0
|
1 #!/usr/bin/python
|
|
2 # version 1 7-5-2012 unification of the SmRNAwindow class
|
|
3
|
|
4 import sys, subprocess
|
|
5 from collections import defaultdict
|
|
6 from numpy import mean, median, std
|
|
7 from scipy import stats
|
|
8
|
|
9 def get_fasta (index="/home/galaxy/galaxy-dist/bowtie/5.37_Dmel/5.37_Dmel"):
|
|
10 '''This function will return a dictionary containing fasta identifiers as keys and the
|
|
11 sequence as values. Index must be the path to a fasta file.'''
|
|
12 p = subprocess.Popen(args=["bowtie-inspect","-a", "0", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines
|
|
13 outputlines = p.stdout.readlines()
|
|
14 p.wait()
|
|
15 item_dic = {}
|
|
16 for line in outputlines:
|
|
17 if (line[0] == ">"):
|
|
18 try:
|
|
19 item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item
|
|
20 except: pass
|
|
21 current_item = line[1:].rstrip().split()[0] #take the first word before space because bowtie splits headers !
|
|
22 item_dic[current_item] = ""
|
|
23 stringlist=[]
|
|
24 else:
|
|
25 stringlist.append(line.rstrip() )
|
|
26 item_dic[current_item] = "".join(stringlist) # for the last item
|
|
27 return item_dic
|
|
28
|
|
29 def get_fasta_headers (index):
|
|
30 p = subprocess.Popen(args=["bowtie-inspect","-n", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines
|
|
31 outputlines = p.stdout.readlines()
|
|
32 p.wait()
|
|
33 item_dic = {}
|
|
34 for line in outputlines:
|
|
35 header = line.rstrip().split()[0] #take the first word before space because bowtie splits headers !
|
|
36 item_dic[header] = 1
|
|
37 return item_dic
|
|
38
|
|
39
|
|
40 def get_file_sample (file, numberoflines):
|
|
41 '''import random to use this function'''
|
|
42 F=open(file)
|
|
43 fullfile = F.read().splitlines()
|
|
44 F.close()
|
|
45 if len(fullfile) < numberoflines:
|
|
46 return "sample size exceeds file size"
|
|
47 return random.sample(fullfile, numberoflines)
|
|
48
|
|
49 def get_fasta_from_history (file):
|
|
50 F = open (file, "r")
|
|
51 item_dic = {}
|
|
52 for line in F:
|
|
53 if (line[0] == ">"):
|
|
54 try:
|
|
55 item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item
|
|
56 except: pass
|
|
57 current_item = line[1:-1].split()[0] #take the first word before space because bowtie splits headers !
|
|
58 item_dic[current_item] = ""
|
|
59 stringlist=[]
|
|
60 else:
|
|
61 stringlist.append(line[:-1])
|
|
62 item_dic[current_item] = "".join(stringlist) # for the last item
|
|
63 return item_dic
|
|
64
|
|
65 def antipara (sequence):
|
|
66 antidict = {"A":"T", "T":"A", "G":"C", "C":"G", "N":"N"}
|
|
67 revseq = sequence[::-1]
|
|
68 return "".join([antidict[i] for i in revseq])
|
|
69
|
|
70 def RNAtranslate (sequence):
|
|
71 return "".join([i if i in "AGCN" else "U" for i in sequence])
|
|
72 def DNAtranslate (sequence):
|
|
73 return "".join([i if i in "AGCN" else "T" for i in sequence])
|
|
74
|
|
75 def RNAfold (sequence_list):
|
|
76 thestring= "\n".join(sequence_list)
|
|
77 p = subprocess.Popen(args=["RNAfold","--noPS"], stdin= subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
|
78 output=p.communicate(thestring)[0]
|
|
79 p.wait()
|
|
80 output=output.split("\n")
|
|
81 if not output[-1]: output = output[:-1] # nasty patch to remove last empty line
|
|
82 buffer=[]
|
|
83 for line in output:
|
|
84 if line[0] in ["N","A","T","U","G","C"]:
|
|
85 buffer.append(DNAtranslate(line))
|
|
86 if line[0] in ["(",".",")"]:
|
|
87 fields=line.split("(")
|
|
88 energy= fields[-1]
|
|
89 energy = energy[:-1] # remove the ) parenthesis
|
|
90 energy=float(energy)
|
|
91 buffer.append(str(energy))
|
|
92 return dict(zip(buffer[::2], buffer[1::2]))
|
|
93
|
|
94 def extractsubinstance (start, end, instance):
|
|
95 ''' Testing whether this can be an function external to the class to save memory'''
|
|
96 subinstance = SmRNAwindow (instance.gene, instance.sequence[start-1:end], start)
|
|
97 subinstance.gene = "%s %s %s" % (subinstance.gene, subinstance.windowoffset, subinstance.windowoffset + subinstance.size - 1)
|
|
98 upcoordinate = [i for i in range(start,end+1) if instance.readDict.has_key(i) ]
|
|
99 downcoordinate = [-i for i in range(start,end+1) if instance.readDict.has_key(-i) ]
|
|
100 for i in upcoordinate:
|
|
101 subinstance.readDict[i]=instance.readDict[i]
|
|
102 for i in downcoordinate:
|
|
103 subinstance.readDict[i]=instance.readDict[i]
