144
|
|
|
145 my $pph_weight = log(1/(1-$pph_score));
|
|
|
146 my $sift_weight = log(1/(1-$sift_score));
|
|
|
147
|
|
|
148 # we take -qnorm, because the R script uses qnorm(..., lower.tail = FALSE)
|
|
|
149
|
|
|
150 my $pph_z = -qnorm($pph_score);
|
|
|
151 my $sift_z = -qnorm($sift_score);
|
|
|
152
|
|
|
153 my $numerator = ($pph_weight * $pph_z) + ($sift_weight * $sift_z);
|
|
|
154 my $denominator = sqrt( ($pph_weight ** 2) + ($sift_weight ** 2) );
|
|
|
155
|
|
|
156 # likewise we take 1 - pnorm
|
|
|
157
|
|
|
158 $carol_score = 1 - pnorm($numerator / $denominator);
|
|
|
159 }
|
|
|
160 elsif (defined $pph_score) {
|
|
|
161 $carol_score = $pph_score;
|
|
|
162 }
|
|
|
163 else {
|
|
|
164 $carol_score = $sift_score;
|
|
|
165 }
|
|
|
166
|
|
|
167 if (defined $carol_score) {
|
|
|
168 my $carol_pred = $carol_score < $CAROL_CUTOFF ? 'Neutral' : 'Deleterious';
|
|
|
169 return ($carol_pred, $carol_score);
|
|
|
170 }
|
|
|
171 else {
|
|
|
172 return undef;
|
|
|
173 }
|
|
|
174 }
|
|
|
175
|
|
|
176 1;
|
|
|
177
|