|
|
104 return subinstance
|
|
105
|
|
106 class HandleSmRNAwindows:
|
|
107 def __init__(self, alignmentFile="~", alignmentFileFormat="tabular", genomeRefFile="~", genomeRefFormat="bowtieIndex", biosample="undetermined", size_inf=None, size_sup=1000, norm=1.0):
|
|
108 self.biosample = biosample
|
|
109 self.alignmentFile = alignmentFile
|
|
110 self.alignmentFileFormat = alignmentFileFormat # can be "tabular" or "sam"
|
|
111 self.genomeRefFile = genomeRefFile
|
|
112 self.genomeRefFormat = genomeRefFormat # can be "bowtieIndex" or "fastaSource"
|
|
113 self.alignedReads = 0
|
|
114 self.instanceDict = {}
|
|
115 self.size_inf=size_inf
|
|
116 self.size_sup=size_sup
|
|
117 self.norm=norm
|
|
118 if genomeRefFormat == "bowtieIndex":
|
|
119 self.itemDict = get_fasta (genomeRefFile)
|
|
120 elif genomeRefFormat == "fastaSource":
|
|
121 self.itemDict = get_fasta_from_history (genomeRefFile)
|
|
122 for item in self.itemDict:
|
|
123 self.instanceDict[item] = SmRNAwindow(item, sequence=self.itemDict[item], windowoffset=1, biosample=self.biosample, norm=self.norm) # create as many instances as there is items
|
|
124 self.readfile()
|
|
125
|
|
126 def readfile (self) :
|
|
127 if self.alignmentFileFormat == "tabular":
|
|
128 F = open (self.alignmentFile, "r")
|
|
129 for line in F:
|
|
130 fields = line.split()
|
|
131 polarity = fields[1]
|
|
132 gene = fields[2]
|
|
133 offset = int(fields[3])
|
|
134 size = len (fields[4])
|
|
135 if self.size_inf:
|
|
136 if (size>=self.size_inf and size<= self.size_sup):
|
|
137 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow
|
|
138 self.alignedReads += 1
|
|
139 else:
|
|
140 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow
|
|
141 self.alignedReads += 1
|
|
142 F.close()
|
|
143 return self.instanceDict
|
|
144 # elif self.alignmentFileFormat == "sam":
|
|
145 # F = open (self.alignmentFile, "r")
|
|
146 # dict = {"0":"+", "16":"-"}
|
|
147 # for line in F:
|
|
148 # if line[0]=='@':
|
|
149 # continue
|
|
150 # fields = line.split()
|
|
151 # if fields[2] == "*": continue
|
|
152 # polarity = dict[fields[1]]
|
|
153 # gene = fields[2]
|
|
154 # offset = int(fields[3])
|
|
155 # size = len (fields[9])
|
|
156 # if self.size_inf:
|
|
157 # if (size>=self.size_inf and size<= self.size_sup):
|
|
158 # self.instanceDict[gene].addread (polarity, offset, size)
|
|
159 # self.alignedReads += 1
|
|
160 # else:
|
|
161 # self.instanceDict[gene].addread (polarity, offset, size)
|
|
162 # self.alignedReads += 1
|
|
163 # F.close()
|
|
164 elif self.alignmentFileFormat == "bam" or self.alignmentFileFormat == "sam":
|
|
165 import pysam
|
|
166 samfile = pysam.Samfile(self.alignmentFile)
|
|
167 for read in samfile:
|
|
168 if read.tid == -1:
|
|
169 continue # filter out unaligned reads
|
|
170 if read.is_reverse:
|
|
171 polarity="-"
|
|
172 else:
|
|
173 polarity="+"
|
|
174 gene = samfile.getrname(read.tid)
|
|
175 offset = read.pos
|
|
176 size = read.qlen
|
|
177 if self.size_inf:
|
|
178 if (size>=self.size_inf and size<= self.size_sup):
|
|
179 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow
|
|
180 self.alignedReads += 1
|
|
181 else:
|
|
182 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow
|
|
183 self.alignedReads += 1
|
|
184 return self.instanceDict
|
|
185
|
|
186 # def size_histogram (self):
|
|
187 # size_dict={}
|
|
188 # size_dict['F']= defaultdict (int)
|
|
189 # size_dict['R']= defaultdict (int)
|
|
190 # size_dict['both'] = defaultdict (int)
|
|
191 # for item in self.instanceDict:
|
|
192 # buffer_dict_F = self.instanceDict[item].size_histogram()['F']
|
|
193 # buffer_dict_R = self.instanceDict[item].size_histogram()['R']
|
|
194 # for size in buffer_dict_F:
|
|
195 # size_dict['F'][size] += buffer_dict_F[size]
|
|
196 # for size in buffer_dict_R:
|
|
197 # size_dict['R'][size] -= buffer_dict_R[size]
|
|
198 # allSizeKeys = list (set (size_dict['F'].keys() + size_dict['R'].keys() ) )
|
|
199 # for size in allSizeKeys:
|
|
200 # size_dict['both'][size] = size_dict['F'][size] + size_dict['R'][size]
|
|
201 # return size_dict
|
|
202 def size_histogram (self): # in HandleSmRNAwindows
|
|
203 '''refactored on 7-9-2014 to debug size_histogram tool'''
|
|
204 size_dict={}
|
|
205 size_dict['F']= defaultdict (float)
|
|
206 size_dict['R']= defaultdict (float)
|
|
207 size_dict['both'] = defaultdict (float)
|
|
208 for item in self.instanceDict:
|
|
209 buffer_dict = self.instanceDict[item].size_histogram()
|
|
210 for polarity in ["F", "R"]:
|
|
211 for size in buffer_dict[polarity]:
|
|
212 size_dict[polarity][size] += buffer_dict[polarity][size]
|
|
213 for size in buffer_dict["both"]:
|
|
214 size_dict["both"][size] += buffer_dict["F"][size] - buffer_dict["R"][size]
|
|
215 return size_dict
|
|
216
|
|
217 def CountFeatures (self, GFF3="path/to/file"):
|
|
218 featureDict = defaultdict(int)
|
|
219 F = open (GFF3, "r")
|
|
220 for line in F:
|
|
221 if line[0] == "#": continue
|
|
222 fields = line[:-1].split()
|
|
223 chrom, feature, leftcoord, rightcoord, polarity = fields[0], fields[2], fields[3], fields[4], fields[6]
|
|
224 featureDict[feature] += self.instanceDict[chrom].readcount(upstream_coord=int(leftcoord), downstream_coord=int(rightcoord), polarity="both", method="destructive")
|
|
225 F.close()
|
|
226 return featureDict
|
|
227
|
|
228 class SmRNAwindow:
|
|
229
|
|
230 def __init__(self, gene, sequence="ATGC", windowoffset=1, biosample="Undetermined", norm=1.0):
|
|
231 self.biosample = biosample
|
|
232 self.sequence = sequence
|
|
233 self.gene = gene
|
|
234 self.windowoffset = windowoffset
|
|
235 self.size = len(sequence)
|
|
236 self.readDict = defaultdict(list) # with a {+/-offset:[size1, size2, ...], ...}
|
|
237 self.matchedreadsUp = 0
|
|
238 self.matchedreadsDown = 0
|
|
239 self.norm=norm
|
|
240
|
|
241 def addread (self, polarity, offset, size):
|
|
242 '''ATTENTION ATTENTION ATTENTION'''
|
|
243 ''' We removed the conversion from 0 to 1 based offset, as we do this now during readparsing.'''
|
|
244 if polarity == "+":
|
|
245 self.readDict[offset].append(size)
|
|
246 self.matchedreadsUp += 1
|
|
247 else:
|
|
248 self.readDict[-(offset + size -1)].append(size)
|
|
249 self.matchedreadsDown += 1
|
|
250 return
|
|
251
|
|
252 def barycenter (self, upstream_coord=None, downstream_coord=None):
|
|
253 '''refactored 24-12-2013 to save memory and introduce offset filtering see readcount method for further discussion on that
|
|
254 In this version, attempt to replace the dictionary structure by a list of tupple to save memory too'''
|
|
255 upstream_coord = upstream_coord or self.windowoffset
|
|
256 downstream_coord = downstream_coord or self.windowoffset+self.size-1
|
|
257 window_size = downstream_coord - upstream_coord +1
|
|
258 def weigthAverage (TuppleList):
|
|
259 weightSum = 0
|
|
260 PonderWeightSum = 0
|
|
261 for tuple in TuppleList:
|
|
262 PonderWeightSum += tuple[0] * tuple[1]
|
|
263 weightSum += tuple[1]
|
|
264 if weightSum > 0:
|
|
265 return PonderWeightSum / float(weightSum)
|
|
266 else:
|
|
267 return 0
|
|
268 forwardTuppleList = [(k, len(self.readDict[k])) for k in self.readDict.keys() if (k > 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both forward and in the proper offset window
|
|
269 reverseTuppleList = [(-k, len(self.readDict[k])) for k in self.readDict.keys() if (k < 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both reverse and in the proper offset window
|
|
270 Fbarycenter = (weigthAverage (forwardTuppleList) - upstream_coord) / window_size
|
|
271 Rbarycenter = (weigthAverage (reverseTuppleList) - upstream_coord) / window_size
|
|
272 return Fbarycenter, Rbarycenter
|
|
273
|
|
274 def correlation_mapper (self, reference, window_size):
|
|
275 '''to map correlation with a sliding window 26-2-2013'''
|
|
276 if window_size > self.size:
|
|
277 return []
|
|
278 F=open(reference, "r")
|
|
279 reference_forward = []
|
|
280 reference_reverse = []
|
|
281 for line in F:
|
|
282 fields=line.split()
|
|
283 reference_forward.append(int(float(fields[1])))
|
|
284 reference_reverse.append(int(float(fields[2])))
|
|
285 F.close()
|
|
286 local_object_forward=[]
|
|
287 local_object_reverse=[]
|
|
288 ## Dict to list for the local object
|
|
289 for i in range(1, self.size+1):
|
|
290 local_object_forward.append(len(self.readDict[i]))
|
|
291 local_object_reverse.append(len(self.readDict[-i]))
|
|
292 ## start compiling results by slides
|
|
293 results=[]
|
|
294 for coordinate in range(self.size - window_size):
|
|
295 local_forward=local_object_forward[coordinate:coordinate + window_size]
|
|
296 local_reverse=local_object_reverse[coordinate:coordinate + window_size]
|
|
297 if sum(local_forward) == 0 or sum(local_reverse) == 0:
|
|
298 continue
|
|
299 try:
|
|
300 reference_to_local_cor_forward = stats.spearmanr(local_forward, reference_forward)
|
|
301 reference_to_local_cor_reverse = stats.spearmanr(local_reverse, reference_reverse)
|
|
302 if (reference_to_local_cor_forward[0] > 0.2 or reference_to_local_cor_reverse[0]>0.2):
|
|
303 results.append([coordinate+1, reference_to_local_cor_forward[0], reference_to_local_cor_reverse[0]])
|
|
304 except:
|
|
305 pass
|
|
306 return results
|
|
307
|
|
308 def readcount (self, size_inf=0, size_sup=1000, upstream_coord=None, downstream_coord=None, polarity="both", method="conservative"):
|
|
309 '''refactored 24-12-2013 to save memory and introduce offset filtering
|
|
310 take a look at the defaut parameters that cannot be defined relatively to the instance are they are defined before instanciation
|
|
311 the trick is to pass None and then test
|
|
312 polarity parameter can take "both", "forward" or "reverse" as value'''
|
|
313 upstream_coord = upstream_coord or self.windowoffset
|
|
314 downstream_coord = downstream_coord or self.windowoffset+self.size-1
|
|
315 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "both":
|
|
316 return self.matchedreadsUp + self.matchedreadsDown
|
|
317 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "forward":
|
|
318 return self.matchedreadsUp
|
|
319 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "reverse":
|
|
320 return self.matchedreadsDown
|
|
321 n=0
|
|
322 if polarity == "both":
|
|
323 for offset in xrange(upstream_coord, downstream_coord+1):
|
|
324 if self.readDict.has_key(offset):
|
|
325 for read in self.readDict[offset]:
|
|
326 if (read>=size_inf and read<= size_sup):
|
|
327 n += 1
|
|
328 if method != "conservative":
|
|
329 del self.readDict[offset] ## Carefull ! precludes re-use on the self.readDict dictionary !!!!!! TEST
|
|
330 if self.readDict.has_key(-offset):
|
|
331 for read in self.readDict[-offset]:
|
|
332 if (read>=size_inf and read<= size_sup):
|
|
333 n += 1
|
|
334 if method != "conservative":
|
|
335 del self.readDict[-offset]
|
|
336 return n
|
|
337 elif polarity == "forward":
|
|
338 for offset in xrange(upstream_coord, downstream_coord+1):
|
|
339 if self.readDict.has_key(offset):
|
|
340 for read in self.readDict[offset]:
|
|
341 if (read>=size_inf and read<= size_sup):
|
|
342 n += 1
|
|
343 return n
|
|
344 elif polarity == "reverse":
|
|
345 for offset in xrange(upstream_coord, downstream_coord+1):
|
|
346 if self.readDict.has_key(-offset):
|
|
347 for read in self.readDict[-offset]:
|
|
348 if (read>=size_inf and read<= size_sup):
|
|
349 n += 1
|
|
350 return n
|
|
351
|
|
352 def readsizes (self):
|
|
353 '''return a dictionary of number of reads by size (the keys)'''
|
|
354 dicsize = {}
|
|
355 for offset in self.readDict:
|
|
356 for size in self.readDict[offset]:
|
|
357 dicsize[size] = dicsize.get(size, 0) + 1
|
|
358 for offset in range (min(dicsize.keys()), max(dicsize.keys())+1):
|
|
359 dicsize[size] = dicsize.get(size, 0) # to fill offsets with null values
|
|
360 return dicsize
|
|
361
|
|
362 # def size_histogram(self):
|
|
363 # norm=self.norm
|
|
364 # hist_dict={}
|
|
365 # hist_dict['F']={}
|
|
366 # hist_dict['R']={}
|
|
367 # for offset in self.readDict:
|
|
368 # for size in self.readDict[offset]:
|
|
369 # if offset < 0:
|
|
370 # hist_dict['R'][size] = hist_dict['R'].get(size, 0) - 1*norm
|
|
371 # else:
|
|
372 # hist_dict['F'][size] = hist_dict['F'].get(size, 0) + 1*norm
|
|
373 # ## patch to avoid missing graphs when parsed by R-lattice. 27-08-2014. Test and validate !
|
|
374 # if not (hist_dict['F']) and (not hist_dict['R']):
|
|
375 # hist_dict['F'][21] = 0
|
|
376 # hist_dict['R'][21] = 0
|
|
377 # ##
|
|
378 # return hist_dict
|
|
379
|
|
380 def size_histogram(self, minquery=None, maxquery=None): # in SmRNAwindow
|
|
381 '''refactored on 7-9-2014 to debug size_histogram tool'''
|
|
382 norm=self.norm
|
|
383 size_dict={}
|
|
384 size_dict['F']= defaultdict (float)
|
|
385 size_dict['R']= defaultdict (float)
|
|
386 size_dict['both']= defaultdict (float)
|
|
387 for offset in self.readDict:
|
|
388 for size in self.readDict[offset]:
|
|
389 if offset < 0:
|
|
390 size_dict['R'][size] = size_dict['R'][size] - 1*norm
|
|
391 else:
|
|
392 size_dict['F'][size] = size_dict['F'][size] + 1*norm
|
|
393 ## patch to avoid missing graphs when parsed by R-lattice. 27-08-2014. Test and validate !
|
|
394 if not (size_dict['F']) and (not size_dict['R']):
|
|
395 size_dict['F'][21] = 0
|
|
396 size_dict['R'][21] = 0
|
|
397 ##
|
|
398 allSizeKeys = list (set (size_dict['F'].keys() + size_dict['R'].keys() ) )
|
|
399 for size in allSizeKeys:
|
|
400 size_dict['both'][size] = size_dict['F'][size] - size_dict['R'][size]
|
|
401 if minquery:
|
|
402 for polarity in size_dict.keys():
|
|
403 for size in xrange(minquery, maxquery+1):
|
|
404 if not size in size_dict[polarity].keys():
|
|
405 size_dict[polarity][size]=0
|
|
406 return size_dict
|
|
407
|
|
408 def statsizes (self, upstream_coord=None, downstream_coord=None):
|
|
409 ''' migration to memory saving by specifying possible subcoordinates
|
|
410 see the readcount method for further discussion'''
|
|
411 upstream_coord = upstream_coord or self.windowoffset
|
|
412 downstream_coord = downstream_coord or self.windowoffset+self.size-1
|
|
413 L = []
|
|
414 for offset in self.readDict:
|
|
415 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
|
|
416 for size in self.readDict[offset]:
|
|
417 L.append(size)
|
|
418 meansize = mean(L)
|
|
419 stdv = std(L)
|
|
420 mediansize = median(L)
|
|
421 return meansize, mediansize, stdv
|
|
422
|
|
423 def foldEnergy (self, upstream_coord=None, downstream_coord=None):
|
|
424 ''' migration to memory saving by specifying possible subcoordinates
|
|
425 see the readcount method for further discussion'''
|
|
426 upstream_coord = upstream_coord or self.windowoffset
|
|
427 downstream_coord = downstream_coord or self.windowoffset+self.size-1
|
|
428 Energy = RNAfold ([self.sequence[upstream_coord-1:downstream_coord] ])
|
|
429 return float(Energy[self.sequence[upstream_coord-1:downstream_coord]])
|
|
430
|
|
431 def Ufreq (self, size_scope, upstream_coord=None, downstream_coord=None):
|
|
432 ''' migration to memory saving by specifying possible subcoordinates
|
|
433 see the readcount method for further discussion. size_scope must be an interable'''
|
|
434 upstream_coord = upstream_coord or self.windowoffset
|
|
435 downstream_coord = downstream_coord or self.windowoffset+self.size-1
|
|
436 freqDic = {"A":0,"T":0,"G":0,"C":0, "N":0}
|
|
437 convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"}
|
|
438 for offset in self.readDict:
|
|
439 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
|
|
440 for size in self.readDict[offset]:
|
|
441 if size in size_scope:
|
|
442 startbase = self.sequence[abs(offset)-self.windowoffset]
|
|
443 if offset < 0:
|
|
444 startbase = convertDic[startbase]
|
|
445 freqDic[startbase] += 1
|
|
446 base_sum = float ( sum( freqDic.values()) )
|
|
447 if base_sum == 0:
|
|
448 return "."
|
|
449 else:
|
|
450 return freqDic["T"] / base_sum * 100
|
|
451
|
|
452 def Ufreq_stranded (self, size_scope, upstream_coord=None, downstream_coord=None):
|
|
453 ''' migration to memory saving by specifying possible subcoordinates
|
|
454 see the readcount method for further discussion. size_scope must be an interable
|
|
455 This method is similar to the Ufreq method but take strandness into account'''
|
|
456 upstream_coord = upstream_coord or self.windowoffset
|
|
457 downstream_coord = downstream_coord or self.windowoffset+self.size-1
|
|
458 freqDic = {"Afor":0,"Tfor":0,"Gfor":0,"Cfor":0, "Nfor":0,"Arev":0,"Trev":0,"Grev":0,"Crev":0, "Nrev":0}
|
|
459 convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"}
|
|
460 for offset in self.readDict:
|
|
461 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
|
|
462 for size in self.readDict[offset]:
|
|
463 if size in size_scope:
|
|
464 startbase = self.sequence[abs(offset)-self.windowoffset]
|
|
465 if offset < 0:
|
|
466 startbase = convertDic[startbase]
|
|
467 freqDic[startbase+"rev"] += 1
|
|
468 else:
|
|
469 freqDic[startbase+"for"] += 1
|
|
470 forward_sum = float ( freqDic["Afor"]+freqDic["Tfor"]+freqDic["Gfor"]+freqDic["Cfor"]+freqDic["Nfor"])
|
|
471 reverse_sum = float ( freqDic["Arev"]+freqDic["Trev"]+freqDic["Grev"]+freqDic["Crev"]+freqDic["Nrev"])
|
|
472 if forward_sum == 0 and reverse_sum == 0:
|
|
473 return ". | ."
|
|
474 elif reverse_sum == 0:
|
|
475 return "%s | ." % (freqDic["Tfor"] / forward_sum * 100)
|
|
476 elif forward_sum == 0:
|
|
477 return ". | %s" % (freqDic["Trev"] / reverse_sum * 100)
|
|
478 else:
|
|
479 return "%s | %s" % (freqDic["Tfor"] / forward_sum * 100, freqDic["Trev"] / reverse_sum * 100)
|
|
480
|
|
481
|
|
482 def readplot (self):
|
|
483 norm=self.norm
|
|
484 readmap = {}
|
|
485 for offset in self.readDict.keys():
|
|
486 readmap[abs(offset)] = ( len(self.readDict.get(-abs(offset),[]))*norm , len(self.readDict.get(abs(offset),[]))*norm )
|
|
487 mylist = []
|
|
488 for offset in sorted(readmap):
|
|
489 if readmap[offset][1] != 0:
|
|
490 mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, readmap[offset][1], "F") )
|
|
491 if readmap[offset][0] != 0:
|
|
492 mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, -readmap[offset][0], "R") )
|
|
493 ## patch to avoid missing graphs when parsed by R-lattice. 27-08-2014. Test and validate !
|
|
494 if not mylist:
|
|
495 mylist.append("%s\t%s\t%s\t%s" % (self.gene, 1, 0, "F") )
|
|
496 ###
|
|
497 return mylist
|
|
498
|
|
499 def readcoverage (self, upstream_coord=None, downstream_coord=None, windowName=None):
|
|
500 '''Use by MirParser tool'''
|
|
501 upstream_coord = upstream_coord or 1
|
|
502 downstream_coord = downstream_coord or self.size
|
|
503 windowName = windowName or "%s_%s_%s" % (self.gene, upstream_coord, downstream_coord)
|
|
504 forORrev_coverage = dict ([(i,0) for i in xrange(1, downstream_coord-upstream_coord+1)])
|
|
505 totalforward = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="forward")
|
|
506 totalreverse = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="reverse")
|
|
507 if totalforward > totalreverse:
|
|
508 majorcoverage = "forward"
|
|
509 for offset in self.readDict.keys():
|
|
510 if (offset > 0) and ((offset-upstream_coord+1) in forORrev_coverage.keys() ):
|
|
511 for read in self.readDict[offset]:
|
|
512 for i in xrange(read):
|
|
513 try:
|
|
514 forORrev_coverage[offset-upstream_coord+1+i] += 1
|
|
515 except KeyError:
|
|
516 continue # a sense read may span over the downstream limit
|
|
517 else:
|
|
518 majorcoverage = "reverse"
|
|
519 for offset in self.readDict.keys():
|
|
520 if (offset < 0) and (-offset-upstream_coord+1 in forORrev_coverage.keys() ):
|
|
521 for read in self.readDict[offset]:
|
|
522 for i in xrange(read):
|
|
523 try:
|
|
524 forORrev_coverage[-offset-upstream_coord-i] += 1 ## positive coordinates in the instance, with + for forward coverage and - for reverse coverage
|
|
525 except KeyError:
|
|
526 continue # an antisense read may span over the upstream limit
|
|
527 output_list = []
|
|
528 maximum = max (forORrev_coverage.values()) or 1
|
|
529 for n in sorted (forORrev_coverage):
|
|
530 output_list.append("%s\t%s\t%s\t%s\t%s\t%s\t%s" % (self.biosample, windowName, n, float(n)/(downstream_coord-upstream_coord+1), forORrev_coverage[n], float(forORrev_coverage[n])/maximum, majorcoverage))
|
|
531 return "\n".join(output_list)
|
|
532
|
|
533
|
|
534 def signature (self, minquery, maxquery, mintarget, maxtarget, scope, zscore="no", upstream_coord=None, downstream_coord=None):
|
|
535 ''' migration to memory saving by specifying possible subcoordinates
|
|
536 see the readcount method for further discussion
|
|
537 scope must be a python iterable; scope define the *relative* offset range to be computed'''
|
|
538 upstream_coord = upstream_coord or self.windowoffset
|
|
539 downstream_coord = downstream_coord or self.windowoffset+self.size-1
|
|
540 query_range = range (minquery, maxquery+1)
|
|
541 target_range = range (mintarget, maxtarget+1)
|
|
542 Query_table = {}
|
|
543 Target_table = {}
|
|
544 frequency_table = dict ([(i, 0) for i in scope])
|
|
545 for offset in self.readDict:
|
|
546 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
|
|
547 for size in self.readDict[offset]:
|
|
548 if size in query_range:
|
|
549 Query_table[offset] = Query_table.get(offset, 0) + 1
|
|
550 if size in target_range:
|
|
551 Target_table[offset] = Target_table.get(offset, 0) + 1
|
|
552 for offset in Query_table:
|
|
553 for i in scope:
|
|
554 frequency_table[i] += min(Query_table[offset], Target_table.get(-offset -i +1, 0))
|
|
555 if minquery==mintarget and maxquery==maxtarget: ## added to incorporate the division by 2 in the method (26/11/2013), see signature_options.py and lattice_signature.py
|
|
556 frequency_table = dict([(i,frequency_table[i]/2) for i in frequency_table])
|
|
557 if zscore == "yes":
|
|
558 z_mean = mean(frequency_table.values() )
|
|
559 z_std = std(frequency_table.values() )
|
|
560 if z_std == 0:
|
|
561 frequency_table = dict([(i,0) for i in frequency_table] )
|
|
562 else:
|
|
563 frequency_table = dict([(i, (frequency_table[i]- z_mean)/z_std) for i in frequency_table] )
|
|
564 return frequency_table
|
|
565
|
|
566 def hannon_signature (self, minquery, maxquery, mintarget, maxtarget, scope, upstream_coord=None, downstream_coord=None):
|
|
567 ''' migration to memory saving by specifying possible subcoordinates see the readcount method for further discussion
|
|
568 note that scope must be an iterable (a list or a tuple), which specifies the relative offsets that will be computed'''
|
|
569 upstream_coord = upstream_coord or self.windowoffset
|
|
570 downstream_coord = downstream_coord or self.windowoffset+self.size-1
|
|
571 query_range = range (minquery, maxquery+1)
|
|
572 target_range = range (mintarget, maxtarget+1)
|
|
573 Query_table = {}
|
|
574 Target_table = {}
|
|
575 Total_Query_Numb = 0
|
|
576 general_frequency_table = dict ([(i,0) for i in scope])
|
|
577 ## filtering the appropriate reads for the study
|
|
578 for offset in self.readDict:
|
|
579 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
|
|
580 for size in self.readDict[offset]:
|
|
581 if size in query_range:
|
|
582 Query_table[offset] = Query_table.get(offset, 0) + 1
|
|
583 Total_Query_Numb += 1
|
|
584 if size in target_range:
|
|
585 Target_table[offset] = Target_table.get(offset, 0) + 1
|
|
586 for offset in Query_table:
|
|
587 frequency_table = dict ([(i,0) for i in scope])
|
|
588 number_of_targets = 0
|
|
589 for i in scope:
|
|
590 frequency_table[i] += Query_table[offset] * Target_table.get(-offset -i +1, 0)
|
|
591 number_of_targets += Target_table.get(-offset -i +1, 0)
|
|
592 for i in scope:
|
|
593 try:
|
|
594 general_frequency_table[i] += (1. / number_of_targets / Total_Query_Numb) * frequency_table[i]
|
|
595 except ZeroDivisionError :
|
|
596 continue
|
|
597 return general_frequency_table
|
|
598
|
|
599 def phasing (self, size_range, scope):
|
|
600 ''' to calculate autocorelation like signal - scope must be an python iterable'''
|
|
601 read_table = {}
|
|
602 total_read_number = 0
|
|
603 general_frequency_table = dict ([(i, 0) for i in scope])
|
|
604 ## read input filtering
|
|
605 for offset in self.readDict:
|
|
606 for size in self.readDict[offset]:
|
|
607 if size in size_range:
|
|
608 read_table[offset] = read_table.get(offset, 0) + 1
|
|
609 total_read_number += 1
|
|
610 ## per offset read phasing computing
|
|
611 for offset in read_table:
|
|
612 frequency_table = dict ([(i, 0) for i in scope]) # local frequency table
|
|
613 number_of_targets = 0
|
|
614 for i in scope:
|
|
615 if offset > 0:
|
|
616 frequency_table[i] += read_table[offset] * read_table.get(offset + i, 0)
|
|
617 number_of_targets += read_table.get(offset + i, 0)
|
|
618 else:
|
|
619 frequency_table[i] += read_table[offset] * read_table.get(offset - i, 0)
|
|
620 number_of_targets += read_table.get(offset - i, 0)
|
|
621 ## inclusion of local frequency table in the general frequency table (all offsets average)
|
|
622 for i in scope:
|
|
623 try:
|
|
624 general_frequency_table[i] += (1. / number_of_targets / total_read_number) * frequency_table[i]
|
|
625 except ZeroDivisionError :
|
|
626 continue
|
|
627 return general_frequency_table
|
|
628
|
|
629
|
|
630
|
|
631 def z_signature (self, minquery, maxquery, mintarget, maxtarget, scope):
|
|
632 '''Must do: from numpy import mean, std, to use this method; scope must be a python iterable and defines the relative offsets to compute'''
|
|
633 frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope)
|
|
634 z_table = {}
|
|
635 frequency_list = [frequency_table[i] for i in sorted (frequency_table)]
|
|
636 if std(frequency_list):
|
|
637 meanlist = mean(frequency_list)
|
|
638 stdlist = std(frequency_list)
|
|
639 z_list = [(i-meanlist)/stdlist for i in frequency_list]
|
|
640 return dict (zip (sorted(frequency_table), z_list) )
|
|
641 else:
|
|
642 return dict (zip (sorted(frequency_table), [0 for i in frequency_table]) )
|
|
643
|
|
644 def percent_signature (self, minquery, maxquery, mintarget, maxtarget, scope):
|
|
645 frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope)
|
|
646 total = float(sum ([self.readsizes().get(i,0) for i in set(range(minquery,maxquery)+range(mintarget,maxtarget))]) )
|
|
647 if total == 0:
|
|
648 return dict( [(i,0) for i in scope])
|
|
649 return dict( [(i, frequency_table[i]/total*100) for i in scope])
|
|
650
|
|
651 def pairer (self, overlap, minquery, maxquery, mintarget, maxtarget):
|
|
652 queryhash = defaultdict(list)
|
|
653 targethash = defaultdict(list)
|
|
654 query_range = range (int(minquery), int(maxquery)+1)
|
|
655 target_range = range (int(mintarget), int(maxtarget)+1)
|
|
656 paired_sequences = []
|
|
657 for offset in self.readDict: # selection of data
|
|
658 for size in self.readDict[offset]:
|
|
659 if size in query_range:
|
|
660 queryhash[offset].append(size)
|
|
661 if size in target_range:
|
|
662 targethash[offset].append(size)
|
|
663 for offset in queryhash:
|
|
664 if offset >= 0: matched_offset = -offset - overlap + 1
|
|
665 else: matched_offset = -offset - overlap + 1
|
|
666 if targethash[matched_offset]:
|
|
667 paired = min ( len(queryhash[offset]), len(targethash[matched_offset]) )
|
|
668 if offset >= 0:
|
|
669 for i in range (paired):
|
|
670 paired_sequences.append("+%s" % RNAtranslate ( self.sequence[offset:offset+queryhash[offset][i]]) )
|
|
671 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-targethash[matched_offset][i]+1:-matched_offset+1]) ) )
|
|
672 if offset < 0:
|
|
673 for i in range (paired):
|
|
674 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-queryhash[offset][i]+1:-offset+1]) ) )
|
|
675 paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+targethash[matched_offset][i]] ) )
|
|
676 return paired_sequences
|
|
677
|
|
678 def pairable (self, overlap, minquery, maxquery, mintarget, maxtarget):
|
|
679 queryhash = defaultdict(list)
|
|
680 targethash = defaultdict(list)
|
|
681 query_range = range (int(minquery), int(maxquery)+1)
|
|
682 target_range = range (int(mintarget), int(maxtarget)+1)
|
|
683 paired_sequences = []
|
|
684
|
|
685 for offset in self.readDict: # selection of data
|
|
686 for size in self.readDict[offset]:
|
|
687 if size in query_range:
|
|
688 queryhash[offset].append(size)
|
|
689 if size in target_range:
|
|
690 targethash[offset].append(size)
|
|
691
|
|
692 for offset in queryhash:
|
|
693 matched_offset = -offset - overlap + 1
|
|
694 if targethash[matched_offset]:
|
|
695 if offset >= 0:
|
|
696 for i in queryhash[offset]:
|
|
697 paired_sequences.append("+%s" % RNAtranslate (self.sequence[offset:offset+i]) )
|
|
698 for i in targethash[matched_offset]:
|
|
699 paired_sequences.append( "-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-i+1:-matched_offset+1]) ) )
|
|
700 if offset < 0:
|
|
701 for i in queryhash[offset]:
|
|
702 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-i+1:-offset+1]) ) )
|
|
703 for i in targethash[matched_offset]:
|
|
704 paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+i] ) )
|
|
705 return paired_sequences
|
|
706
|
|
707 def newpairable_bowtie (self, overlap, minquery, maxquery, mintarget, maxtarget):
|
|
708 ''' revision of pairable on 3-12-2012, with focus on the offset shift problem (bowtie is 1-based cooordinates whereas python strings are 0-based coordinates'''
|
|
709 queryhash = defaultdict(list)
|
|
710 targethash = defaultdict(list)
|
|
711 query_range = range (int(minquery), int(maxquery)+1)
|
|
712 target_range = range (int(mintarget), int(maxtarget)+1)
|
|
713 bowtie_output = []
|
|
714
|
|
715 for offset in self.readDict: # selection of data
|
|
716 for size in self.readDict[offset]:
|
|
717 if size in query_range:
|
|
718 queryhash[offset].append(size)
|
|
719 if size in target_range:
|
|
720 targethash[offset].append(size)
|
|
721 counter = 0
|
|
722 for offset in queryhash:
|
|
723 matched_offset = -offset - overlap + 1
|
|
724 if targethash[matched_offset]:
|
|
725 if offset >= 0:
|
|
726 for i in queryhash[offset]:
|
|
727 counter += 1
|
|
728 bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "+", self.gene, offset-1, self.sequence[offset-1:offset-1+i]) ) # attention a la base 1-0 de l'offset
|
|
729 if offset < 0:
|
|
730 for i in queryhash[offset]:
|
|
731 counter += 1
|
|
732 bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "-", self.gene, -offset-i, self.sequence[-offset-i:-offset])) # attention a la base 1-0 de l'offset
|
|
733 return bowtie_output
|
|
734
|
|
735
|
|
736 def __main__(bowtie_index_path, bowtie_output_path):
|
|
737 sequenceDic = get_fasta (bowtie_index_path)
|
|
738 objDic = {}
|
|
739 F = open (bowtie_output_path, "r") # F is the bowtie output taken as input
|
|
740 for line in F:
|
|
741 fields = line.split()
|
|
742 polarity = fields[1]
|
|
743 gene = fields[2]
|
|
744 offset = int(fields[3])
|
|
745 size = len (fields[4])
|
|
746 try:
|
|
747 objDic[gene].addread (polarity, offset, size)
|
|
748 except KeyError:
|
|
749 objDic[gene] = SmRNAwindow(gene, sequenceDic[gene])
|
|
750 objDic[gene].addread (polarity, offset, size)
|
|
751 F.close()
|
|
752 for gene in objDic:
|
|
753 print gene, objDic[gene].pairer(19,19,23,19,23)
|
|
754
|
|
755 if __name__ == "__main__" : __main__(sys.argv[1], sys.argv[2])
|